organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl-3,5-di­nitro­benzamide

aMOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China, and bThe First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, People's Republic of China
*Correspondence e-mail: zhang_heming88@yahoo.com.cn

(Received 12 December 2011; accepted 14 December 2011; online 21 December 2011)

The asymmetric unit of the title compound, C8H7N3O5, contains two independent mol­ecules in which the amide plane is oriented at dihedral angles of 29.82 (2) and 31.17 (2)° with respect to the benzene ring. In the crystal, mol­ecules are connected via inter­molecular N—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For general background to the biological activity of benzamide derivatives, see: Lee et al. (2009[Lee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358-6361.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3O5

  • Mr = 225.16

  • Orthorhombic, P b c a

  • a = 10.716 (2) Å

  • b = 10.057 (2) Å

  • c = 36.101 (7) Å

  • V = 3890.6 (13) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.962, Tmax = 0.987

  • 4711 measured reflections

  • 3402 independent reflections

  • 1653 reflections with I > 2σ(I)

  • Rint = 0.0582

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.162

  • S = 0.96

  • 3402 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5i 0.86 2.06 2.900 (4) 165
N6—H6A⋯O10i 0.86 2.12 2.955 (4) 164
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzamide derivatives exhibit interesting biological activities such as antibacterial and antifungal effects (Lee et al.., 2009). We report here the crystal structure of the title compound (Fig. 1). Bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal packing of (I) the molecules are connected together via N—H···O intermolecular hydrogen bonds to form a one-dimensional chains in the b direction (Table 1, graph set C1,1(4)), which seems to be very effective in the stabilization of the crystal structure.

