organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o94-o95

2-(5-Fluoro-2,3-dioxoindolin-1-yl)ethyl 4-methyl­piperazine-1-carbodi­thio­ate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: slcao@cnu.edu.cn

(Received 21 November 2011; accepted 6 December 2011; online 10 December 2011)

In the title compound, C16H18FN3O2S2, the methyl­piperazine ring adopts a chair conformation, while the (2,3-dioxoindolin-1-yl)ethyl unit is linked to one of the N atoms of the piperazine ring via the carbodithio­ate group. In the crystal, each mol­ecule is linked to its neighbors within the ([\overline{1}]03) plane through weak C—H(methyl­ene)⋯O, C—H(ar­yl)⋯O and C—H(methyl­ene)⋯S inter­actions. Perpendicular to this plane mol­ecules are connected through inter­molecular short N⋯π(pyrrole ring) contacts [N⋯C centroid = 3.232 (2) Å], another set of C—H(methyl­ene)⋯O inter­actions and through short contacts between carbodithio­ate S atoms and the pyrrole rings [C⋯centroid = 3.695 (3), S⋯centroid = 3.403 (2) Å].

Related literature

For background to indoline-2,3-dione and its derivatives, see: Bhattacharya & Chakrabarti (1998[Bhattacharya, S. K. & Chakrabarti, A. (1998). Indian J. Exp. Biol. 36, 118-121.]); Sridhar & Ramesh (2001[Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149-1152.]); Medvedev et al. (1996[Medvedev, A. E., Clow, A., Sandler, M. & Glover, V. (1996). Biochem. Pharmacol. 52, 385-391.]) and to dithio­carbamates, see: Ozkirimli et al. (2005[Ozkirimli, S., Apak, T. I., Kiraz, M. & Yegenoglu, Y. (2005). Arch. Pharm. Res. 28, 1213-1218.]); Cao et al. (2005[Cao, S. L., Feng, Y. P., Jiang, Y. Y., Liu, S. Y., Ding, G. Y. & Li, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 1915-1917.]); Gaspari et al. (2006[Gaspari, P., Banerjee, T., Malachowski, W. P., Muller, A. J., Prendergast, G. C., DuHadaway, J., Bennett, S. & Donovan, A. M. (2006). J. Med. Chem. 49, 684-692.]). For analogues of 5-fluoro­indoline-2,3-dione, see: Wang et al. (2010[Wang, Y., Wan, C.-Q., Cao, S.-L. & Zheng, T. (2010). Acta Cryst. E66, o2243.]). For N⋯π contacts, see: Black et al. (2007[Black, C. A., Hanton, L. R. & Spicer, M. D. (2007). Inorg. Chem. 46, 3669-3679.]). For van der Waals radii, see Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-51.]). For the thickness of phenyl rings, see: Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J Chem. Soc. Faraday Trans. 93, 3429-3436.]). For C=O⋯π (pyrid­yl) contacts, see: Wan et al. (2008[Wan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475-478.])

[Scheme 1]

Experimental

Crystal data
  • C16H18FN3O2S2

  • Mr = 367.45

  • Monoclinic, P 21 /n

  • a = 10.0258 (4) Å

  • b = 15.9925 (6) Å

  • c = 11.0016 (5) Å

  • β = 106.656 (3)°

  • V = 1689.96 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.658, Tmax = 0.746

  • 18809 measured reflections

  • 3861 independent reflections

  • 3058 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.04

  • 3861 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O2i 0.97 2.50 3.225 (2) 131
C12—H12A⋯O2ii 0.97 2.61 3.385 (2) 137
C15—H15B⋯O2ii 0.97 2.62 3.383 (2) 136
C1—H1A⋯O1iii 0.93 2.70 3.282 (3) 121
C2—H2A⋯O1iii 0.93 2.67 3.275 (2) 124
C12—H12B⋯S2i 0.97 2.97 3.866 (3) 155
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indoline-2,3-dione and its derivatives are well known for their broad spectrum biological and pharmacological properties including anticonvulsant (Bhattacharya & Chakrabarti, 1998), anti-inflammatory (Sridhar et al., 2001) and anxiogenic (Medvedev et al., 1996) activities. On the other hand, dithiocarbamates also exhibit a large range of biological activities such as fungicidal (Ozkirimli et al., 2005) and antitumor activities (Cao et al., 2005; Gaspari et al., 2006). In an attempt to obtain compounds that might also exhibit antitumor properties, but possibly with increased potency and selectivity, we designed and synthesized the title compoud (C16H18N3O2FS2), which consists of an indole core with a dithiocarbamate side chain (Scheme 1). In the present context, we report the crystal structure of the new compound.

In the crystalline structure of the title compound, the 1-methylpiperazine ring adopts a chair conformation, while the indoline-2,3-dione ethyl moiety is linked to one of the N atoms of the piperazine ring via the carbodithioate group, with the ethyl group in a trans-conformation (N1—C9—C10—S2 torsion angle of 175.74 (11)°, Fig. 1). This trans-conformation differentiates the title compound from the related compound 2-(2,3-dioxoindolin-1-yl)ethyl-4-(4-nitrophenyl)piperazine-1-carbodithioate reported by us recently (Wang et al., 2010), which was found to have a gauge-conformation with an N4(pyrrole)—C19—C20—S2 torsion angle of 66.16 (15)°. Through weak C13—H13B(methylene)···O2i, C—H(aryl)···O1ii and C12—H12B(methylene)···S2iii interactions each molecule is linked to its neighbors within the (-1 0 3) Miller plane (Table 1 and Fig. 2). Perpendicular to this plane molecules are connected through intermolecular short N···π (pyrrole ring) contacts, another set of C—H(methylene)···O interactions (Table 1) and through short contacts between carbodithioate sulfur atoms and the pyrrole rings (C11S1···Cg1iv, Table 2). A short contact is observed between the nitrogen atom N1 and the π-electron desnity of the pyrrole ring, with an N3···Cgv (Cg = C5-C6-C7-N1-C8, (v) = -x+1.5, y+0.5, -z+1.5) distance equal to 3.232 (2) Å, which is shorter than the van der Waals distance (3.40 Å) on the basis of Pauling's value for the half thickness of phenyl rings (1.85 Å) (Malone et al.,1997) and the van der Waals radius of N (1.55 Å) (Bondi, 1964). It is comparable to the N(pyrazinyl)···centroid(pyrazinyl) distance of 3.05 Å in {[Ni(L)(NO3)2]} (L = bis(2-pyraylmethyl)sulfide) reported by Black et al. (2007). Regarding the C11S1···π contact (Table 2), the CS bond is almost parallel to the pyrrole ring with a C11S1···Cg1(pyrrole) angle equal to 86.42 (2)°, a contact mode similar to that of the CO···π (pyridyl) contact in Cu(L)2(BF4)2 (L = 2,6-pyridinediylbis(3-pyridinyl)methanone) reported by Wan et al. (2008).

Related literature top

For background to indoline-2,3-dione and its derivatives, see: Bhattacharya & Chakrabarti (1998); Sridhar & Ramesh (2001); Medvedev et al. (1996) and to dithiocarbamates, see: Ozkirimli et al. (2005); Cao et al. (2005); Gaspari et al. (2006). For analogues of 5-fluoroindoline-2,3-dione, see: Wang et al. (2010). For N···π contacts, see: Black et al. (2007). For van der Waals radii, see Bondi (1964). For the thickness of phenyl rings, see: Malone et al. (1997). For CO···π (pyridyl) contacts, see: Wan et al. (2008)

Experimental top

A suspension of 1-methylpiperazine (2.4 mmol), carbon disulfide (0.72 mL, 12 mmol) and anhydrous potassium phosphate (0.51 g, 2.4 mmol) in N,N-dimethylformamide (15 mL) was stirred at room temperature for 30 minutes. Then, 1-(2-bromoethyl)-5-fluoroindoline-2,3-dione (2 mmol) was added and stirring was continued for 3.5 h. The reaction mixture was poured into water (100 mL) and the resulting precipitate was separated by filtration and further purified by column chromatography on silica gel with dichloromethane/methanol = 95:5 (v/v) as the eluent to give the title compound (Rf = 0.44, m.p. 472.2-473.2 K; yield 78%). After two weeks, the orange crystals of the title compound were deposited by slow evaporation from a solution of dichloromethane/N,N-dimethylformamide 1:1 (v/v) at room temperature.

Refinement top

All H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on their respective carrier atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene hydrogens, respectively. Uiso(H) = 1.2Ueq(C)aryl/methylene.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids of the non-hydrogen atoms are shown at the 30% probability level.
[Figure 2] Fig. 2. The intermolecular C—H(aryl)···O, C—H(methylene)···S and C—H(methylene)···O interactions of the title compound within the (-1 0 3) Miller plane. View perpendicular to this plane.
[Figure 3] Fig. 3. View down the b direction of the stacking structure of the title compound. All weak non-covalent interactions are omitted for clarity.
2-(5-Fluoro-2,3-dioxoindolin-1-yl)ethyl 4-methylpiperazine-1-carbodithioate top
Crystal data top
C16H18FN3O2S2F(000) = 768
Mr = 367.45Dx = 1.444 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 222 reflections
a = 10.0258 (4) Åθ = 2.3–27.6°
b = 15.9925 (6) ŵ = 0.34 mm1
c = 11.0016 (5) ÅT = 296 K
β = 106.656 (3)°Block, colorless
V = 1689.96 (12) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3861 independent reflections
Radiation source: fine-focus sealed tube3058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
CCD area detector scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker 2007)
h = 1313
Tmin = 0.658, Tmax = 0.746k = 2020
18809 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.3797P] P = (Fo2 + 2Fc2)/3
3861 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H18FN3O2S2V = 1689.96 (12) Å3
Mr = 367.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0258 (4) ŵ = 0.34 mm1
b = 15.9925 (6) ÅT = 296 K
c = 11.0016 (5) Å0.30 × 0.30 × 0.20 mm
β = 106.656 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3861 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2007)
3058 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.746Rint = 0.031
18809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3861 reflectionsΔρmin = 0.20 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.91389 (4)0.66656 (2)0.57656 (4)0.04717 (13)
S20.69048 (4)0.53592 (2)0.54985 (5)0.04795 (14)
N11.04768 (13)0.40980 (8)0.72003 (13)0.0436 (3)
N20.64449 (12)0.69676 (7)0.54089 (14)0.0423 (3)
N30.42553 (14)0.81754 (8)0.50085 (14)0.0466 (3)
O11.22167 (14)0.21917 (7)0.75006 (15)0.0677 (4)
O20.93355 (12)0.28341 (8)0.68042 (13)0.0580 (3)
F11.60973 (12)0.46870 (8)0.86069 (15)0.0840 (4)
C11.24078 (19)0.51646 (9)0.77343 (17)0.0477 (4)
H1A1.18210.56260.76180.057*
C21.3845 (2)0.52580 (10)0.80939 (19)0.0554 (4)
H2A1.42330.57900.82240.066*
C31.46982 (18)0.45705 (11)0.82584 (19)0.0555 (5)
