organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(5-Bromo­thio­phen-2-yl)-3-(2,3,4-trimeth­­oxy­phen­yl)prop-2-en-1-one

aInstitute of Pharmacy, GITAM University, Visakhapatnam 45, Andhrapradesh, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and cDepartment of Pharmaceutical Chemistry, AU College of Pharmacy, Andhra University, Visakhapatnam, Andhrapradesh, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 14 November 2011; accepted 3 December 2011; online 10 December 2011)

In the title compound, C16H15BrO4S, the thio­phene ring is not coplanar with the benzene ring; the dihedral angle between the two planes is 11.08 (12)°. The crystal structure is characterized by C—H⋯O inter­actions. Weak intra­molecular C—H⋯O hydrogen bonds also occur.

Related literature

For general background to chalcones, see: Chun et al. (2001[Chun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev Res. 53, 9-14.]); Horng et al. (2003[Horng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg Med Chem. 1, 105-111.]); Lopez et al. (2001[Lopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Charris, C. J., Cortés, J. C., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999-2013.]); Zubieta et al. (2001[Zubieta, C., He, X. Z., Dixon, R. A. & Noel, J. P. (2001). Nat. Struct. Biol. 8, 271-279.]); Howard et al. (2004[Howard, E. I., Sanishvili, R., Cachau, R. E., Mitschler, A., Chevrier, B., Barth, P., Lamour, V., Van Zandt, M., Sibley, E., Bon, C., Moras, D., Schneider, T. R., Joachimiak, A. & Podjarny, A. (2004). Proteins, 55, 792-804.]); Petrash (2004[Petrash, J. M. (2004). Cell. Mol. Life Sci. 61, 737-749.]); Lu et al. (2010[Lu, Y., Wang, Y. & Zhu, W. (2010). Phys. Chem. Chem. Phys. 12 4543-4551.]). Mei et al. (2003[Mei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729-2738.]). For related structures, see: Liang et al. (2011)[Liang, Y.-S., Mu, S., Wang, J.-Y. & Liu, D.-K. (2011). Acta Cryst. E67, o830.]; Alex et al. (1993[Alex, G., Srinivasan, S., Krishnasamy, V., Suresh, R. V., Iyer, R. & Iyer, P. R. (1993). Acta Cryst. C49, 70-72.]); Li & Su (1993[Li, Z. & Su, G. (1993). Acta Cryst. C49, 1075-1077.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrO4S

  • Mr = 383.25

  • Monoclinic, P 21 /c

  • a = 8.114 (5) Å

  • b = 12.775 (5) Å

  • c = 15.404 (5) Å

  • β = 98.813 (5)°

  • V = 1577.9 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.75 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.228, Tmax = 1.000

  • 16471 measured reflections

  • 2784 independent reflections

  • 2343 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.082

  • S = 1.06

  • 2784 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O5 0.96 2.23 2.861 (4) 122
C9—H9B⋯O4 0.96 2.38 2.985 (4) 120
C21—H21⋯O6i 0.93 2.41 3.322 (4) 165
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Chalcones are alpha, beta unsaturated ketones, widely distributed in nature and are extensively studied for their biological activity (Chun et al., 2001; Horng et al., 2003; Lopez et al., 2001; Mei et al., 2003). Chalcones readily crystallize because of their intermolecular hydrogen bonding (Liang et al., 2011; Alex et al., 1993; Li et al., 1993). The same property has been shown to be responsible for its biological activity (Zubieta et al., 2001). However, halogen containing chalcones are of special interest in drug design process because of the raising importance of hlogen bond contribution in target recognition process (Howard et al., 2004; Petrash, 2004; Lu et al., 2010). Crystal structure conformation of small molecule has always been the choice for binding energy calculations in docking studies. In this paper we report the crystal structure of (2E)-1-(5-bromothiophen-2-yl)- 3-(2,3,4-trimethoxyphenyl)prop-2-en-1-one which is a part of insilico lead identification studies.

The asymmetric unit of (2E)-1-(5-bromothiophen-2-yl)-3-(2,3,4- trimethoxyphenyl)prop-2-en-1-one, C16H15BrO4S, contains just one molecule (Fig. 1). The five-membered thiophene ring (S2\C19\···C22) is not coplanar with the phenyl ring (C10\C11\···C15) system; the dihedral angle between the two planes is 11.08 (12)°. The crystal structure displays intermolecular C21—H21···O6 and weak intramolecular C8—H8B···O5 and C9—H9B···O4 hydrogen bonds (Table 1). The packing of molecules in the crystal structure is depicted in Fig. 2.

Related literature top

For general background to chalcones, see: Chun et al. (2001); Horng et al. (2003); Lopez et al. (2001); Zubieta et al. (2001); Howard et al. (2004); Petrash (2004); Lu et al. (2010). Mei et al. (2003). For related structures, see: Liang et al. (2011); Alex et al. (1993); Li et al. (1993).

Experimental top

A mixture of 2-acetyl-5-BromoThiophene (0.01 mole) and 2,3,4- trimethoxybenzaldehyde (0.01 mole) were stirred in ethanol (30 ml) and then an aqueous solution of potassium hydroxide (40%,15 ml)was added to it. The mixture was kept over night at room temperature and then it was poured into crushed ice and acidified with dilute hydrochloric acid. The precipiteted chalcone was filtered and crystallized from ethanol.

Refinement top

All H atoms were positioned at calculated positions C—H = 0.93Å for aromatic H and C—H = 0.96Å for methyl H and refined using a riding model with Uiso(H) = 1.2Ueq(C)for aromatic and Uiso(H) = 1.2Ueq(C)for for methyl H.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radii. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. Packing of the molecules.
(2E)-1-(5-Bromothiophen-2-yl)-3-(2,3,4-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H15BrO4SF(000) = 776
Mr = 383.25Dx = 1.613 Mg m3
Monoclinic, P21/cMelting point: 400 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.114 (5) ÅCell parameters from 2784 reflections
b = 12.775 (5) Åθ = 2.5–25.0°
c = 15.404 (5) ŵ = 2.75 mm1
β = 98.813 (5)°T = 293 K
V = 1577.9 (13) Å3Prism, colourless
Z = 40.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2784 independent reflections
Radiation source: fine-focus sealed tube2343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.0839 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 1515
Tmin = 0.228, Tmax = 1.000l = 1818
16471 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.9331P]
where P = (Fo2 + 2Fc2)/3
2784 reflections(Δ/σ)max = 0.007
199 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C16H15BrO4SV = 1577.9 (13) Å3
Mr = 383.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.114 (5) ŵ = 2.75 mm1
b = 12.775 (5) ÅT = 293 K
c = 15.404 (5) Å0.22 × 0.15 × 0.12 mm
β = 98.813 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2784 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
2343 reflections with I > 2σ(I)
Tmin = 0.228, Tmax = 1.000Rint = 0.042
16471 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
2784 reflectionsΔρmin = 0.59 e Å3
199 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24507 (4)0.00703 (2)0.22076 (2)0.05109 (14)
S20.11145 (9)0.10763 (6)0.06120 (5)0.03737 (19)
O30.3504 (3)0.47747 (15)0.20529 (13)0.0450 (5)
O40.5493 (2)0.65241 (14)0.19864 (12)0.0378 (5)
O50.5662 (2)0.78703 (15)0.06147 (13)0.0429 (5)
O60.0059 (3)0.22557 (18)0.08036 (14)0.0561 (6)
C70.5915 (4)0.8532 (3)0.0134 (2)0.0527 (8)
H7A0.66110.91110.00260.079*
H7B0.64460.81430.06330.079*
H7C0.48590.87900.02500.079*
C80.5199 (4)0.7480 (2)0.2465 (2)0.0566 (9)
H8A0.59150.75150.29060.085*
H8B0.54280.80620.20700.085*
H8C0.40560.75070.27420.085*
C90.2743 (4)0.5175 (3)0.2882 (2)0.0592 (10)
H9A0.27350.46420.33220.089*
H9B0.33630.57690.30360.089*
H9C0.16190.53830.28470.089*
C100.3613 (3)0.5446 (2)0.13548 (17)0.0301 (6)
C110.4561 (3)0.6350 (2)0.13228 (17)0.0294 (6)
C120.4695 (3)0.6998 (2)0.05918 (17)0.0305 (6)
C130.3899 (3)0.6724 (2)0.01106 (17)0.0351 (6)
H130.39620.71620.05970.042*
C140.3017 (3)0.5805 (2)0.00854 (18)0.0340 (6)
H140.25310.56160.05710.041*
C150.2827 (3)0.5150 (2)0.06390 (18)0.0305 (6)
C160.1893 (3)0.4176 (2)0.06729 (19)0.0358 (6)
H160.17060.38340.12120.043*
C170.1279 (3)0.3722 (2)0.00165 (19)0.0387 (7)
H170.14160.40570.05260.046*
C180.0399 (3)0.2720 (2)0.01058 (19)0.0368 (7)
C190.0079 (3)0.2265 (2)0.06962 (18)0.0331 (6)
C200.0083 (3)0.2636 (2)0.15283 (19)0.0401 (7)
H200.06140.32640.17000.048*
C210.0624 (4)0.1988 (2)0.21091 (19)0.0419 (7)
H210.06130.21340.27020.050*
C220.1317 (3)0.1132 (2)0.16997 (18)0.0363 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0619 (2)0.0412 (2)0.0540 (2)0.00626 (15)0.02110 (16)0.01379 (15)
S20.0458 (4)0.0314 (4)0.0354 (4)0.0079 (3)0.0077 (3)0.0008 (3)
O30.0683 (14)0.0315 (11)0.0382 (12)0.0042 (10)0.0176 (10)0.0070 (9)
O40.0486 (11)0.0292 (11)0.0407 (11)0.0010 (9)0.0227 (9)0.0033 (9)
O50.0549 (12)0.0330 (12)0.0421 (12)0.0122 (9)0.0114 (9)0.0037 (9)
O60.0809 (16)0.0551 (15)0.0335 (12)0.0242 (12)0.0124 (11)0.0002 (11)
C70.059 (2)0.0403 (19)0.060 (2)0.0117 (16)0.0121 (16)0.0162 (16)
C80.087 (3)0.043 (2)0.0442 (19)0.0002 (18)0.0262 (18)0.0127 (16)
C90.065 (2)0.065 (2)0.044 (2)0.0103 (18)0.0000 (17)0.0121 (17)
C100.0364 (14)0.0231 (14)0.0320 (15)0.0040 (11)0.0093 (11)0.0001 (11)
C110.0346 (14)0.0260 (14)0.0292 (14)0.0040 (11)0.0103 (11)0.0053 (11)
C120.0336 (14)0.0247 (14)0.0333 (15)0.0009 (11)0.0058 (11)0.0031 (12)
C130.0430 (16)0.0350 (16)0.0272 (14)0.0009 (13)0.0056 (12)0.0046 (12)
C140.0360 (15)0.0367 (16)0.0310 (15)0.0009 (12)0.0109 (11)0.0057 (12)
C150.0296 (14)0.0287 (15)0.0340 (15)0.0026 (11)0.0073 (11)0.0053 (12)
C160.0370 (15)0.0327 (16)0.0377 (16)0.0007 (12)0.0061 (12)0.0048 (13)
C170.0424 (16)0.0383 (17)0.0364 (16)0.0056 (13)0.0093 (13)0.0036 (13)
C180.0367 (15)0.0373 (17)0.0369 (17)0.0042 (12)0.0070 (12)0.0062 (13)
C190.0331 (14)0.0303 (15)0.0355 (16)0.0037 (11)0.0036 (11)0.0041 (12)
C200.0444 (16)0.0334 (16)0.0419 (18)0.0105 (13)0.0043 (13)0.0023 (13)
C210.0514 (18)0.0434 (18)0.0319 (16)0.0024 (14)0.0094 (13)0.0016 (14)
C220.0383 (15)0.0337 (16)0.0386 (16)0.0015 (12)0.0113 (12)0.0071 (13)
Geometric parameters (Å, º) top
Br1—C221.876 (3)C10—C111.384 (4)
S2—C221.710 (3)C10—C151.407 (4)
S2—C191.730 (3)C11—C121.388 (4)
O3—C101.368 (3)C12—C131.387 (4)
O3—C91.426 (4)C13—C141.372 (4)
O4—C111.379 (3)C13—H130.9300
O4—C81.428 (3)C14—C151.384 (4)
O5—C121.366 (3)C14—H140.9300
O5—C71.419 (3)C15—C161.454 (4)
O6—C181.222 (3)C16—C171.327 (4)
C7—H7A0.9600C16—H160.9300
C7—H7B0.9600C17—C181.462 (4)
C7—H7C0.9600C17—H170.9300
C8—H8A0.9600C18—C191.470 (4)
C8—H8B0.9600C19—C201.354 (4)
C8—H8C0.9600C20—C211.404 (4)
C9—H9A0.9600C20—H200.9300
C9—H9B0.9600C21—C221.342 (4)
C9—H9C0.9600C21—H210.9300
C22—S2—C1990.49 (13)C14—C13—C12119.8 (3)
C10—O3—C9116.5 (2)C14—C13—H13120.1
C11—O4—C8117.0 (2)C12—C13—H13120.1
C12—O5—C7118.5 (2)C13—C14—C15122.2 (2)
O5—C7—H7A109.5C13—C14—H14118.9
O5—C7—H7B109.5C15—C14—H14118.9
H7A—C7—H7B109.5C14—C15—C10117.5 (2)
O5—C7—H7C109.5C14—C15—C16122.6 (2)
H7A—C7—H7C109.5C10—C15—C16119.9 (2)
H7B—C7—H7C109.5C17—C16—C15126.9 (3)
O4—C8—H8A109.5C17—C16—H16116.5
O4—C8—H8B109.5C15—C16—H16116.5
H8A—C8—H8B109.5C16—C17—C18123.1 (3)
O4—C8—H8C109.5C16—C17—H17118.5
H8A—C8—H8C109.5C18—C17—H17118.5
H8B—C8—H8C109.5O6—C18—C17123.3 (3)
O3—C9—H9A109.5O6—C18—C19119.6 (3)
O3—C9—H9B109.5C17—C18—C19117.1 (3)
H9A—C9—H9B109.5C20—C19—C18131.0 (3)
O3—C9—H9C109.5C20—C19—S2110.7 (2)
H9A—C9—H9C109.5C18—C19—S2118.2 (2)
H9B—C9—H9C109.5C19—C20—C21114.0 (3)
O3—C10—C11121.3 (2)C19—C20—H20123.0
O3—C10—C15117.7 (2)C21—C20—H20123.0
C11—C10—C15120.8 (2)C22—C21—C20111.3 (3)
O4—C11—C10118.2 (2)C22—C21—H21124.3
O4—C11—C12121.4 (2)C20—C21—H21124.3
C10—C11—C12120.0 (2)C21—C22—S2113.4 (2)
O5—C12—C13124.3 (2)C21—C22—Br1126.2 (2)
O5—C12—C11116.1 (2)S2—C22—Br1120.36 (16)
C13—C12—C11119.6 (2)
C9—O3—C10—C1163.9 (3)O3—C10—C15—C162.1 (4)
C9—O3—C10—C15120.7 (3)C11—C10—C15—C16177.5 (2)
C8—O4—C11—C10123.4 (3)C14—C15—C16—C178.3 (4)
C8—O4—C11—C1263.4 (3)C10—C15—C16—C17170.2 (3)
O3—C10—C11—O44.4 (4)C15—C16—C17—C18178.0 (3)
C15—C10—C11—O4170.9 (2)C16—C17—C18—O65.1 (5)
O3—C10—C11—C12177.7 (2)C16—C17—C18—C19174.6 (3)
C15—C10—C11—C122.5 (4)O6—C18—C19—C20176.7 (3)
C7—O5—C12—C131.7 (4)C17—C18—C19—C203.6 (4)
C7—O5—C12—C11176.7 (2)O6—C18—C19—S20.1 (4)
O4—C11—C12—O56.6 (4)C17—C18—C19—S2179.73 (19)
C10—C11—C12—O5179.7 (2)C22—S2—C19—C200.8 (2)
O4—C11—C12—C13172.0 (2)C22—S2—C19—C18176.6 (2)
C10—C11—C12—C131.2 (4)C18—C19—C20—C21176.4 (3)
O5—C12—C13—C14177.0 (2)S2—C19—C20—C210.5 (3)
C11—C12—C13—C141.4 (4)C19—C20—C21—C220.2 (4)
C12—C13—C14—C152.8 (4)C20—C21—C22—S20.8 (3)
C13—C14—C15—C101.5 (4)C20—C21—C22—Br1178.3 (2)
C13—C14—C15—C16179.9 (2)C19—S2—C22—C210.9 (2)
O3—C10—C15—C14176.5 (2)C19—S2—C22—Br1178.24 (17)
C11—C10—C15—C141.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O50.962.232.861 (4)122
C9—H9B···O40.962.382.985 (4)120
C21—H21···O6i0.932.413.322 (4)165
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15BrO4S
Mr383.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.114 (5), 12.775 (5), 15.404 (5)
β (°) 98.813 (5)
V3)1577.9 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.75
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.228, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16471, 2784, 2343
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.06
No. of reflections2784
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.59

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O50.962.232.861 (4)122.00
C9—H9B···O40.962.382.985 (4)120.00
C21—H21···O6i0.932.413.322 (4)165.00
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, SSCU, IISc, Bangalore, for support of the X-ray data collection. KS thanks the GITAM University, Visakhapatnam, Andhrapradesh, for financial support under a minor reasearch project.

References

First citationAlex, G., Srinivasan, S., Krishnasamy, V., Suresh, R. V., Iyer, R. & Iyer, P. R. (1993). Acta Cryst. C49, 70–72.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev Res. 53, 9–14.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHorng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg Med Chem. 1, 105–111.  Google Scholar
First citationHoward, E. I., Sanishvili, R., Cachau, R. E., Mitschler, A., Chevrier, B., Barth, P., Lamour, V., Van Zandt, M., Sibley, E., Bon, C., Moras, D., Schneider, T. R., Joachimiak, A. & Podjarny, A. (2004). Proteins, 55, 792–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Z. & Su, G. (1993). Acta Cryst. C49, 1075–1077.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiang, Y.-S., Mu, S., Wang, J.-Y. & Liu, D.-K. (2011). Acta Cryst. E67, o830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Charris, C. J., Cortés, J. C., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013.  Web of Science PubMed CAS Google Scholar
First citationLu, Y., Wang, Y. & Zhu, W. (2010). Phys. Chem. Chem. Phys. 12 4543–4551.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetrash, J. M. (2004). Cell. Mol. Life Sci. 61, 737–749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZubieta, C., He, X. Z., Dixon, R. A. & Noel, J. P. (2001). Nat. Struct. Biol. 8, 271–279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds