organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{2-[(3-{(E)-2-[4-(Di­methyl­amino)­phen­yl]ethen­yl}quinoxalin-2-yl)­­oxy]eth­yl}-1,3-oxazolidin-2-one monohydrate

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 December 2011; accepted 18 December 2011; online 23 December 2011)

In the title compound, C23H24N4O3·H2O, the 1,3-oxazoline ring is nearly planar [maximum deviation = 0.059 (2) Å] and its mean plane is twisted by 30.12 (8)° with respect to the quinoxaline fused-ring system; the benzene ring is nearly coplanar with the quinoxaline fused-ring system [dihedral angle = 2.52 (2)°]. The water mol­ecule of crystallization is hydrogen-bond donor to an N atom of the quinoxaline ring system as well as an O atom of the oxazolinone unit, the two hydrogen bonds generating a chain running along the c axis.

Related literature

For general background, see: Noolvi et al. (2011[Noolvi, M., Patel, H. M., Bhardwaj, V. & Chauhan, A. (2011). Eur. J. Med. Chem. 46, 2327-2346.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24N4O3·H2O

  • Mr = 422.48

  • Monoclinic, P 21 /c

  • a = 7.20980 (1) Å

  • b = 23.3271 (4) Å

  • c = 12.3994 (2) Å

  • β = 98.119 (1)°

  • V = 2064.47 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.21 × 0.20 × 0.15 mm

Data collection
  • Bruker APEX DUO diffractometer

  • 28134 measured reflections

  • 5836 independent reflections

  • 4141 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 1.03

  • 5836 reflections

  • 290 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯N1 0.87 (1) 2.18 (1) 3.039 (2) 170 (2)
O1w—H12⋯O3i 0.86 (1) 1.96 (1) 2.820 (2) 176 (3)
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Chloro-3-(4-dimethylaminostyryl)quinoxaline is a reactant for the synthesis of quinoxaline derivatives that possess anti-cancer properties (Noolvi et al., 2011); the chloro substitutent is exchanged for other organic radicals. We have used the 3-(4-dimethylaminostyryl)quinoxaline as reactant to furnish the title derivative (Scheme I). The quinoxaline fused-ring and the phenylene ring are nearly co-planar (dihedral angle 2.52 (2)°) (Fig. 1). The water molecule is hydrogen bond donor to an N atom of the fused-ring as well as an O atom of the oxazolinone unit, the two hydrogen bonds generating a linear chain running along the c-axis of the monoclinic unit cell (Table 1).

Related literature top

For general background, see: Noolvi et al. (2011).

Experimental top

To 3-(4-dimethylaminostyryl)quinoxaline (1 g, 3.43 mmol), potassium carbonate (0.71 g, 5.15 mmol) and a catalytic amount of tetra-n-butylammonium bromide in DMF (40 ml) was added bis(2-chloroethyl)amine hydrochloride (1.22 g, 6.87 mmol). The mixture was heated for 48 hours. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the solvent was removed under reduced pressure. The solid product was purified by recrystallization from ethanol to afford colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The water H-atoms were located in a difference Fourier map and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were refined.

Omitted were 0 1 1 and 0 2 0.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C23H24N4O3.H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3-{2-[(3-{(E)-2-[4-(Dimethylamino)phenyl]ethenyl}quinoxalin-2- yl)oxy]ethyl}-1,3-oxazolidin-2-one monohydrate top
Crystal data top
C23H24N4O3·H2OF(000) = 896
Mr = 422.48Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7579 reflections
a = 7.20980 (1) Åθ = 3.0–30.1°
b = 23.3271 (4) ŵ = 0.10 mm1
c = 12.3994 (2) ÅT = 293 K
β = 98.119 (1)°Prism, colorless
V = 2064.47 (6) Å30.21 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEX DUO
diffractometer
4141 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 30.1°, θmin = 2.4°
ω scansh = 1010
28134 measured reflectionsk = 3227
5836 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.5463P]
where P = (Fo2 + 2Fc2)/3
5836 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.48 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H24N4O3·H2OV = 2064.47 (6) Å3
Mr = 422.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.20980 (1) ŵ = 0.10 mm1
b = 23.3271 (4) ÅT = 293 K
c = 12.3994 (2) Å0.21 × 0.20 × 0.15 mm
β = 98.119 (1)°
Data collection top
Bruker APEX DUO
diffractometer
4141 reflections with I > 2σ(I)
28134 measured reflectionsRint = 0.031
5836 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.48 e Å3
5836 reflectionsΔρmin = 0.25 e Å3
290 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69604 (14)0.57099 (4)0.70080 (7)0.0248 (2)
O20.68168 (18)0.42279 (4)0.99270 (9)0.0414 (3)
O30.74191 (19)0.50321 (5)1.08888 (9)0.0436 (3)
O1W0.8486 (2)0.59976 (6)0.21995 (13)0.0614 (4)
H110.797 (3)0.5986 (11)0.2789 (14)0.080 (8)*
H120.813 (4)0.5698 (8)0.1822 (19)0.088 (9)*
N10.65125 (15)0.61020 (4)0.42003 (9)0.0201 (2)
N20.60511 (15)0.65809 (4)0.62458 (8)0.0200 (2)
N30.73026 (18)0.50212 (5)0.90253 (9)0.0271 (3)
N40.95701 (19)0.25635 (5)0.38066 (10)0.0296 (3)
C10.59653 (17)0.66630 (5)0.42868 (10)0.0179 (2)
C20.56427 (19)0.70093 (5)0.33486 (10)0.0226 (3)
H20.58190.68580.26770.027*
C30.5071 (2)0.75683 (5)0.34146 (10)0.0238 (3)
H30.48600.77930.27900.029*
C40.48053 (19)0.78010 (5)0.44295 (11)0.0229 (3)
H40.44100.81790.44710.027*
C50.51243 (19)0.74744 (5)0.53594 (10)0.0217 (3)
H50.49450.76320.60260.026*
C60.57205 (17)0.69021 (5)0.53078 (10)0.0178 (2)
C70.68059 (18)0.57926 (5)0.50954 (10)0.0189 (2)
C80.65714 (18)0.60568 (5)0.61326 (10)0.0194 (3)
C90.6853 (2)0.59576 (5)0.80636 (10)0.0265 (3)
H9A0.55640.59630.82050.032*
H9B0.73200.63480.80910.032*
C100.8030 (2)0.55941 (6)0.88980 (11)0.0287 (3)
H10A0.92770.55620.86950.034*
H10B0.81450.57880.95960.034*
C110.7117 (3)0.45883 (6)0.81770 (12)0.0360 (4)
H11A0.82930.45260.78990.043*
H11B0.61550.46900.75790.043*
C120.6556 (3)0.40662 (7)0.87927 (14)0.0447 (4)
H12A0.52580.39660.85510.054*
H12B0.73390.37400.86760.054*
C130.7202 (2)0.47953 (6)1.00090 (11)0.0285 (3)
C140.73685 (19)0.51947 (5)0.50739 (11)0.0223 (3)
H140.76410.50050.57370.027*
C150.75223 (18)0.48975 (5)0.41639 (10)0.0209 (3)
H150.72540.50940.35070.025*
C160.80663 (17)0.43002 (5)0.41021 (10)0.0192 (2)
C170.82357 (18)0.40565 (5)0.30881 (10)0.0215 (3)
H170.79980.42830.24660.026*
C180.87439 (19)0.34909 (5)0.29830 (10)0.0232 (3)
H180.88520.33450.22960.028*
C190.91014 (18)0.31313 (5)0.39002 (10)0.0210 (3)
C200.89460 (19)0.33767 (5)0.49262 (10)0.0232 (3)
H200.91850.31520.55500.028*
C210.84471 (19)0.39423 (5)0.50171 (10)0.0230 (3)
H210.83600.40920.57040.028*
C220.9988 (2)0.23508 (6)0.27733 (13)0.0367 (4)
H22A0.88920.23820.22380.055*
H22B1.03630.19560.28490.055*
H22C1.09850.25730.25460.055*
C231.0080 (2)0.22143 (6)0.47718 (13)0.0299 (3)
H23A0.90140.21730.51500.045*
H23B1.10810.23960.52410.045*
H23C1.04800.18430.45620.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0397 (6)0.0184 (4)0.0163 (4)0.0043 (4)0.0042 (4)0.0032 (3)
O20.0657 (8)0.0242 (5)0.0325 (6)0.0058 (5)0.0006 (6)0.0083 (4)
O30.0744 (9)0.0343 (6)0.0218 (5)0.0004 (6)0.0059 (6)0.0032 (4)
O1W0.0989 (12)0.0353 (7)0.0591 (9)0.0211 (7)0.0422 (9)0.0125 (6)
N10.0253 (6)0.0156 (5)0.0198 (5)0.0005 (4)0.0044 (4)0.0002 (4)
N20.0262 (6)0.0169 (5)0.0173 (5)0.0008 (4)0.0041 (4)0.0008 (4)
N30.0408 (7)0.0209 (5)0.0192 (5)0.0012 (5)0.0027 (5)0.0024 (4)
N40.0439 (7)0.0178 (5)0.0278 (6)0.0079 (5)0.0076 (6)0.0010 (4)
C10.0207 (6)0.0158 (5)0.0172 (5)0.0004 (4)0.0026 (5)0.0005 (4)
C20.0317 (7)0.0200 (6)0.0162 (6)0.0013 (5)0.0037 (5)0.0000 (4)
C30.0321 (7)0.0201 (6)0.0188 (6)0.0023 (5)0.0026 (5)0.0042 (4)
C40.0294 (7)0.0159 (5)0.0238 (6)0.0031 (5)0.0051 (5)0.0008 (4)
C50.0282 (7)0.0186 (5)0.0189 (6)0.0027 (5)0.0058 (5)0.0015 (4)
C60.0197 (6)0.0167 (5)0.0170 (6)0.0001 (4)0.0026 (5)0.0013 (4)
C70.0214 (6)0.0158 (5)0.0195 (6)0.0007 (4)0.0035 (5)0.0005 (4)
C80.0229 (6)0.0181 (5)0.0175 (6)0.0003 (4)0.0034 (5)0.0020 (4)
C90.0417 (8)0.0205 (6)0.0173 (6)0.0018 (5)0.0044 (6)0.0012 (4)
C100.0359 (8)0.0261 (7)0.0229 (7)0.0056 (6)0.0006 (6)0.0047 (5)
C110.0535 (10)0.0285 (7)0.0251 (7)0.0012 (7)0.0024 (7)0.0029 (5)
C120.0713 (13)0.0238 (7)0.0367 (9)0.0001 (7)0.0008 (9)0.0008 (6)
C130.0366 (8)0.0239 (6)0.0248 (7)0.0036 (6)0.0038 (6)0.0067 (5)
C140.0281 (7)0.0154 (5)0.0235 (6)0.0019 (5)0.0044 (5)0.0018 (4)
C150.0231 (6)0.0168 (5)0.0229 (6)0.0000 (5)0.0031 (5)0.0017 (4)
C160.0212 (6)0.0156 (5)0.0209 (6)0.0009 (4)0.0034 (5)0.0006 (4)
C170.0262 (7)0.0203 (6)0.0181 (6)0.0003 (5)0.0038 (5)0.0018 (4)
C180.0280 (7)0.0225 (6)0.0196 (6)0.0017 (5)0.0050 (5)0.0022 (4)