Related literature top

For general background to the biological activity of benzamide derivatives, see: Lee et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A 1:1 mixture of N,N'-dimethylurea (0.088 g, 1 mmol), 3,5-dinitrobenzoic acid (0.212 g, 1 mmol) and ZrOCl2.8H2O (0.032 g, 1 mmol) were ground in a mortar, placed in a 50 ml conical flask and irradiated in a microwave oven. The progress of the reaction was monitored by TLC. After completion of the reaction, the contents were extracted with EtOAc (3 × 10 ml) and filtered to remove the catalyst. To remove unreacted acid, the organic layer was washed with a NaHCO3 solution followed by water. Evaporating the organic solvent provided the crystals.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H, 0.96 Å for methyl H and 0.86 Å for N—H. Uiso(H)= 1.2Ueq(C) and 1.5Ueq(N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis. The dashed lines represent the hydrogen bonding interactions.
N-Methyl-3,5-dinitrobenzamide top
Crystal data top
C8H7N3O5F(000) = 1856
Mr = 225.16Dx = 1.538 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.716 (2) Åθ = 9–13°
b = 10.057 (2) ŵ = 0.13 mm1
c = 36.101 (7) ÅT = 293 K
V = 3890.6 (13) Å3Block, yellow
Z = 160.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1653 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 25.1°, θmin = 2.2°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.962, Tmax = 0.987l = 042
4711 measured reflections3 standard reflections every 200 reflections
3402 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0619P)2]
where P = (Fo2 + 2Fc2)/3
3402 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H7N3O5V = 3890.6 (13) Å3
Mr = 225.16Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 10.716 (2) ŵ = 0.13 mm1
b = 10.057 (2) ÅT = 293 K
c = 36.101 (7) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1653 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.058
Tmin = 0.962, Tmax = 0.9873 standard reflections every 200 reflections
4711 measured reflections intensity decay: 1%
3402 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 0.96Δρmax = 0.21 e Å3
3402 reflectionsΔρmin = 0.17 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.1588 (3)0.7222 (4)0.65015 (10)0.0554 (9)
C10.9707 (3)0.8426 (4)0.67035 (11)0.0444 (10)
H1A0.92210.77950.65820.053*
O11.0927 (3)0.6404 (3)0.63547 (10)0.0798 (11)
O21.2734 (2)0.7187 (3)0.64960 (8)0.0716 (9)
C21.0989 (3)0.8326 (4)0.67030 (11)0.0462 (10)
N21.1949 (4)1.1247 (4)0.72609 (10)0.0571 (10)
N30.7009 (3)0.8718 (3)0.68582 (10)0.0568 (10)
H3A0.73140.79270.68500.068*
O31.3077 (3)1.1073 (3)0.72618 (9)0.0726 (10)
C31.1751 (3)0.9227 (4)0.68860 (12)0.0521 (11)
H3B1.26160.91480.68850.063*
O41.1423 (3)1.2198 (3)0.74015 (10)0.0745 (10)
C41.1155 (3)1.0243 (4)0.70688 (12)0.0461 (10)
O50.7395 (2)1.0907 (2)0.68914 (9)0.0636 (9)
C50.9889 (3)1.0400 (4)0.70711 (11)0.0437 (10)
H5A0.95271.11140.71940.052*
C60.9151 (3)0.9481 (3)0.68874 (10)0.0413 (10)
C70.7776 (3)0.9749 (4)0.68801 (11)0.0445 (10)
C80.5670 (3)0.8895 (4)0.68472 (14)0.0705 (14)
H8A0.52720.80420.68320.106*
H8B0.54500.94160.66340.106*
H8C0.54010.93440.70680.106*
O60.3317 (3)0.2716 (3)0.39302 (10)0.0788 (11)
O70.1844 (3)0.1345 (4)0.40663 (10)0.0918 (12)
O80.2726 (3)0.2445 (4)0.48397 (10)0.0938 (12)
O90.4620 (4)0.2891 (4)0.49911 (11)0.0952 (12)
O100.7598 (2)0.1750 (2)0.42863 (8)0.0614 (9)
N40.2939 (3)0.1676 (4)0.40662 (11)0.0617 (11)
N50.3840 (4)0.2228 (4)0.48302 (11)0.0669 (11)
N60.8109 (3)0.0414 (3)0.43239 (9)0.0503 (10)
H6A0.78430.12120.43560.060*
C90.5097 (3)0.1061 (4)0.42133 (11)0.0452 (10)
H9A0.53640.18060.40830.054*
C100.3841 (3)0.0788 (4)0.42467 (12)0.0501 (11)
C110.3408 (4)0.0288 (4)0.44465 (12)0.0560 (11)
H11A0.25580.04600.44690.067*
C120.4279 (3)0.1087 (4)0.46088 (11)0.0481 (10)
C130.5549 (3)0.0875 (3)0.45744 (11)0.0468 (10)
H13A0.61160.14570.46830.056*
C140.5960 (3)0.0213 (3)0.43772 (11)0.0390 (9)
C150.7307 (3)0.0574 (3)0.43282 (11)0.0435 (10)
C160.9431 (3)0.0190 (4)0.42662 (15)0.0718 (14)
H16A0.98630.10250.42700.108*
H16B0.97480.03720.44600.108*
H16C0.95570.02340.40310.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.063 (2)0.052 (2)0.051 (3)0.010 (2)0.003 (2)0.001 (2)
C10.046 (2)0.039 (2)0.048 (3)0.0017 (18)0.004 (2)0.002 (2)
O10.082 (2)0.064 (2)0.093 (3)0.0010 (18)0.012 (2)0.035 (2)
O20.0549 (19)0.091 (2)0.069 (2)0.0238 (17)0.0071 (17)0.0031 (19)
C20.052 (2)0.038 (2)0.049 (3)0.0070 (19)0.003 (2)0.001 (2)
N20.058 (2)0.057 (2)0.056 (3)0.012 (2)0.010 (2)0.000 (2)
N30.0419 (17)0.0308 (16)0.098 (3)0.0009 (15)0.0010 (18)0.007 (2)
O30.0486 (17)0.091 (2)0.078 (2)0.0116 (17)0.0149 (17)0.003 (2)
C30.043 (2)0.052 (2)0.061 (3)0.005 (2)0.003 (2)0.009 (2)
O40.077 (2)0.0621 (19)0.085 (3)0.0036 (18)0.0174 (18)0.021 (2)
C40.042 (2)0.042 (2)0.055 (3)0.0048 (19)0.004 (2)0.002 (2)
O50.0520 (16)0.0334 (15)0.106 (3)0.0035 (13)0.0022 (17)0.0014 (15)
C50.048 (2)0.040 (2)0.043 (2)0.0008 (19)0.0021 (19)0.001 (2)
C60.042 (2)0.034 (2)0.048 (3)0.0019 (18)0.000 (2)0.004 (2)
C70.054 (2)0.031 (2)0.049 (3)0.001 (2)0.001 (2)0.001 (2)
C80.045 (2)0.051 (2)0.116 (4)0.001 (2)0.000 (3)0.002 (3)
O60.068 (2)0.066 (2)0.102 (3)0.0145 (19)0.019 (2)0.010 (2)
O70.0410 (17)0.129 (3)0.106 (3)0.0026 (19)0.0210 (18)0.015 (2)
O80.072 (2)0.117 (3)0.092 (3)0.041 (2)0.016 (2)0.019 (2)
O90.099 (3)0.079 (3)0.108 (3)0.009 (2)0.016 (2)0.032 (2)
O100.0528 (16)0.0324 (14)0.099 (2)0.0012 (13)0.0006 (17)0.0076 (16)
N40.046 (2)0.075 (3)0.064 (3)0.010 (2)0.016 (2)0.014 (2)
N50.073 (3)0.069 (3)0.058 (3)0.020 (2)0.014 (2)0.000 (2)
N60.0394 (17)0.0264 (16)0.085 (3)0.0011 (14)0.0063 (17)0.0019 (18)
C90.046 (2)0.035 (2)0.055 (3)0.0028 (18)0.000 (2)0.003 (2)
C100.046 (2)0.049 (2)0.056 (3)0.003 (2)0.008 (2)0.014 (2)
C110.051 (2)0.061 (3)0.055 (3)0.007 (2)0.005 (2)0.009 (2)
C120.053 (2)0.044 (2)0.047 (3)0.010 (2)0.009 (2)0.001 (2)
C130.055 (2)0.037 (2)0.049 (3)0.0001 (19)0.002 (2)0.004 (2)
C140.040 (2)0.0296 (18)0.047 (2)0.0027 (17)0.0007 (18)0.0053 (19)
C150.048 (2)0.027 (2)0.056 (3)0.0007 (18)0.003 (2)0.0014 (19)
C160.045 (2)0.049 (2)0.121 (4)0.002 (2)0.007 (3)0.016 (3)
Geometric parameters (Å, º) top
N1—O11.207 (4)O6—N41.224 (4)
N1—O21.229 (4)O7—N41.221 (4)
N1—C21.475 (5)O8—N51.214 (4)
C1—C21.378 (5)O9—N51.217 (4)
C1—C61.386 (5)O10—C151.232 (4)
C1—H1A0.9300N4—C101.468 (5)
C2—C31.387 (5)N5—C121.475 (5)
N2—O41.221 (4)N6—C151.314 (4)
N2—O31.221 (4)N6—C161.449 (4)
N2—C41.491 (5)N6—H6A0.8600
N3—C71.325 (4)C9—C101.379 (5)
N3—C81.446 (4)C9—C141.391 (5)
N3—H3A0.8600C9—H9A0.9300
C3—C41.374 (5)C10—C111.381 (5)
C3—H3B0.9300C11—C121.364 (5)
C4—C51.366 (5)C11—H11A0.9300
O5—C71.234 (4)C12—C131.383 (5)
C5—C61.385 (5)C13—C141.378 (5)
C5—H5A0.9300C13—H13A0.9300
C6—C71.498 (5)C14—C151.498 (5)
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
O1—N1—O2124.0 (4)O7—N4—O6123.5 (4)
O1—N1—C2118.3 (3)O7—N4—C10117.8 (4)
O2—N1—C2117.6 (4)O6—N4—C10118.7 (3)
C2—C1—C6119.0 (3)O8—N5—O9124.3 (4)
C2—C1—H1A120.5O8—N5—C12118.0 (4)
C6—C1—H1A120.5O9—N5—C12117.7 (4)
C1—C2—C3122.6 (4)C15—N6—C16121.6 (3)
C1—C2—N1119.3 (4)C15—N6—H6A119.2
C3—C2—N1118.1 (3)C16—N6—H6A119.2
O4—N2—O3124.6 (4)C10—C9—C14119.4 (4)
O4—N2—C4117.4 (3)C10—C9—H9A120.3
O3—N2—C4118.0 (4)C14—C9—H9A120.3
C7—N3—C8121.3 (3)C9—C10—C11122.0 (4)
C7—N3—H3A119.3C9—C10—N4118.8 (4)
C8—N3—H3A119.3C11—C10—N4119.2 (4)
C4—C3—C2116.2 (3)C12—C11—C10117.1 (4)
C4—C3—H3B121.9C12—C11—H11A121.4
C2—C3—H3B121.9C10—C11—H11A121.4
C5—C4—C3123.4 (4)C11—C12—C13122.9 (4)
C5—C4—N2119.1 (4)C11—C12—N5118.2 (4)
C3—C4—N2117.5 (3)C13—C12—N5118.9 (4)
C4—C5—C6119.2 (4)C14—C13—C12119.0 (4)
C4—C5—H5A120.4C14—C13—H13A120.5
C6—C5—H5A120.4C12—C13—H13A120.5
C5—C6—C1119.6 (3)C13—C14—C9119.6 (3)
C5—C6—C7116.7 (3)C13—C14—C15124.2 (3)
C1—C6—C7123.5 (3)C9—C14—C15116.2 (3)
O5—C7—N3122.4 (3)O10—C15—N6123.9 (3)
O5—C7—C6119.6 (3)O10—C15—C14119.4 (3)
N3—C7—C6118.0 (3)N6—C15—C14116.6 (3)
N3—C8—H8A109.5N6—C16—H16A109.5
N3—C8—H8B109.5N6—C16—H16B109.5
H8A—C8—H8B109.5H16A—C16—H16B109.5
N3—C8—H8C109.5N6—C16—H16C109.5
H8A—C8—H8C109.5H16A—C16—H16C109.5
H8B—C8—H8C109.5H16B—C16—H16C109.5
C6—C1—C2—C31.3 (6)C14—C9—C10—C111.7 (6)
C6—C1—C2—N1178.8 (3)C14—C9—C10—N4178.8 (3)
O1—N1—C2—C12.9 (6)O7—N4—C10—C9172.6 (4)
O2—N1—C2—C1177.6 (4)O6—N4—C10—C98.7 (6)
O1—N1—C2—C3177.0 (4)O7—N4—C10—C117.8 (6)
O2—N1—C2—C32.5 (5)O6—N4—C10—C11170.8 (4)
C1—C2—C3—C40.4 (6)C9—C10—C11—C120.6 (6)
N1—C2—C3—C4179.7 (3)N4—C10—C11—C12179.9 (4)
C2—C3—C4—C51.0 (6)C10—C11—C12—C131.3 (6)
C2—C3—C4—N2178.6 (3)C10—C11—C12—N5178.8 (4)
O4—N2—C4—C52.6 (6)O8—N5—C12—C114.2 (6)
O3—N2—C4—C5178.6 (4)O9—N5—C12—C11175.9 (4)
O4—N2—C4—C3175.1 (4)O8—N5—C12—C13175.8 (4)
O3—N2—C4—C33.8 (6)O9—N5—C12—C134.1 (6)
C3—C4—C5—C61.4 (6)C11—C12—C13—C142.0 (6)
N2—C4—C5—C6178.9 (3)N5—C12—C13—C14178.1 (3)
C4—C5—C6—C10.3 (5)C12—C13—C14—C90.8 (5)
C4—C5—C6—C7176.4 (3)C12—C13—C14—C15178.3 (4)
C2—C1—C6—C51.0 (5)C10—C9—C14—C130.9 (6)
C2—C1—C6—C7174.8 (4)C10—C9—C14—C15179.9 (3)
C8—N3—C7—O50.2 (7)C16—N6—C15—O100.3 (7)
C8—N3—C7—C6179.6 (4)C16—N6—C15—C14177.9 (3)
C5—C6—C7—O529.1 (5)C13—C14—C15—O10151.0 (4)
C1—C6—C7—O5146.9 (4)C9—C14—C15—O1028.1 (5)
C5—C6—C7—N3151.5 (4)C13—C14—C15—N630.6 (6)
C1—C6—C7—N332.5 (6)C9—C14—C15—N6150.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.862.062.900 (4)165
N6—H6A···O10i0.862.122.955 (4)164
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H7N3O5
Mr225.16
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.716 (2), 10.057 (2), 36.101 (7)
V3)3890.6 (13)
Z16
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.962, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4711, 3402, 1653
Rint0.058
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.162, 0.96
No. of reflections3402
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.862.062.900 (4)165.1
N6—H6A···O10i0.862.122.955 (4)164.0
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30940094) and the Science Foundation for Excellent Youth Scholars of the Education Commission of Hunan Province, China (10B077).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLee, S., Song, K. H., Choe, J., Ju, J. & Jo, Y. (2009). J. Org. Chem. 74, 6358–6361.  Web of Science PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds