organic compounds
(2E)-1-(5-Bromothiophen-2-yl)-3-(2,3,4-trimethoxyphenyl)prop-2-en-1-one
aInstitute of Pharmacy, GITAM University, Visakhapatnam 45, Andhrapradesh, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and cDepartment of Pharmaceutical Chemistry, AU College of Pharmacy, Andhra University, Visakhapatnam, Andhrapradesh, India
*Correspondence e-mail: devarajegowda@yahoo.com
In the title compound, C16H15BrO4S, the thiophene ring is not coplanar with the benzene ring; the dihedral angle between the two planes is 11.08 (12)°. The is characterized by C—H⋯O interactions. Weak intramolecular C—H⋯O hydrogen bonds also occur.
Related literature
For general background to et al. (2001); Horng et al. (2003); Lopez et al. (2001); Zubieta et al. (2001); Howard et al. (2004); Petrash (2004); Lu et al. (2010). Mei et al. (2003). For related structures, see: Liang et al. (2011); Alex et al. (1993); Li & Su (1993).
see: ChunExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811052202/zj2039sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811052202/zj2039Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811052202/zj2039Isup3.cml
A mixture of 2-acetyl-5-BromoThiophene (0.01 mole) and 2,3,4- trimethoxybenzaldehyde (0.01 mole) were stirred in ethanol (30 ml) and then an aqueous solution of potassium hydroxide (40%,15 ml)was added to it. The mixture was kept over night at room temperature and then it was poured into crushed ice and acidified with dilute hydrochloric acid. The precipiteted chalcone was filtered and crystallized from ethanol.
All H atoms were positioned at calculated positions C—H = 0.93Å for aromatic H and C—H = 0.96Å for methyl H and refined using a riding model with Uiso(H) = 1.2Ueq(C)for aromatic and Uiso(H) = 1.2Ueq(C)for for methyl H.
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell
CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H15BrO4S | F(000) = 776 |
Mr = 383.25 | Dx = 1.613 Mg m−3 |
Monoclinic, P21/c | Melting point: 400 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.114 (5) Å | Cell parameters from 2784 reflections |
b = 12.775 (5) Å | θ = 2.5–25.0° |
c = 15.404 (5) Å | µ = 2.75 mm−1 |
β = 98.813 (5)° | T = 293 K |
V = 1577.9 (13) Å3 | Prism, colourless |
Z = 4 | 0.22 × 0.15 × 0.12 mm |
Oxford Diffraction Xcalibur diffractometer | 2784 independent reflections |
Radiation source: fine-focus sealed tube | 2343 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 16.0839 pixels mm-1 | θmax = 25.0°, θmin = 2.5° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) | k = −15→15 |
Tmin = 0.228, Tmax = 1.000 | l = −18→18 |
16471 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0349P)2 + 0.9331P] where P = (Fo2 + 2Fc2)/3 |
2784 reflections | (Δ/σ)max = 0.007 |
199 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
C16H15BrO4S | V = 1577.9 (13) Å3 |
Mr = 383.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.114 (5) Å | µ = 2.75 mm−1 |
b = 12.775 (5) Å | T = 293 K |
c = 15.404 (5) Å | 0.22 × 0.15 × 0.12 mm |