C190.0230 (6)0.0166 (5)0.0236 (6)0.0003 (5)0.0040 (5)0.0019 (4)
C200.0317 (7)0.0186 (6)0.0193 (6)0.0010 (5)0.0036 (5)0.0020 (4)
C210.0314 (7)0.0194 (6)0.0185 (6)0.0001 (5)0.0048 (5)0.0019 (4)
C220.0492 (10)0.0269 (7)0.0354 (8)0.0130 (6)0.0114 (7)0.0064 (6)
C230.0334 (8)0.0194 (6)0.0368 (8)0.0039 (5)0.0048 (6)0.0037 (5)
Geometric parameters (Å, º) top
O1—C81.3512 (14)C9—H9A0.9700
O1—C91.4428 (15)C9—H9B0.9700
O2—C131.3532 (17)C10—H10A0.9700
O2—C121.443 (2)C10—H10B0.9700
O3—C131.2130 (17)C11—C121.522 (2)
O1W—H110.867 (10)C11—H11A0.9700
O1W—H120.861 (10)C11—H11B0.9700
N1—C71.3158 (15)C12—H12A0.9700
N1—C11.3754 (15)C12—H12B0.9700
N2—C81.2922 (15)C14—C151.3422 (17)
N2—C61.3757 (15)C14—H140.9300
N3—C131.3401 (16)C15—C161.4523 (16)
N3—C111.4507 (18)C15—H150.9300
N3—C101.4522 (17)C16—C171.4008 (16)
N4—C191.3760 (16)C16—C211.4042 (17)
N4—C221.4447 (17)C17—C181.3803 (17)
N4—C231.4514 (18)C17—H170.9300
C1—C21.4083 (16)C18—C191.4074 (17)
C1—C61.4170 (15)C18—H180.9300
C2—C31.3734 (17)C19—C201.4138 (16)
C2—H20.9300C20—C211.3762 (17)
C3—C41.4082 (17)C20—H200.9300
C3—H30.9300C21—H210.9300
C4—C51.3739 (17)C22—H22A0.9600
C4—H40.9300C22—H22B0.9600
C5—C61.4068 (16)C22—H22C0.9600
C5—H50.9300C23—H23A0.9600
C7—C141.4536 (16)C23—H23B0.9600
C7—C81.4575 (16)C23—H23C0.9600
C9—C101.504 (2)
C8—O1—C9117.20 (9)C12—C11—H11A111.5
C13—O2—C12109.03 (11)N3—C11—H11B111.5
H11—O1W—H12108 (2)C12—C11—H11B111.5
C7—N1—C1118.03 (10)H11A—C11—H11B109.3
C8—N2—C6116.22 (10)O2—C12—C11105.82 (12)
C13—N3—C11112.01 (11)O2—C12—H12A110.6
C13—N3—C10121.85 (12)C11—C12—H12A110.6
C11—N3—C10124.02 (11)O2—C12—H12B110.6
C19—N4—C22119.33 (11)C11—C12—H12B110.6
C19—N4—C23120.48 (11)H12A—C12—H12B108.7
C22—N4—C23118.58 (11)O3—C13—N3128.51 (13)
N1—C1—C2119.81 (10)O3—C13—O2120.80 (12)
N1—C1—C6121.16 (10)N3—C13—O2110.69 (12)
C2—C1—C6119.03 (10)C15—C14—C7124.57 (12)
C3—C2—C1120.75 (11)C15—C14—H14117.7
C3—C2—H2119.6C7—C14—H14117.7
C1—C2—H2119.6C14—C15—C16126.51 (12)
C2—C3—C4119.93 (11)C14—C15—H15116.7
C2—C3—H3120.0C16—C15—H15116.7
C4—C3—H3120.0C17—C16—C21116.87 (11)
C5—C4—C3120.56 (11)C17—C16—C15119.68 (11)
C5—C4—H4119.7C21—C16—C15123.45 (11)
C3—C4—H4119.7C18—C17—C16122.05 (11)
C4—C5—C6120.27 (11)C18—C17—H17119.0
C4—C5—H5119.9C16—C17—H17119.0
C6—C5—H5119.9C17—C18—C19120.94 (11)
N2—C6—C5119.74 (10)C17—C18—H18119.5
N2—C6—C1120.82 (10)C19—C18—H18119.5
C5—C6—C1119.44 (11)N4—C19—C18121.65 (11)
N1—C7—C14121.53 (11)N4—C19—C20121.16 (11)
N1—C7—C8119.17 (10)C18—C19—C20117.19 (11)
C14—C7—C8119.30 (11)C21—C20—C19121.11 (11)
N2—C8—O1120.66 (10)C21—C20—H20119.4
N2—C8—C7124.58 (11)C19—C20—H20119.4
O1—C8—C7114.76 (10)C20—C21—C16121.83 (11)
O1—C9—C10107.50 (11)C20—C21—H21119.1
O1—C9—H9A110.2C16—C21—H21119.1
C10—C9—H9A110.2N4—C22—H22A109.5
O1—C9—H9B110.2N4—C22—H22B109.5
C10—C9—H9B110.2H22A—C22—H22B109.5
H9A—C9—H9B108.5N4—C22—H22C109.5
N3—C10—C9114.60 (12)H22A—C22—H22C109.5
N3—C10—H10A108.6H22B—C22—H22C109.5
C9—C10—H10A108.6N4—C23—H23A109.5
N3—C10—H10B108.6N4—C23—H23B109.5
C9—C10—H10B108.6H23A—C23—H23B109.5
H10A—C10—H10B107.6N4—C23—H23C109.5
N3—C11—C12101.37 (12)H23A—C23—H23C109.5
N3—C11—H11A111.5H23B—C23—H23C109.5
C7—N1—C1—C2179.80 (12)C13—N3—C11—C129.09 (18)
C7—N1—C1—C60.09 (18)C10—N3—C11—C12172.75 (14)
N1—C1—C2—C3179.12 (12)C13—O2—C12—C118.34 (19)
C6—C1—C2—C30.99 (19)N3—C11—C12—O210.11 (18)
C1—C2—C3—C40.1 (2)C11—N3—C13—O3175.00 (16)
C2—C3—C4—C50.4 (2)C10—N3—C13—O310.9 (3)
C3—C4—C5—C60.1 (2)C11—N3—C13—O24.46 (18)
C8—N2—C6—C5179.13 (12)C10—N3—C13—O2168.53 (13)
C8—N2—C6—C10.61 (18)C12—O2—C13—O3177.73 (16)
C4—C5—C6—N2179.43 (12)C12—O2—C13—N32.76 (19)
C4—C5—C6—C10.83 (19)N1—C7—C14—C154.4 (2)
N1—C1—C6—N20.96 (18)C8—C7—C14—C15175.96 (13)
C2—C1—C6—N2178.93 (11)C7—C14—C15—C16179.58 (12)
N1—C1—C6—C5178.77 (12)C14—C15—C16—C17177.43 (13)
C2—C1—C6—C51.34 (18)C14—C15—C16—C212.4 (2)
C1—N1—C7—C14179.37 (11)C21—C16—C17—C180.28 (19)
C1—N1—C7—C80.99 (18)C15—C16—C17—C18179.85 (12)
C6—N2—C8—O1178.87 (11)C16—C17—C18—C190.5 (2)
C6—N2—C8—C70.53 (19)C22—N4—C19—C189.7 (2)
C9—O1—C8—N22.79 (18)C23—N4—C19—C18174.98 (12)
C9—O1—C8—C7176.67 (11)C22—N4—C19—C20170.81 (14)
N1—C7—C8—N21.4 (2)C23—N4—C19—C205.5 (2)
C14—C7—C8—N2178.95 (12)C17—C18—C19—N4178.58 (13)
N1—C7—C8—O1178.04 (11)C17—C18—C19—C200.97 (19)
C14—C7—C8—O11.61 (17)N4—C19—C20—C21178.92 (13)
C8—O1—C9—C10157.88 (11)C18—C19—C20—C210.64 (19)
C13—N3—C10—C9133.37 (14)C19—C20—C21—C160.2 (2)
C11—N3—C10—C964.51 (19)C17—C16—C21—C200.62 (19)
O1—C9—C10—N367.73 (15)C15—C16—C21—C20179.52 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N10.87 (1)2.18 (1)3.039 (2)170 (2)
O1w—H12···O3i0.86 (1)1.96 (1)2.820 (2)176 (3)
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC23H24N4O3·H2O
Mr422.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.20980 (1), 23.3271 (4), 12.3994 (2)
β (°) 98.119 (1)
V3)2064.47 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.20 × 0.15
Data collection
DiffractometerBruker APEX DUO
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28134, 5836, 4141
Rint0.031
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.03
No. of reflections5836
No. of parameters290
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.25

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N10.87 (1)2.18 (1)3.039 (2)170 (2)
O1w—H12···O3i0.86 (1)1.96 (1)2.820 (2)176 (3)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNoolvi, M., Patel, H. M., Bhardwaj, V. & Chauhan, A. (2011). Eur. J. Med. Chem. 46, 2327–2346.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds