organic compounds
Tris(2-carbamoylguanidinium) hydrogen fluorophosphonate fluorophosphonate monohydrate
aInstitute of Physics of the Czech Academy of Sciences, v. v. i., Na Slovance 2, 182 21 Praha 8, Czech Republic, and bDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12843 Prague 2, Czech Republic
*Correspondence e-mail: fabry@fzu.cz
The title structure, 3C2H7N4O+·HFPO3−·FPO32−·H2O, contains three independent 2-carbamoylguanidinium cations, one fluorophosphonate, one hydrogen fluorophosphonate and one water molecule. There are three different layers in the structure that are nearly perpendicular to the c axis. Each layer contains a cation and the layers differ by the respective presence of the water molecule, the hydrogen fluorophosphonate and fluorophosphonate anions. N—H⋯O hydrogen bonds between the guanylurea molecules that interconnect the molecules within each layer are strong. The layers are interconnected by strong and weak O—H⋯O hydrogen bonds between the anions and water molecules, respectively. Interestingly, the configuration of the layers is quite similar to that observed in 2-carbamoylguanidinium hydrogen fluorophosphonate [Fábry et al. (2012). Acta Cryst. C68, o76–o83]. There is also present a N—H⋯F hydrogen bond in the structure which occurs quite rarely.
Related literature
For the related structures 2-carbamoylguanidinium hydrogen fluorophosphonate and bis[guanylurea)(1+)] fluorophosphonate dihydrate, see: Fábry et al. (2012a,b). For the related compound 2-carbamoylguanidinium hydrogen phosphite and its physical properties, see: Fridrichová et al. (2010a,b); Kroupa & Fridrichová (2011). For the applied values of the constraints for water molecules, see: Allen (2002). For preparation of the precursors, see Ostrogovich (1911); Schülke & Kayser (1991); Scoponi (1991). For the involvement of fluorine in hydrogen bonds, see: Dunitz & Taylor (1997); Krupková et al. (2002). For the denomination of the hydrogen bonds, see: Desiraju & Steiner (1999). For the extinction correction, see: Becker & Coppens (1974).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: PLATON (Spek, 2009), DIAMOND (Brandenburg, 2010) and Origin (OriginLab, 2000); software used to prepare material for publication: JANA2006.
Supporting information
10.1107/S1600536811051683/zj2040sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: 10.1107/S1600536811051683/zj2040Isup2.smi
Structure factors: contains datablock I. DOI: 10.1107/S1600536811051683/zj2040Isup3.hkl
The structures were prepared by neutralization of stoichiometric amounts of guanylurea hydroxide and H2PO3F. Guanylurea hydroxide was prepared from guanylurea hydrochloride hemihydrate by an exchange reaction on anex.
Guanylurea chloride hemihydrate has been described at the beginning of the 20-th century (Ostrogovich, 1911) and thoroughly characterized by Scoponi et al. (1991). It was prepared by acid hydrolysis of cyanoguanidine according to Fig. 8. Diluted water solution (100 ml of water to every 0.1 mol of cyanoguanidine) of equimolar ratios of cyanoguanidine (99%, Sigma-Aldrich) and hydrochloric acid (p.a., Lachema) was gradually heated. After about 45 minutes, when the reaction mixture started boiling, the originally colourless mixture suddenly became greyish and cloudy for a while and then an exothermal process occurred. This process was accompanied by very intense boiling of the reaction mixture. The heating was immediately interrupted and the reaction mixture was placed on a cold magnetic stirrer and it was stirred for another 15 minutes. The liquid which in the meanwhile had turned coulourless again was heated to the boiling point and kept heated for 2 h. Then the excessive water was evaporated under vacuum and a white crystalline product was filtered off. It was purified by recrystallization from water and characterized by powder XRD and found to be identical to the structure JODZOR (Cambridge Crystallographic Database (Allen, 2002; Scoponi et al., 1991). IR spectrum was recorded, too, in order to exclude possibility of contamination of the product by cyanoguanidine. The IR spectrum was in accordance with the compound described by Scoponi et al. (1991), whereas the intense doublet of CN- group typical for cyanoguanidine was absent.
The solution of H2PO3F was prepared from solution of (NH4)2PO3F.H2O that passed through the column of catex. (NH4)2PO3F.H2O was prepared by the method described by Schülke & Kayser (1991) and the raw material of (NH4)2PO3F.H2O prepared by this method was recrystallized in order to get rid of contamination of (NH4)H2PO4. The volume of the eluted solution of H2PO3F was about 50 ml in both cases. The solutions were put into the evacuated desiccator over P4O10. The crystals appeared in one week. The crystals deteriorated quickly on air, possibly because of the mother liquor that remained on the surface of the crystals that could react with air humidity. The crystals were put into the special glass capillaries. For the title structure 0.74 g (NH4)2PO3F.H2O and 1 g of guanylurea hydroxide was applied. It should be added that the experiments in repeated preparation failed and different crystals have been prepared (Fábry et al., 2012b).
All the H atoms were discernible in the difference
The hydroxyl hydrogen H1o11 of the hydrogen fluorophosphonate was refined freely. The coordinates of the atom P1 have not been refined because of the fixing of the origin in the of the title structure. There have been applied the following restraints: Water H atoms were restrained to be distant 0.820 (1) Å from the water oxygen Ow while the H1ow—Ow—H2ow angle was restrained to equal to 107.90 (1)°. [The latter value was retrieved from the neutron diffraction structure determinations contained in the Cambridge Database (Allen, 2002).] The primary amine hydrogen distances were restrained to 0.860 (1) Å and the angle H1n10-N10-H2n10 was restrained to 120.00 (1) °. The geometry of the secondary amine groups N3, N7 and N11 were constrained as planar (i. e. their neighbours were situated in the plane together with the secondary amine groups) with the N—H distances equal to 0.89 Å. The isotropic amine H atoms' displacement parameters have been constrained to 1.2 multiple of Ueq of the respective carrier N atoms while the Uiso of the water H atoms equalled to 1.5 multiple of Ueq of the water oxygen. 2216 Friedel pairs have been used in the The x, y and z fractional coordinates of P1 atom have been fixed during the refinement.Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: PLATON (Spek, 2009), DIAMOND (Brandenburg, 2010) and Origin (OriginLab, 2000); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).Fig. 1. View of the constituent molecules and ions of the title structure; the displacement ellipsoids are depicted at the 50% probability level (Spek, 2009). | |
Fig. 2. View of the unit cell of the title structure (Brandenburg, 2010.) | |
Fig. 3. Plot of P—F vs. the longest P—O bond lengths in the molecules of hydrogen fluorophosphonate and fluorophosphonate. The plot was constructed by Origin (OriginLab, 2000). The title anions are symbolized by blue triangles; the left triangle corresponds to the fluorophosphonate while the right one to the hydrogen fluorophosphonate in the structure. For the list of the structures that entered into this plot, see the deposited material or Fábry et al. (2012a). | |
Fig. 4. View of the hydrogen bond pattern within the layer with z \sim 0.0 of the title structure. This layer contains the water molecules (Brandenburg, 2010). | |
Fig. 5. View of the hydrogen bond pattern within the layer with z ~0.3 of the title structure. This layer contains hydrogen fluorophosphonate (Brandenburg, 2010). Compare with Fig. 7. | |
Fig. 6. View of the hydrogen bond pattern within the layer with z ~0.6 of the title structure. Symmetry code: (i) x, y, z + 1. This layer contains fluorophosphonate (Brandenburg, 2010). | |
Fig. 7. Section of guanylurea hydrogen fluorophosphonate (Fábry et al., 2012a) showing the hydrogen-bond pattern (Brandenburg, 2010). Compare with Fig. 5. | |
Fig. 8. Scheme of the preparation of guanylurea. |
3C2H7N4O+·HFO3P−·FO3P2−·H2O | Z = 1 |
Mr = 524.3 | F(000) = 272 |
Triclinic, P1 | Dx = 1.648 Mg m−3 |
Hall symbol: P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 6.7523 (3) Å | Cell parameters from 5951 reflections |
b = 8.2926 (3) Å | θ = 3.0–29.2° |
c = 9.7297 (4) Å | µ = 0.30 mm−1 |
α = 100.630 (3)° | T = 297 K |
β = 90.885 (3)° | Prism, colourless |
γ = 99.168 (3)° | 0.60 × 0.45 × 0.40 mm |
V = 528.05 (4) Å3 |
Oxford Diffraction Xcalibur Gemini ultra diffractometer | 4769 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4203 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 29.3°, θmin = 3.0° |
ω scans | h = −9→8 |
Absorption correction: multi-scan (CrysAlis PRO, Oxford Diffraction, 2010) | k = −11→11 |
Tmin = 0.852, Tmax = 0.888 | l = −13→12 |
8499 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.068 | Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2] |
S = 1.52 | (Δ/σ)max = 0.042 |
4769 reflections | Δρmax = 0.19 e Å−3 |
352 parameters | Δρmin = −0.16 e Å−3 |
22 restraints | Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) |
35 constraints | Extinction coefficient: 700 (200) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 2216 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.08 (6) |
3C2H7N4O+·HFO3P−·FO3P2−·H2O | γ = 99.168 (3)° |
Mr = 524.3 | V = 528.05 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.7523 (3) Å | Mo Kα radiation |
b = 8.2926 (3) Å | µ = 0.30 mm−1 |
c = 9.7297 (4) Å | T = 297 K |
α = 100.630 (3)° | 0.60 × 0.45 × 0.40 mm |
β = 90.885 (3)° |
Oxford Diffraction Xcalibur Gemini ultra diffractometer | 4769 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO, Oxford Diffraction, 2010) | 4203 reflections with I > 3σ(I) |
Tmin = 0.852, Tmax = 0.888 | Rint = 0.018 |
8499 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.068 | Δρmax = 0.19 e Å−3 |
S = 1.52 | Δρmin = −0.16 e Å−3 |
4769 reflections | Absolute structure: Flack (1983), 2216 Friedel pairs |
352 parameters | Absolute structure parameter: 0.08 (6) |
22 restraints |
x | y | z | Uiso*/Ueq | ||
P1 | 0.44795 | 0.87104 | 0.26806 | 0.03489 (18) | |
O11 | 0.3358 (3) | 0.7684 (2) | 0.3693 (2) | 0.0531 (7) | |
H1o11 | 0.363 (5) | 0.814 (4) | 0.449 (4) | 0.089 (12)* | |
O12 | 0.4277 (3) | 1.0485 (2) | 0.2976 (2) | 0.0490 (6) | |
O13 | 0.6537 (2) | 0.8321 (2) | 0.24652 (19) | 0.0508 (6) | |
F1 | 0.3223 (2) | 0.78577 (19) | 0.13057 (16) | 0.0606 (5) | |
P2 | 0.59898 (9) | 0.87217 (7) | 0.70466 (7) | 0.03486 (18) | |
O21 | 0.4136 (2) | 0.8915 (2) | 0.62423 (17) | 0.0446 (5) | |
O22 | 0.6261 (3) | 0.6971 (2) | 0.6955 (2) | 0.0591 (7) | |
O23 | 0.6227 (3) | 0.9736 (2) | 0.84962 (19) | 0.0628 (7) | |
F2 | 0.7787 (2) | 0.9524 (2) | 0.62518 (19) | 0.0705 (6) | |
N1 | 0.7279 (3) | 0.3585 (3) | −0.0373 (2) | 0.0502 (8) | |
H1n1 | 0.687 (4) | 0.4524 (16) | −0.032 (3) | 0.0603* | |
H2n1 | 0.641 (3) | 0.2684 (17) | −0.050 (3) | 0.0603* | |
N2 | 1.0574 (3) | 0.4809 (3) | −0.0071 (2) | 0.0462 (7) | |
H1n2 | 1.1788 (14) | 0.464 (3) | 0.003 (3) | 0.0554* | |
H2n2 | 1.026 (4) | 0.5785 (14) | −0.001 (3) | 0.0554* | |
C1 | 0.9198 (3) | 0.3471 (3) | −0.0309 (2) | 0.0359 (7) | |
N3 | 0.9686 (3) | 0.1927 (2) | −0.04679 (19) | 0.0383 (6) | |
H1n3 | 0.868716 | 0.106559 | −0.058266 | 0.046* | |
C2 | 1.1648 (3) | 0.1594 (3) | −0.0464 (2) | 0.0409 (8) | |
O1 | 1.3110 (2) | 0.2702 (2) | −0.0345 (2) | 0.0550 (6) | |
N4 | 1.1759 (4) | −0.0024 (3) | −0.0644 (3) | 0.0555 (9) | |
H1n4 | 1.2923 (18) | −0.032 (3) | −0.066 (3) | 0.0666* | |
H2n4 | 1.072 (2) | −0.070 (3) | −0.049 (3) | 0.0666* | |
N5 | 0.8507 (3) | 0.5738 (3) | 0.3262 (2) | 0.0412 (7) | |
H1n5 | 0.9772 (8) | 0.572 (3) | 0.335 (2) | 0.0495* | |
H2n5 | 0.804 (4) | 0.6619 (18) | 0.316 (2) | 0.0495* | |
N6 | 0.5269 (3) | 0.4422 (3) | 0.3139 (2) | 0.0442 (8) | |
H1n6 | 0.482 (4) | 0.5351 (16) | 0.326 (3) | 0.0531* | |
H2n6 | 0.441 (3) | 0.3523 (17) | 0.307 (3) | 0.0531* | |
C3 | 0.7199 (3) | 0.4378 (3) | 0.3164 (2) | 0.0307 (7) | |
N7 | 0.7762 (3) | 0.2861 (2) | 0.3071 (2) | 0.0326 (6) | |
H1n7 | 0.679039 | 0.198237 | 0.299084 | 0.0391* | |
C4 | 0.9732 (3) | 0.2570 (3) | 0.3091 (2) | 0.0320 (7) | |
O2 | 1.1157 (2) | 0.3698 (2) | 0.3206 (2) | 0.0481 (7) | |
N8 | 0.9920 (3) | 0.0979 (3) | 0.2968 (2) | 0.0448 (8) | |
H1n8 | 1.1144 (13) | 0.082 (3) | 0.289 (3) | 0.0537* | |
H2n8 | 0.886 (2) | 0.024 (2) | 0.280 (3) | 0.0537* | |
N9 | 0.1970 (3) | 0.1691 (2) | 0.6254 (2) | 0.0384 (7) | |
H1n9 | 0.0709 (8) | 0.174 (3) | 0.621 (2) | 0.0461* | |
H2n9 | 0.237 (4) | 0.0751 (15) | 0.622 (2) | 0.0461* | |
N10 | 0.5220 (3) | 0.2985 (3) | 0.6358 (2) | 0.0468 (8) | |
H1n10 | 0.556 (3) | 0.2016 (9) | 0.626 (3) | 0.0562* | |
H2n10 | 0.613 (2) | 0.3858 (13) | 0.647 (3) | 0.0562* | |
C5 | 0.3284 (3) | 0.3046 (3) | 0.6375 (2) | 0.0302 (7) | |
N11 | 0.2757 (3) | 0.4584 (2) | 0.65242 (19) | 0.0323 (6) | |
H1n11 | 0.37363 | 0.545774 | 0.661465 | 0.0387* | |
C6 | 0.0770 (3) | 0.4880 (3) | 0.6545 (2) | 0.0316 (7) | |
O3 | −0.0658 (2) | 0.3745 (2) | 0.64508 (19) | 0.0424 (6) | |
N12 | 0.0598 (3) | 0.6470 (2) | 0.6695 (2) | 0.0430 (7) | |
H1n12 | 0.161 (2) | 0.721 (2) | 0.661 (3) | 0.0516* | |
H2n12 | −0.0630 (13) | 0.659 (3) | 0.658 (3) | 0.0516* | |
Ow | 0.8062 (3) | 0.7323 (3) | −0.0104 (2) | 0.0697 (8) | |
H1ow | 0.739 (4) | 0.754 (5) | 0.0580 (17) | 0.1045* | |
H2ow | 0.741 (4) | 0.740 (4) | −0.0799 (16) | 0.1045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0308 (3) | 0.0250 (3) | 0.0478 (3) | 0.0036 (2) | −0.0033 (2) | 0.0052 (2) |
O11 | 0.0617 (12) | 0.0372 (9) | 0.0542 (11) | −0.0079 (8) | 0.0044 (9) | 0.0067 (8) |
O12 | 0.0371 (9) | 0.0255 (9) | 0.0847 (12) | 0.0056 (7) | 0.0049 (8) | 0.0106 (8) |
O13 | 0.0397 (9) | 0.0411 (9) | 0.0739 (11) | 0.0159 (7) | 0.0033 (8) | 0.0089 (8) |
F1 | 0.0639 (10) | 0.0506 (8) | 0.0611 (8) | −0.0042 (7) | −0.0232 (7) | 0.0090 (6) |
P2 | 0.0257 (3) | 0.0251 (3) | 0.0541 (3) | 0.0023 (2) | 0.0003 (2) | 0.0099 (2) |
O21 | 0.0394 (9) | 0.0446 (9) | 0.0533 (9) | 0.0170 (7) | −0.0010 (7) | 0.0099 (7) |
O22 | 0.0353 (10) | 0.0307 (9) | 0.1131 (16) | 0.0079 (8) | −0.0088 (10) | 0.0172 (9) |
O23 | 0.0470 (11) | 0.0692 (12) | 0.0616 (11) | 0.0002 (9) | −0.0090 (8) | −0.0062 (9) |
F2 | 0.0487 (9) | 0.0666 (10) | 0.0979 (12) | −0.0042 (7) | 0.0227 (8) | 0.0303 (9) |
N1 | 0.0317 (11) | 0.0597 (14) | 0.0576 (12) | 0.0080 (10) | 0.0003 (9) | 0.0066 (11) |
N2 | 0.0377 (11) | 0.0354 (11) | 0.0619 (12) | 0.0039 (10) | −0.0026 (9) | 0.0021 (9) |
C1 | 0.0299 (11) | 0.0441 (12) | 0.0318 (10) | 0.0044 (9) | 0.0008 (8) | 0.0041 (9) |
N3 | 0.0301 (10) | 0.0349 (10) | 0.0460 (10) | −0.0020 (8) | −0.0006 (8) | 0.0040 (8) |
C2 | 0.0378 (13) | 0.0445 (13) | 0.0396 (11) | 0.0082 (10) | 0.0021 (9) | 0.0047 (9) |
O1 | 0.0280 (8) | 0.0502 (10) | 0.0799 (12) | 0.0023 (8) | −0.0022 (8) | −0.0013 (8) |
N4 | 0.0553 (15) | 0.0443 (13) | 0.0700 (14) | 0.0132 (11) | 0.0094 (12) | 0.0138 (11) |
N5 | 0.0301 (10) | 0.0288 (11) | 0.0668 (13) | 0.0071 (9) | 0.0014 (9) | 0.0122 (9) |
N6 | 0.0251 (11) | 0.0400 (13) | 0.0697 (13) | 0.0082 (9) | 0.0038 (9) | 0.0130 (11) |
C3 | 0.0240 (11) | 0.0352 (12) | 0.0337 (11) | 0.0060 (9) | 0.0026 (8) | 0.0075 (9) |
N7 | 0.0218 (9) | 0.0258 (9) | 0.0499 (10) | 0.0022 (8) | 0.0006 (8) | 0.0082 (8) |
C4 | 0.0233 (11) | 0.0302 (13) | 0.0435 (12) | 0.0051 (10) | 0.0006 (9) | 0.0093 (10) |
O2 | 0.0229 (8) | 0.0362 (10) | 0.0857 (13) | 0.0036 (8) | 0.0041 (8) | 0.0140 (9) |
N8 | 0.0314 (12) | 0.0344 (12) | 0.0686 (13) | 0.0107 (10) | −0.0015 (10) | 0.0057 (11) |
N9 | 0.0277 (10) | 0.0269 (11) | 0.0605 (11) | 0.0046 (9) | 0.0011 (9) | 0.0081 (9) |
N10 | 0.0245 (10) | 0.0463 (12) | 0.0724 (14) | 0.0098 (9) | 0.0035 (10) | 0.0146 (12) |
C5 | 0.0265 (11) | 0.0324 (12) | 0.0315 (10) | 0.0053 (9) | −0.0002 (8) | 0.0056 (8) |
N11 | 0.0221 (9) | 0.0258 (10) | 0.0475 (10) | 0.0005 (8) | 0.0011 (8) | 0.0065 (8) |
C6 | 0.0245 (11) | 0.0324 (12) | 0.0371 (11) | 0.0040 (10) | 0.0030 (9) | 0.0051 (10) |
O3 | 0.0216 (8) | 0.0345 (9) | 0.0698 (11) | 0.0022 (7) | 0.0026 (7) | 0.0085 (8) |
N12 | 0.0330 (12) | 0.0287 (11) | 0.0683 (13) | 0.0067 (9) | 0.0047 (10) | 0.0106 (10) |
Ow | 0.0785 (14) | 0.0877 (14) | 0.0564 (11) | 0.0446 (12) | 0.0049 (10) | 0.0221 (11) |
P1—O11 | 1.548 (2) | C6—O3 | 1.225 (3) |
P1—O12 | 1.4752 (17) | C6—N12 | 1.323 (3) |
P1—O13 | 1.4850 (17) | N1—H1n1 | 0.860 (18) |
P1—F1 | 1.5603 (14) | N1—H2n1 | 0.860 (15) |
O11—H1o11 | 0.80 (3) | N2—H1n2 | 0.860 (13) |
P2—O21 | 1.5118 (18) | N2—H2n2 | 0.860 (16) |
P2—O22 | 1.479 (2) | N3—H1n3 | 0.89 |
P2—O23 | 1.4949 (18) | N4—H1n4 | 0.860 (17) |
P2—F2 | 1.5735 (18) | N4—H2n4 | 0.860 (19) |
N1—C1 | 1.315 (3) | N5—H1n5 | 0.860 (8) |
N2—C1 | 1.311 (3) | N5—H2n5 | 0.860 (19) |
C1—N3 | 1.355 (3) | N6—H1n6 | 0.860 (17) |
N3—C2 | 1.396 (3) | N6—H2n6 | 0.860 (15) |
C2—O1 | 1.224 (3) | N7—H1n7 | 0.89 |
C2—N4 | 1.335 (3) | N8—H1n8 | 0.860 (12) |
N5—C3 | 1.305 (3) | N8—H2n8 | 0.860 (15) |
N6—C3 | 1.309 (3) | N9—H1n9 | 0.860 (8) |
C3—N7 | 1.359 (3) | N9—H2n9 | 0.860 (16) |
N7—C4 | 1.390 (3) | N10—H1n10 | 0.860 (11) |
C4—O2 | 1.219 (3) | N10—H2n10 | 0.860 (11) |
C4—N8 | 1.328 (3) | N11—H1n11 | 0.89 |
N9—C5 | 1.302 (3) | N12—H1n12 | 0.860 (17) |
N10—C5 | 1.316 (3) | N12—H2n12 | 0.860 (13) |
C5—N11 | 1.361 (3) | Ow—H1ow | 0.82 (2) |
N11—C6 | 1.401 (3) | Ow—H2ow | 0.82 (2) |
O11—P1—O12 | 113.89 (10) | C1—N3—H1n3 | 117.7615 |
O11—P1—O13 | 111.21 (11) | H1n3—N3—C2 | 117.7617 |
O11—P1—F1 | 98.53 (9) | C3—N7—H1n7 | 117.353 |
O12—P1—O13 | 116.89 (9) | H1n7—N7—C4 | 117.3532 |
O12—P1—F1 | 108.33 (9) | C5—N11—H1n11 | 117.8945 |
O13—P1—F1 | 105.98 (9) | C5—N11—C6 | 124.21 (17) |
P1—O11—H1o11 | 110 (2) | H1n11—N11—C6 | 117.8946 |
O21—P2—O22 | 113.55 (10) | H1n1—N1—C1 | 122.1 (16) |
O21—P2—O23 | 113.39 (11) | H2n1—N1—C1 | 118.5 (13) |
O21—P2—F2 | 104.28 (10) | H1n2—N2—C1 | 115.7 (16) |
O22—P2—O23 | 114.52 (13) | H2n2—N2—C1 | 121.3 (17) |
O22—P2—F2 | 105.09 (11) | C2—N4—H1n4 | 118.9 (17) |
O23—P2—F2 | 104.61 (10) | C2—N4—H2n4 | 118.4 (14) |
N1—C1—N2 | 120.9 (2) | H1n5—N5—C3 | 120.6 (18) |
N1—C1—N3 | 117.5 (2) | H2n5—N5—C3 | 116.5 (14) |
N2—C1—N3 | 121.6 (2) | C4—N8—H1n8 | 112.8 (18) |
C1—N3—C2 | 124.48 (18) | C4—N8—H2n8 | 118.8 (13) |
N3—C2—O1 | 122.1 (2) | H1n9—N9—C5 | 119.9 (17) |
N3—C2—N4 | 113.8 (2) | H2n9—N9—C5 | 119.7 (15) |
O1—C2—N4 | 124.2 (2) | H1n10—N10—C5 | 116.9 (11) |
N5—C3—N6 | 120.9 (2) | H2n10—N10—C5 | 123.1 (9) |
N5—C3—N7 | 122.1 (2) | C6—N12—H1n12 | 121.4 (12) |
N6—C3—N7 | 117.06 (19) | C6—N12—H2n12 | 111.6 (18) |
C3—N7—C4 | 125.29 (17) | H1n1—N1—H2n1 | 119 (2) |
N7—C4—O2 | 121.8 (2) | H1n2—N2—H2n2 | 123 (2) |
N7—C4—N8 | 114.67 (18) | H1n4—N4—H2n4 | 120 (2) |
O2—C4—N8 | 123.5 (2) | H1n5—N5—H2n5 | 123 (2) |
N9—C5—N10 | 120.8 (2) | H1n6—N6—H2n6 | 117.9 (19) |
N9—C5—N11 | 122.7 (2) | H1n8—N8—H2n8 | 127 (2) |
N10—C5—N11 | 116.5 (2) | H1n9—N9—H2n9 | 120 (2) |
C5—N11—C6 | 124.21 (17) | H1n10—N10—H2n10 | 120.0 (14) |
N11—C6—O3 | 121.7 (2) | H1n12—N12—H2n12 | 123 (2) |
N11—C6—N12 | 114.23 (18) | H1ow—Ow—H2ow | 108 (3) |
O3—C6—N12 | 124.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1o11···O21 | 0.80 (3) | 1.72 (4) | 2.515 (3) | 174 (4) |
Ow—H1ow···O13 | 0.82 (2) | 1.957 (19) | 2.754 (3) | 164 (2) |
Ow—H2ow···O22i | 0.82 (2) | 2.253 (17) | 3.037 (3) | 160 (3) |
Ow—H2ow···O23i | 0.82 (2) | 2.41 (3) | 3.023 (3) | 132 (3) |
N1—H1n1···Ow | 0.860 (18) | 2.302 (15) | 3.022 (4) | 141 (2) |
N1—H2n1···O1ii | 0.861 (17) | 2.24 (2) | 2.795 (3) | 122.4 (15) |
N1—H2n1···O23iii | 0.861 (15) | 2.431 (14) | 3.141 (3) | 140.3 (18) |
N6—H2n6···O2ii | 0.860 (17) | 2.23 (2) | 2.750 (3) | 119.0 (15) |
N6—H2n6···O12iv | 0.860 (17) | 2.491 (15) | 3.200 (3) | 140.3 (17) |
N6—H1n6···O11 | 0.861 (19) | 2.28 (2) | 3.141 (3) | 174 (2) |
N9—H2n9···O21iv | 0.860 (17) | 2.08 (2) | 2.916 (2) | 164 (2) |
N9—H1n9···F2v | 0.860 (7) | 2.479 (19) | 3.096 (2) | 129 (2) |
N9—H1n9···O3 | 0.860 (7) | 2.01 (2) | 2.634 (2) | 129 (2) |
N2—H2n2···Ow | 0.861 (16) | 2.12 (2) | 2.894 (3) | 150 (2) |
N2—H1n2···O1 | 0.861 (12) | 1.94 (2) | 2.618 (3) | 135 (2) |
N5—H2n5···O13 | 0.862 (19) | 2.07 (2) | 2.906 (3) | 165 (2) |
N5—H1n5···O2 | 0.860 (7) | 2.03 (2) | 2.646 (3) | 128 (2) |
N10—H1n10···O21iv | 0.860 (13) | 2.595 (10) | 3.318 (3) | 142.5 (17) |
N10—H2n10···O3vi | 0.861 (13) | 2.186 (14) | 2.750 (3) | 122.9 (11) |
N10—H2n10···O22 | 0.861 (13) | 2.524 (13) | 3.209 (3) | 137.1 (11) |
N3—H1n3···O23iii | 0.89 | 1.95 | 2.770 (3) | 153 |
N7—H1n7···O12iv | 0.89 | 1.93 | 2.807 (3) | 166 |
N11—H1n11···O22 | 0.89 | 1.93 | 2.804 (3) | 166 |
N4—H1n4···O23vii | 0.860 (14) | 2.386 (16) | 3.170 (3) | 152 (2) |
N4—H2n4···Owiv | 0.86 (2) | 2.32 (2) | 3.173 (3) | 176 (2) |
N8—H2n8···O13iv | 0.857 (16) | 2.024 (16) | 2.877 (3) | 173.8 (15) |
N8—H1n8···O12viii | 0.860 (10) | 2.179 (10) | 3.034 (3) | 173 (3) |
N12—H1n12···O21 | 0.859 (11) | 2.115 (16) | 2.972 (2) | 175 (3) |
N12—H2n12···O22ii | 0.859 (11) | 2.198 (11) | 3.031 (3) | 163 (3) |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) x, y−1, z−1; (iv) x, y−1, z; (v) x−1, y−1, z; (vi) x+1, y, z; (vii) x+1, y−1, z−1; (viii) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | 3C2H7N4O+·HFO3P−·FO3P2−·H2O |
Mr | 524.3 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 297 |
a, b, c (Å) | 6.7523 (3), 8.2926 (3), 9.7297 (4) |
α, β, γ (°) | 100.630 (3), 90.885 (3), 99.168 (3) |
V (Å3) | 528.05 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.60 × 0.45 × 0.40 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Gemini ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO, Oxford Diffraction, 2010) |
Tmin, Tmax | 0.852, 0.888 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 8499, 4769, 4203 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.688 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.068, 1.52 |
No. of reflections | 4769 |
No. of parameters | 352 |
No. of restraints | 22 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.16 |
Absolute structure | Flack (1983), 2216 Friedel pairs |
Absolute structure parameter | 0.08 (6) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR97 (Altomare et al., 1999), JANA2006 (Petříček et al., 2006), PLATON (Spek, 2009), DIAMOND (Brandenburg, 2010) and Origin (OriginLab, 2000).
P1—O11 | 1.548 (2) | P2—O21 | 1.5118 (18) |
P1—O12 | 1.4752 (17) | P2—O22 | 1.479 (2) |
P1—O13 | 1.4850 (17) | P2—O23 | 1.4949 (18) |
P1—F1 | 1.5603 (14) | P2—F2 | 1.5735 (18) |
O11—P1—O12 | 113.89 (10) | H1n11—N11—C6 | 117.8946 |
O11—P1—O13 | 111.21 (11) | H1n1—N1—C1 | 122.1 (16) |
O11—P1—F1 | 98.53 (9) | H2n1—N1—C1 | 118.5 (13) |
O12—P1—O13 | 116.89 (9) | H1n2—N2—C1 | 115.7 (16) |
O12—P1—F1 | 108.33 (9) | H2n2—N2—C1 | 121.3 (17) |
O13—P1—F1 | 105.98 (9) | C2—N4—H1n4 | 118.9 (17) |
O21—P2—O22 | 113.55 (10) | C2—N4—H2n4 | 118.4 (14) |
O21—P2—O23 | 113.39 (11) | H1n5—N5—C3 | 120.6 (18) |
O21—P2—F2 | 104.28 (10) | H2n5—N5—C3 | 116.5 (14) |
O22—P2—O23 | 114.52 (13) | C4—N8—H1n8 | 112.8 (18) |
O22—P2—F2 | 105.09 (11) | C4—N8—H2n8 | 118.8 (13) |
O23—P2—F2 | 104.61 (10) | H1n9—N9—C5 | 119.9 (17) |
C1—N3—H1n3 | 117.7615 | H2n9—N9—C5 | 119.7 (15) |
H1n3—N3—C2 | 117.7617 | H1n10—N10—C5 | 116.9 (11) |
C3—N7—H1n7 | 117.353 | H2n10—N10—C5 | 123.1 (9) |
H1n7—N7—C4 | 117.3532 | C6—N12—H1n12 | 121.4 (12) |
C5—N11—H1n11 | 117.8945 | C6—N12—H2n12 | 111.6 (18) |
C5—N11—C6 | 124.21 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H1o11···O21 | 0.80 (3) | 1.72 (4) | 2.515 (3) | 174 (4) |
Ow—H1ow···O13 | 0.82 (2) | 1.957 (19) | 2.754 (3) | 164 (2) |
Ow—H2ow···O22i | 0.82 (2) | 2.253 (17) | 3.037 (3) | 160 (3) |
Ow—H2ow···O23i | 0.82 (2) | 2.41 (3) | 3.023 (3) | 132 (3) |
N1—H1n1···Ow | 0.860 (18) | 2.302 (15) | 3.022 (4) | 141 (2) |
N1—H2n1···O1ii | 0.861 (17) | 2.24 (2) | 2.795 (3) | 122.4 (15) |
N1—H2n1···O23iii | 0.861 (15) | 2.431 (14) | 3.141 (3) | 140.3 (18) |
N6—H2n6···O2ii | 0.860 (17) | 2.23 (2) | 2.750 (3) | 119.0 (15) |
N6—H2n6···O12iv | 0.860 (17) | 2.491 (15) | 3.200 (3) | 140.3 (17) |
N6—H1n6···O11 | 0.861 (19) | 2.28 (2) | 3.141 (3) | 174 (2) |
N9—H2n9···O21iv | 0.860 (17) | 2.08 (2) | 2.916 (2) | 164 (2) |
N9—H1n9···F2v | 0.860 (7) | 2.479 (19) | 3.096 (2) | 129 (2) |
N9—H1n9···O3 | 0.860 (7) | 2.01 (2) | 2.634 (2) | 129 (2) |
N2—H2n2···Ow | 0.861 (16) | 2.12 (2) | 2.894 (3) | 150 (2) |
N2—H1n2···O1 | 0.861 (12) | 1.94 (2) | 2.618 (3) | 135 (2) |
N5—H2n5···O13 | 0.862 (19) | 2.07 (2) | 2.906 (3) | 165 (2) |
N5—H1n5···O2 | 0.860 (7) | 2.03 (2) | 2.646 (3) | 128 (2) |
N10—H1n10···O21iv | 0.860 (13) | 2.595 (10) | 3.318 (3) | 142.5 (17) |
N10—H2n10···O3vi | 0.861 (13) | 2.186 (14) | 2.750 (3) | 122.9 (11) |
N10—H2n10···O22 | 0.861 (13) | 2.524 (13) | 3.209 (3) | 137.1 (11) |
N3—H1n3···O23iii | 0.89 | 1.95 | 2.770 (3) | 153 |
N7—H1n7···O12iv | 0.89 | 1.93 | 2.807 (3) | 166 |
N11—H1n11···O22 | 0.89 | 1.93 | 2.804 (3) | 166 |
N4—H1n4···O23vii | 0.860 (14) | 2.386 (16) | 3.170 (3) | 152 (2) |
N4—H2n4···Owiv | 0.86 (2) | 2.32 (2) | 3.173 (3) | 176 (2) |
N8—H2n8···O13iv | 0.857 (16) | 2.024 (16) | 2.877 (3) | 173.8 (15) |
N8—H1n8···O12viii | 0.860 (10) | 2.179 (10) | 3.034 (3) | 173 (3) |
N12—H1n12···O21 | 0.859 (11) | 2.115 (16) | 2.972 (2) | 175 (3) |
N12—H2n12···O22ii | 0.859 (11) | 2.198 (11) | 3.031 (3) | 163 (3) |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) x, y−1, z−1; (iv) x, y−1, z; (v) x−1, y−1, z; (vi) x+1, y, z; (vii) x+1, y−1, z−1; (viii) x+1, y−1, z. |
D-H···A | D-H (Å) | H···A (Å) | D···A (Å) | D-H···A (°) | sym. |
O11-H1o11···O21 | 0.80 (4) | 1.72 (4) | 2.515 (3) | 174 (4) | |
Ow-H1ow···O13 | 0.82 (2) | 1.957 (19) | 2.754 (3) | 164 (2) | |
Ow-H2ow···O22 | 0.82 (2) | 2.253 (17) | 3.037 (3) | 160 (3) | x, y, -1+z |
Ow-H2ow···O23 | 0.82 (2) | 2.41 (3) | 3.023 (3) | 132 (3) | x, y, -1+z |
N1-H1n1···Ow | 0.860 (18) | 2.302 (15) | 3.022 (4) | 141 (2) | |
N1-H2n1···O1 | 0.861 (17) | 2.24 (2) | 2.795 (3) | 122.4 (15) | -1+x, y, z |
N1-H2n1···O23 | 0.861 (15) | 2.431 (14) | 3.141 (3) | 140.3 (18) | x, -1+y, -1+z |
N6-H2n6···O2 | 0.860 (17) | 2.23 (2) | 2.750 (3) | 119.0 (15) | -1+x, y, z |
N6-H2n6···O12 | 0.860 (17) | 2.491 (15) | 3.200 (3) | 140.3 (17) | |
N6-H1n6···O11 | 0.861 (19) | 2.28 (2) | 3.141 (3) | 174 (2) | |
N9-H2n9···O21 | 0.860 (17) | 2.08 (2) | 2.916 (2) | 164 (2) | x, -1+y, z |
N9-H1n9···F2 | 0.860 (7) | 2.479 (19) | 3.096 (2) | 129 (2) | -1+x, -1+y, z |
N9-H1n9···O3 | 0.860 (7) | 2.01 (2) | 2.634 (2) | 129 (2) | |
N2-H2n2···Ow | 0.861 (16) | 2.12 (2) | 2.894 (3) | 150 (2) | |
N2-H1n2···O1 | 0.861 (12) | 1.94 (2) | 2.618 (3) | 135 (2) | |
N5-H2n5···O13 | 0.862 (19) | 2.07 (2) | 2.906 (3) | 165 (2) | |
N5-H2n5···O2 | 0.860 (7) | 2.03 (2) | 2.646 (3) | 128 (2) | |
N10-H1n10···O21 | 0.860 (13) | 2.595 (10) | 3.318 (3) | 142.5 (17) | x, -1+y, z |
N10-H2n10···O3 | 0.861 (13) | 2.186 (14) | 2.750 (3) | 122.9 (11) | 1+x, y, z |
N10-H2n10···O22 | 0.861 (13) | 2.524 (13) | 3.209 (3) | 137.1 (11) | |
N3-H1n3..O23 | 0.89 | 1.95 | 2.770 (3) | 153 | x,-1+y,-1+z |
N7-H1n7···O12 | 0.89 | 1.93 | 2.807 (3) | 166 | x,-1+y,z |
N11-H1n11 O22 | 0.89 | 1.93 | 2.804 (3) | 166 | |
N4-H1n4···O23 | 0.860 (14) | 2.386 (16) | 3.170 (3) | 152 (2) | 1+x, -1+y, -1+z |
N4-H2n4···Ow | 0.86 (2) | 2.32 (2) | 3.173 (3) | 176 (2) | x, -1+y, z |
N8-H1n8···O13 | 0.857 (16) | 2.024 (16) | 2.877 (3) | 173.8 (15) | x, -1+y, z |
N8-H2n8···O12 | 0.860 (10) | 2.179 (10) | 3.034 (3) | 173 (3) | 1+x, -1+y, z |
N12-H1n12···O21 | 0.859 (11) | 2.115 (16) | 2.972 (2) | 175 (3) | |
N12-H2n12···O22 | 0.859 (11) | 2.198 (11) | 3.031 (3) | 163 (3) | -1+x, y, z |
Acknowledgements
The authors gratefully acknowledge support of this work by the Praemium Academiae project of the Academy of Sciences of the Czech Republic and by grant No. 58608 of the Grant Agency of Charles University in Prague, the Czech Science Foundation (grant No. 203/09/0878) and the long term Research Plan of the Ministry of Education of the Czech Republic (No. MSM0021620857).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147. CrossRef IUCr Journals Web of Science Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact, GbR, Bonn, Germany. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc. Google Scholar
Dunitz, J. D. & Taylor, R. (1997). Chem. Eur. J. 3, 89–98. CrossRef CAS Web of Science Google Scholar
Fábry, J., Fridrichová, M., Dušek, M., Fejfarová, K. & Krupková, R. (2012a). Acta Cryst. C68, o76–o83. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fábry, J., Fridrichová, M., Dušek, M., Fejfarová, K. & Krupková, R. (2012b). Acta Cryst. C68, o71–o75. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fridrichová, M., Němec, I., Císařová, I. & Chvostová, D. (2010b). Phase Trans. 83, 761–767. Google Scholar
Fridrichová, M., Němec, I., Císařová, I. & Němec, P. (2010a). CrystEngComm, 12, 2054–2056. Google Scholar
Kroupa, J. & Fridrichová, M. (2011). J. Opt. 13, 035204 (7 pp.) Web of Science CrossRef Google Scholar
Krupková, R., Fábry, J., Císařová, I. & Vaněk, P. (2002). Acta Cryst. C58, i66–i68. Web of Science CrossRef IUCr Journals Google Scholar
OriginLab (2000). Origin. OriginLab Corporation, Northampton, USA. Google Scholar
Ostrogovich, A. (1911). Gazz. Chim. Ital. 39, 540–549. CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic. Google Scholar
Schülke, U. & Kayser, R. (1991). Z. Anorg. Allg. Chem. 600, 221–226. CrossRef Web of Science Google Scholar
Scoponi, M., Polo, E., Bertolasi, V., Carassiti, V. & Bertelli, G. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1619–1624. CSD CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Preparation of the title structure was stimulated by the study of 2-carbamoylguanidinium hydrogen fluorophosphonate (Fábry et al., 2011a) and the isostructural 2-carbamoylguanidinium hydrogen phosphite (Fridrichová et al., 2010a). It turned out that both compounds form mixed crystals (Fábry et al., 2011a). 2-carbamoylguanidinium hydrogen phosphite (Fridrichová et al., 2010a) shows interesting optical properties (Fridrichová et al., 2010b; Kroupa & Fridrichová, 2011). These compounds were grown from equimolar solutions of the cations and anions.
In order to extend the study of the system guanylurea - fluorophosphonate there have been carried out experiments on the crystal growth from the solutions of different molar ratios of the 2-carbamoylguanidinium cation and the fluorophosphonate. One of such experiments resulted in preparation of the title structure and the other one in preparation of two polymorphs of bis[guanylurea)(1+)] fluorophosphonate dihydrate (Fábry et al., 2011b).
The title structure contains three independent 2-carbamoylguanidinium molecules, one fluorotrixophosphate, one hydrogen fluorophosphonate and the water molecule (Fig. 1). The layers, which are nearly perpendicular to the c axis, are interconnected by the O—H···O hydrogen bonds between the fluorophosphonate, the hydrogen fluorophosphonate and the water molecules (Fig. 2; Tab. 1). The hydrogen bond between the fluorophosphonate and the hydrogen fluorophosphonate is quite strong (Desiraju & Steiner, 1999) in contrast to the weaker ones between the water molecule and the O atoms of the hydrogen fluorophosphonate and the fluorophosphonate.
The geometrical parameters of both anions are in accordance with the observed values in these anions in other structures (Fábry et al., 2011a; deposited material at the end of the CIF). Fig. 3 shows that the [PO3F]2- anion in the title structure is situated in the region where the anion can be affected as an acceptor of the hydrogen bond, i. e. close to the intermediate region of [H···PO3F]-. Indeed, the involvement of O21 in the strong hydrogen bond O11-H1o11···O21 is accompanied by the concomitant shortening of the P—F bond length, i.e. of P2—F2 in the present case. A similar, even more pronounced effect has recently been observed in bis[guanylurea)(1+)] fluorophosphonate dihydrate (Fábry et al., 2011b).
On the other hand, the position of [HPO3F]- corresponds to the full hydrogenation of the anion. This is in accordance with the refined position of the hydroxyl hydrogen that is situated close to the donor oxygen despite of the short O—H···O hydrogen bond between both anions.
The 2-carbamoylguanidinium cations within each layer are interconnected between themselves by the N—H···O hydrogen bonds (Fig. 2; Figs. 4–6). These hydrogen bonds are bent with 135 (2)° as maximum for N2-H1n2···O1 (Tab. 2). Moreover, the 2-carbamoylguanidinium cations which are situated in respective layers are also interconnected by the N—H···O hydrogen bonds with water molecules (layer 1; Fig. 4), hydrogen fluorophosphonates (layer 2, Fig. 5) and fluorophosphonates (layer 3, Fig. 6). It is interesting that the secondary amines form stronger N—H···O hydrogen bonds than the primary ones (Tab. 2). Similarly as in 2-carbamoylguanidinium hydrogen fluorophosphonate (Fábry et al., 2011a) all the amine H atoms are involved in the hydrogen bonds (Tab. 2) with H···O(acceptor) spanning the range 1.93 – ~2.40 Å. This means that these hydrogen bonds are considered as the strong and weak hydrogen bonds (Desiraju & Steiner, 1999).
The title structure is rather unusual for presence of a rare N—H···F hydrogen bond (Dunitz & Taylor, 1997; Krupková et al., 2002) where F belongs to the hydrogen fluorophosphonate (Fig. 5). Nevertheless, all the patterns in the layers are quite similar (Figs. 4–6, Tab. 2). The hydrogen bond motif of the layer 2 (Fig. 5, Tab. 2) corresponds quite well to that of 2-carbamoylguanidinium hydrogen fluorophosphonate (Fábry et al. (2011a); Fig. 7).
χ2 indices regarding the planes fitted through all the non-hydrogen cation's atoms equal to 1048.019, 158.651 and 22.287 for N1, C1, N2, N3, C2, O1, N4; N5, C3, N6, N7, C4, O2, N8 and N9, C5, N10, N11, C6, O3, N12., respectively. Interestingly, in the motif observed in 2-carbamoylguanidinium hydrogen fluorophosphonate (Fábry et al., 2011a; Fig. 7), the χ2 index equals to 1139.577.