β = 98.813 (5)° |
Oxford Diffraction Xcalibur diffractometer | 2784 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) | 2343 reflections with I > 2σ(I) |
Tmin = 0.228, Tmax = 1.000 | Rint = 0.042 |
16471 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.082 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.33 e Å−3 |
2784 reflections | Δρmin = −0.59 e Å−3 |
199 parameters |
Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.24507 (4) | 0.00703 (2) | 0.22076 (2) | 0.05109 (14) | |
S2 | −0.11145 (9) | 0.10763 (6) | 0.06120 (5) | 0.03737 (19) | |
O3 | 0.3504 (3) | 0.47747 (15) | −0.20529 (13) | 0.0450 (5) | |
O4 | 0.5493 (2) | 0.65241 (14) | −0.19864 (12) | 0.0378 (5) | |
O5 | 0.5662 (2) | 0.78703 (15) | −0.06147 (13) | 0.0429 (5) | |
O6 | 0.0059 (3) | 0.22557 (18) | −0.08036 (14) | 0.0561 (6) | |
C7 | 0.5915 (4) | 0.8532 (3) | 0.0134 (2) | 0.0527 (8) | |
H7A | 0.6611 | 0.9111 | 0.0026 | 0.079* | |
H7B | 0.6446 | 0.8143 | 0.0633 | 0.079* | |
H7C | 0.4859 | 0.8790 | 0.0250 | 0.079* | |
C8 | 0.5199 (4) | 0.7480 (2) | −0.2465 (2) | 0.0566 (9) | |
H8A | 0.5915 | 0.7515 | −0.2906 | 0.085* | |
H8B | 0.5428 | 0.8062 | −0.2070 | 0.085* | |
H8C | 0.4056 | 0.7507 | −0.2742 | 0.085* | |
C9 | 0.2743 (4) | 0.5175 (3) | −0.2882 (2) | 0.0592 (10) | |
H9A | 0.2735 | 0.4642 | −0.3322 | 0.089* | |
H9B | 0.3363 | 0.5769 | −0.3036 | 0.089* | |
H9C | 0.1619 | 0.5383 | −0.2847 | 0.089* | |
C10 | 0.3613 (3) | 0.5446 (2) | −0.13548 (17) | 0.0301 (6) | |
C11 | 0.4561 (3) | 0.6350 (2) | −0.13228 (17) | 0.0294 (6) | |
C12 | 0.4695 (3) | 0.6998 (2) | −0.05918 (17) | 0.0305 (6) | |
C13 | 0.3899 (3) | 0.6724 (2) | 0.01106 (17) | 0.0351 (6) | |
H13 | 0.3962 | 0.7162 | 0.0597 | 0.042* | |
C14 | 0.3017 (3) | 0.5805 (2) | 0.00854 (18) | 0.0340 (6) | |
H14 | 0.2531 | 0.5616 | 0.0571 | 0.041* | |
C15 | 0.2827 (3) | 0.5150 (2) | −0.06390 (18) | 0.0305 (6) | |
C16 | 0.1893 (3) | 0.4176 (2) | −0.06729 (19) | 0.0358 (6) | |
H16 | 0.1706 | 0.3834 | −0.1212 | 0.043* | |
C17 | 0.1279 (3) | 0.3722 (2) | −0.00165 (19) | 0.0387 (7) | |
H17 | 0.1416 | 0.4057 | 0.0526 | 0.046* | |
C18 | 0.0399 (3) | 0.2720 (2) | −0.01058 (19) | 0.0368 (7) | |
C19 | −0.0079 (3) | 0.2265 (2) | 0.06962 (18) | 0.0331 (6) | |
C20 | 0.0083 (3) | 0.2636 (2) | 0.15283 (19) | 0.0401 (7) | |
H20 | 0.0614 | 0.3264 | 0.1700 | 0.048* | |
C21 | −0.0624 (4) | 0.1988 (2) | 0.21091 (19) | 0.0419 (7) | |
H21 | −0.0613 | 0.2134 | 0.2702 | 0.050* | |
C22 | −0.1317 (3) | 0.1132 (2) | 0.16997 (18) | 0.0363 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0619 (2) | 0.0412 (2) | 0.0540 (2) | −0.00626 (15) | 0.02110 (16) | 0.01379 (15) |
S2 | 0.0458 (4) | 0.0314 (4) | 0.0354 (4) | −0.0079 (3) | 0.0077 (3) | 0.0008 (3) |
O3 | 0.0683 (14) | 0.0315 (11) | 0.0382 (12) | −0.0042 (10) | 0.0176 (10) | −0.0070 (9) |
O4 | 0.0486 (11) | 0.0292 (11) | 0.0407 (11) | −0.0010 (9) | 0.0227 (9) | 0.0033 (9) |
O5 | 0.0549 (12) | 0.0330 (12) | 0.0421 (12) | −0.0122 (9) | 0.0114 (9) | −0.0037 (9) |
O6 | 0.0809 (16) | 0.0551 (15) | 0.0335 (12) | −0.0242 (12) | 0.0124 (11) | 0.0002 (11) |
C7 | 0.059 (2) | 0.0403 (19) | 0.060 (2) | −0.0117 (16) | 0.0121 (16) | −0.0162 (16) |
C8 | 0.087 (3) | 0.043 (2) | 0.0442 (19) | −0.0002 (18) | 0.0262 (18) | 0.0127 (16) |
C9 | 0.065 (2) | 0.065 (2) | 0.044 (2) | −0.0103 (18) | 0.0000 (17) | −0.0121 (17) |
C10 | 0.0364 (14) | 0.0231 (14) | 0.0320 (15) | 0.0040 (11) | 0.0093 (11) | 0.0001 (11) |
C11 | 0.0346 (14) | 0.0260 (14) | 0.0292 (14) | 0.0040 (11) | 0.0103 (11) | 0.0053 (11) |
C12 | 0.0336 (14) | 0.0247 (14) | 0.0333 (15) | 0.0009 (11) | 0.0058 (11) | 0.0031 (12) |
C13 | 0.0430 (16) | 0.0350 (16) | 0.0272 (14) | 0.0009 (13) | 0.0056 (12) | −0.0046 (12) |
C14 | 0.0360 (15) | 0.0367 (16) | 0.0310 (15) | 0.0009 (12) | 0.0109 (11) | 0.0057 (12) |
C15 | 0.0296 (14) | 0.0287 (15) | 0.0340 (15) | 0.0026 (11) | 0.0073 (11) | 0.0053 (12) |
C16 | 0.0370 (15) | 0.0327 (16) | 0.0377 (16) | −0.0007 (12) | 0.0061 (12) | 0.0048 (13) |
C17 | 0.0424 (16) | 0.0383 (17) | 0.0364 (16) | −0.0056 (13) | 0.0093 (13) | 0.0036 (13) |
C18 | 0.0367 (15) | 0.0373 (17) | 0.0369 (17) | −0.0042 (12) | 0.0070 (12) | 0.0062 (13) |
C19 | 0.0331 (14) | 0.0303 (15) | 0.0355 (16) | −0.0037 (11) | 0.0036 (11) | 0.0041 (12) |
C20 | 0.0444 (16) | 0.0334 (16) | 0.0419 (18) | −0.0105 (13) | 0.0043 (13) | −0.0023 (13) |
C21 | 0.0514 (18) | 0.0434 (18) | 0.0319 (16) | −0.0024 (14) | 0.0094 (13) | 0.0016 (14) |
C22 | 0.0383 (15) | 0.0337 (16) | 0.0386 (16) | 0.0015 (12) | 0.0113 (12) | 0.0071 (13) |
Br1—C22 | 1.876 (3) | C10—C11 | 1.384 (4) |
S2—C22 | 1.710 (3) | C10—C15 | 1.407 (4) |
S2—C19 | 1.730 (3) | C11—C12 | 1.388 (4) |
O3—C10 | 1.368 (3) | C12—C13 | 1.387 (4) |
O3—C9 | 1.426 (4) | C13—C14 | 1.372 (4) |
O4—C11 | 1.379 (3) | C13—H13 | 0.9300 |
O4—C8 | 1.428 (3) | C14—C15 | 1.384 (4) |
O5—C12 | 1.366 (3) | C14—H14 | 0.9300 |
O5—C7 | 1.419 (3) | C15—C16 | 1.454 (4) |
O6—C18 | 1.222 (3) | C16—C17 | 1.327 (4) |
C7—H7A | 0.9600 | C16—H16 | 0.9300 |
C7—H7B | 0.9600 | C17—C18 | 1.462 (4) |
C7—H7C | 0.9600 | C17—H17 | 0.9300 |
C8—H8A | 0.9600 | C18—C19 | 1.470 (4) |
C8—H8B | 0.9600 | C19—C20 | 1.354 (4) |
C8—H8C | 0.9600 | C20—C21 | 1.404 (4) |
C9—H9A | 0.9600 | C20—H20 | 0.9300 |
C9—H9B | 0.9600 | C21—C22 | 1.342 (4) |
C9—H9C | 0.9600 | C21—H21 | 0.9300 |
C22—S2—C19 | 90.49 (13) | C14—C13—C12 | 119.8 (3) |
C10—O3—C9 | 116.5 (2) | C14—C13—H13 | 120.1 |
C11—O4—C8 | 117.0 (2) | C12—C13—H13 | 120.1 |
C12—O5—C7 | 118.5 (2) | C13—C14—C15 | 122.2 (2) |
O5—C7—H7A | 109.5 | C13—C14—H14 | 118.9 |
O5—C7—H7B | 109.5 | C15—C14—H14 | 118.9 |
H7A—C7—H7B | 109.5 | C14—C15—C10 | 117.5 (2) |
O5—C7—H7C | 109.5 | C14—C15—C16 | 122.6 (2) |
H7A—C7—H7C | 109.5 | C10—C15—C16 | 119.9 (2) |
H7B—C7—H7C | 109.5 | C17—C16—C15 | 126.9 (3) |
O4—C8—H8A | 109.5 | C17—C16—H16 | 116.5 |
O4—C8—H8B | 109.5 | C15—C16—H16 | 116.5 |
H8A—C8—H8B | 109.5 | C16—C17—C18 | 123.1 (3) |
O4—C8—H8C | 109.5 | C16—C17—H17 | 118.5 |
H8A—C8—H8C | 109.5 | C18—C17—H17 | 118.5 |
H8B—C8—H8C | 109.5 | O6—C18—C17 | 123.3 (3) |
O3—C9—H9A | 109.5 | O6—C18—C19 | 119.6 (3) |
O3—C9—H9B | 109.5 | C17—C18—C19 | 117.1 (3) |
H9A—C9—H9B | 109.5 | C20—C19—C18 | 131.0 (3) |
O3—C9—H9C | 109.5 | C20—C19—S2 | 110.7 (2) |
H9A—C9—H9C | 109.5 | C18—C19—S2 | 118.2 (2) |
H9B—C9—H9C | 109.5 | C19—C20—C21 | 114.0 (3) |
O3—C10—C11 | 121.3 (2) | C19—C20—H20 | 123.0 |
O3—C10—C15 | 117.7 (2) | C21—C20—H20 | 123.0 |
C11—C10—C15 | 120.8 (2) | C22—C21—C20 | 111.3 (3) |
O4—C11—C10 | 118.2 (2) | C22—C21—H21 | 124.3 |
O4—C11—C12 | 121.4 (2) | C20—C21—H21 | 124.3 |
C10—C11—C12 | 120.0 (2) | C21—C22—S2 | 113.4 (2) |
O5—C12—C13 | 124.3 (2) | C21—C22—Br1 | 126.2 (2) |
O5—C12—C11 | 116.1 (2) | S2—C22—Br1 | 120.36 (16) |
C13—C12—C11 | 119.6 (2) | ||
C9—O3—C10—C11 | −63.9 (3) | O3—C10—C15—C16 | −2.1 (4) |
C9—O3—C10—C15 | 120.7 (3) | C11—C10—C15—C16 | −177.5 (2) |
C8—O4—C11—C10 | 123.4 (3) | C14—C15—C16—C17 | −8.3 (4) |
C8—O4—C11—C12 | −63.4 (3) | C10—C15—C16—C17 | 170.2 (3) |
O3—C10—C11—O4 | −4.4 (4) | C15—C16—C17—C18 | −178.0 (3) |
C15—C10—C11—O4 | 170.9 (2) | C16—C17—C18—O6 | −5.1 (5) |
O3—C10—C11—C12 | −177.7 (2) | C16—C17—C18—C19 | 174.6 (3) |
C15—C10—C11—C12 | −2.5 (4) | O6—C18—C19—C20 | −176.7 (3) |
C7—O5—C12—C13 | 1.7 (4) | C17—C18—C19—C20 | 3.6 (4) |
C7—O5—C12—C11 | −176.7 (2) | O6—C18—C19—S2 | −0.1 (4) |
O4—C11—C12—O5 | 6.6 (4) | C17—C18—C19—S2 | −179.73 (19) |
C10—C11—C12—O5 | 179.7 (2) | C22—S2—C19—C20 | 0.8 (2) |
O4—C11—C12—C13 | −172.0 (2) | C22—S2—C19—C18 | −176.6 (2) |
C10—C11—C12—C13 | 1.2 (4) | C18—C19—C20—C21 | 176.4 (3) |
O5—C12—C13—C14 | −177.0 (2) | S2—C19—C20—C21 | −0.5 (3) |
C11—C12—C13—C14 | 1.4 (4) | C19—C20—C21—C22 | −0.2 (4) |
C12—C13—C14—C15 | −2.8 (4) | C20—C21—C22—S2 | 0.8 (3) |
C13—C14—C15—C10 | 1.5 (4) | C20—C21—C22—Br1 | −178.3 (2) |
C13—C14—C15—C16 | −179.9 (2) | C19—S2—C22—C21 | −0.9 (2) |
O3—C10—C15—C14 | 176.5 (2) | C19—S2—C22—Br1 | 178.24 (17) |
C11—C10—C15—C14 | 1.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O5 | 0.96 | 2.23 | 2.861 (4) | 122 |
C9—H9B···O4 | 0.96 | 2.38 | 2.985 (4) | 120 |
C21—H21···O6i | 0.93 | 2.41 | 3.322 (4) | 165 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H15BrO4S |
Mr | 383.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.114 (5), 12.775 (5), 15.404 (5) |
β (°) | 98.813 (5) |
V (Å3) | 1577.9 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.75 |
Crystal size (mm) | 0.22 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.228, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16471, 2784, 2343 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.082, 1.06 |
No. of reflections | 2784 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.59 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O5 | 0.96 | 2.23 | 2.861 (4) | 122.00 |
C9—H9B···O4 | 0.96 | 2.38 | 2.985 (4) | 120.00 |
C21—H21···O6i | 0.93 | 2.41 | 3.322 (4) | 165.00 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
The authors thank Professor T. N. Guru Row, SSCU, IISc, Bangalore, for support of the X-ray data collection. KS thanks the GITAM University, Visakhapatnam, Andhrapradesh, for financial support under a minor reasearch project.
References
Alex, G., Srinivasan, S., Krishnasamy, V., Suresh, R. V., Iyer, R. & Iyer, P. R. (1993). Acta Cryst. C49, 70–72. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Chun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev Res. 53, 9–14. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Horng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg Med Chem. 1, 105–111. Google Scholar
Howard, E. I., Sanishvili, R., Cachau, R. E., Mitschler, A., Chevrier, B., Barth, P., Lamour, V., Van Zandt, M., Sibley, E., Bon, C., Moras, D., Schneider, T. R., Joachimiak, A. & Podjarny, A. (2004). Proteins, 55, 792–804. Web of Science CrossRef PubMed CAS Google Scholar
Li, Z. & Su, G. (1993). Acta Cryst. C49, 1075–1077. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Liang, Y.-S., Mu, S., Wang, J.-Y. & Liu, D.-K. (2011). Acta Cryst. E67, o830. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Charris, C. J., Cortés, J. C., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013. Web of Science PubMed CAS Google Scholar
Lu, Y., Wang, Y. & Zhu, W. (2010). Phys. Chem. Chem. Phys. 12 4543–4551. Web of Science CrossRef CAS PubMed Google Scholar
Mei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729–2738. Web of Science PubMed Google Scholar
Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Petrash, J. M. (2004). Cell. Mol. Life Sci. 61, 737–749. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Zubieta, C., He, X. Z., Dixon, R. A. & Noel, J. P. (2001). Nat. Struct. Biol. 8, 271–279. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones are alpha, beta unsaturated ketones, widely distributed in nature and are extensively studied for their biological activity (Chun et al., 2001; Horng et al., 2003; Lopez et al., 2001; Mei et al., 2003). Chalcones readily crystallize because of their intermolecular hydrogen bonding (Liang et al., 2011; Alex et al., 1993; Li et al., 1993). The same property has been shown to be responsible for its biological activity (Zubieta et al., 2001). However, halogen containing chalcones are of special interest in drug design process because of the raising importance of hlogen bond contribution in target recognition process (Howard et al., 2004; Petrash, 2004; Lu et al., 2010). Crystal structure conformation of small molecule has always been the choice for binding energy calculations in docking studies. In this paper we report the crystal structure of (2E)-1-(5-bromothiophen-2-yl)- 3-(2,3,4-trimethoxyphenyl)prop-2-en-1-one which is a part of insilico lead identification studies.
The asymmetric unit of (2E)-1-(5-bromothiophen-2-yl)-3-(2,3,4- trimethoxyphenyl)prop-2-en-1-one, C16H15BrO4S, contains just one molecule (Fig. 1). The five-membered thiophene ring (S2\C19\···C22) is not coplanar with the phenyl ring (C10\C11\···C15) system; the dihedral angle between the two planes is 11.08 (12)°. The crystal structure displays intermolecular C21—H21···O6 and weak intramolecular C8—H8B···O5 and C9—H9B···O4 hydrogen bonds (Table 1). The packing of molecules in the crystal structure is depicted in Fig. 2.