C41.41990 (17)0.37630 (10)0.80778 (18)0.0502 (4)
H4A1.47930.33050.81920.060*
C51.27711 (16)0.36716 (9)0.77186 (16)0.0419 (4)
C61.19005 (16)0.29208 (9)0.74546 (17)0.0465 (4)
C71.03847 (16)0.32457 (10)0.70982 (17)0.0449 (4)
C81.18809 (15)0.43610 (9)0.75556 (15)0.0397 (3)
C90.92604 (17)0.46265 (11)0.70586 (17)0.0488 (4)
H9A0.95530.51610.74650.059*
H9B0.86430.43650.74830.059*
C100.84770 (16)0.47709 (10)0.56780 (17)0.0446 (4)
H10A0.82470.42350.52570.054*
H10B0.90730.50690.52690.054*
C110.74743 (15)0.64129 (9)0.55535 (15)0.0368 (3)
C120.50387 (16)0.67350 (10)0.5460 (2)0.0531 (5)
H12A0.50050.67630.63310.064*
H12B0.48420.61640.51680.064*
C130.39430 (17)0.73083 (11)0.4648 (2)0.0545 (4)
H13A0.39030.72350.37630.065*
H13B0.30400.71630.47450.065*
C140.55667 (18)0.83880 (10)0.47625 (18)0.0507 (4)
H14A0.57650.89760.49460.061*
H14B0.54820.82970.38720.061*
C150.67565 (16)0.78703 (9)0.55582 (18)0.0470 (4)
H15A0.75900.79890.53090.056*
H15B0.69350.80240.64430.056*
C160.3137 (2)0.87270 (12)0.4299 (2)0.0615 (5)
H16A0.22760.85630.44490.092*
H16B0.30510.86860.34100.092*
H16C0.33500.92940.45750.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03141 (19)0.0426 (2)0.0657 (3)0.00238 (15)0.01100 (18)0.00061 (18)
S20.03104 (19)0.03047 (19)0.0770 (3)0.00221 (13)0.00697 (18)0.00188 (17)
N10.0375 (6)0.0350 (6)0.0536 (9)0.0071 (5)0.0055 (6)0.0042 (6)
N20.0310 (6)0.0303 (6)0.0618 (9)0.0001 (5)0.0072 (6)0.0043 (6)
N30.0431 (7)0.0370 (7)0.0530 (9)0.0105 (5)0.0030 (6)0.0005 (6)
O10.0549 (7)0.0274 (6)0.1107 (12)0.0032 (5)0.0075 (7)0.0003 (6)
O20.0407 (6)0.0551 (7)0.0713 (9)0.0104 (5)0.0047 (6)0.0008 (6)
F10.0452 (6)0.0693 (8)0.1238 (12)0.0187 (5)0.0025 (7)0.0018 (7)
C10.0571 (9)0.0290 (7)0.0549 (10)0.0053 (7)0.0127 (8)0.0033 (7)
C20.0618 (11)0.0337 (8)0.0655 (12)0.0110 (7)0.0102 (9)0.0015 (7)
C30.0416 (9)0.0483 (9)0.0680 (12)0.0110 (7)0.0019 (8)0.0006 (8)
C40.0386 (8)0.0371 (8)0.0670 (12)0.0029 (6)0.0026 (8)0.0035 (7)
C50.0388 (8)0.0278 (7)0.0531 (10)0.0014 (6)0.0039 (7)0.0020 (6)
C60.0402 (8)0.0306 (7)0.0621 (11)0.0000 (6)0.0041 (7)0.0013 (7)
C70.0378 (8)0.0399 (8)0.0516 (10)0.0002 (6)0.0042 (7)0.0028 (7)
C80.0403 (7)0.0315 (7)0.0434 (9)0.0046 (6)0.0058 (7)0.0038 (6)
C90.0428 (8)0.0481 (9)0.0556 (11)0.0139 (7)0.0144 (8)0.0060 (7)
C100.0357 (7)0.0366 (7)0.0582 (10)0.0080 (6)0.0083 (7)0.0004 (7)
C110.0326 (7)0.0332 (7)0.0411 (8)0.0000 (5)0.0047 (6)0.0016 (6)
C120.0321 (7)0.0320 (7)0.0921 (14)0.0004 (6)0.0130 (8)0.0041 (8)
C130.0341 (8)0.0466 (9)0.0742 (12)0.0037 (7)0.0014 (8)0.0134 (8)
C140.0519 (9)0.0373 (8)0.0588 (11)0.0038 (7)0.0092 (8)0.0006 (7)
C150.0410 (8)0.0300 (7)0.0660 (11)0.0022 (6)0.0090 (8)0.0053 (7)
C160.0582 (11)0.0553 (11)0.0632 (12)0.0224 (9)0.0050 (9)0.0085 (9)
Geometric parameters (Å, º) top
S1—C111.6673 (15)C4—H4A0.9300
S2—C111.7747 (15)C5—C81.397 (2)
S2—C101.7973 (15)C5—C61.464 (2)
N1—C71.369 (2)C6—C71.547 (2)
N1—C81.413 (2)C9—C101.514 (2)
N1—C91.4550 (19)C9—H9A0.9700
N2—C111.3353 (19)C9—H9B0.9700
N2—C121.4746 (19)C10—H10A0.9700
N2—C151.4763 (19)C10—H10B0.9700
N3—C131.452 (2)C12—C131.511 (2)
N3—C141.457 (2)C12—H12A0.9700
N3—C161.464 (2)C12—H12B0.9700
O1—C61.2056 (18)C13—H13A0.9700
O2—C71.2039 (19)C13—H13B0.9700
F1—C31.357 (2)C14—C151.509 (2)
C1—C81.382 (2)C14—H14A0.9700
C1—C21.389 (3)C14—H14B0.9700
C1—H1A0.9300C15—H15A0.9700
C2—C31.373 (3)C15—H15B0.9700
C2—H2A0.9300C16—H16A0.9600
C3—C41.379 (2)C16—H16B0.9600
C4—C51.379 (2)C16—H16C0.9600
C11—S2—C10103.29 (7)C9—C10—S2112.11 (11)
C7—N1—C8110.95 (12)C9—C10—H10A109.2
C7—N1—C9122.35 (14)S2—C10—H10A109.2
C8—N1—C9126.50 (13)C9—C10—H10B109.2
C11—N2—C12122.86 (13)S2—C10—H10B109.2
C11—N2—C15120.31 (13)H10A—C10—H10B107.9
C12—N2—C15114.61 (12)N2—C11—S1124.34 (11)
C13—N3—C14107.92 (13)N2—C11—S2113.37 (11)
C13—N3—C16110.97 (14)S1—C11—S2122.29 (8)
C14—N3—C16110.77 (14)N2—C12—C13111.44 (14)
C8—C1—C2117.62 (14)N2—C12—H12A109.3
C8—C1—H1A121.2C13—C12—H12A109.3
C2—C1—H1A121.2N2—C12—H12B109.3
C3—C2—C1120.51 (15)C13—C12—H12B109.3
C3—C2—H2A119.7H12A—C12—H12B108.0
C1—C2—H2A119.7N3—C13—C12110.78 (14)
F1—C3—C2118.80 (16)N3—C13—H13A109.5
F1—C3—C4118.20 (16)C12—C13—H13A109.5
C2—C3—C4123.00 (16)N3—C13—H13B109.5
C3—C4—C5116.40 (15)C12—C13—H13B109.5
C3—C4—H4A121.8H13A—C13—H13B108.1
C5—C4—H4A121.8N3—C14—C15111.70 (14)
C4—C5—C8121.70 (14)N3—C14—H14A109.3
C4—C5—C6130.89 (14)C15—C14—H14A109.3
C8—C5—C6107.41 (13)N3—C14—H14B109.3
O1—C6—C5130.57 (15)C15—C14—H14B109.3
O1—C6—C7124.27 (15)H14A—C14—H14B107.9
C5—C6—C7105.15 (12)N2—C15—C14111.42 (13)
O2—C7—N1126.86 (15)N2—C15—H15A109.3
O2—C7—C6127.14 (15)C14—C15—H15A109.3
N1—C7—C6106.00 (13)N2—C15—H15B109.3
C1—C8—C5120.76 (14)C14—C15—H15B109.3
C1—C8—N1128.76 (14)H15A—C15—H15B108.0
C5—C8—N1110.48 (13)N3—C16—H16A109.5
N1—C9—C10111.95 (14)N3—C16—H16B109.5
N1—C9—H9A109.2H16A—C16—H16B109.5
C10—C9—H9A109.2N3—C16—H16C109.5
N1—C9—H9B109.2H16A—C16—H16C109.5
C10—C9—H9B109.2H16B—C16—H16C109.5
H9A—C9—H9B107.9
C8—C1—C2—C30.2 (3)C7—N1—C8—C1178.77 (17)
C1—C2—C3—F1179.83 (18)C9—N1—C8—C16.3 (3)
C1—C2—C3—C40.3 (3)C7—N1—C8—C50.9 (2)
F1—C3—C4—C5179.72 (18)C9—N1—C8—C5174.01 (15)
C2—C3—C4—C50.1 (3)C7—N1—C9—C1080.2 (2)
C3—C4—C5—C80.4 (3)C8—N1—C9—C10105.47 (19)
C3—C4—C5—C6179.75 (19)N1—C9—C10—S2175.74 (11)
C4—C5—C6—O11.0 (4)C11—S2—C10—C987.13 (13)
C8—C5—C6—O1178.4 (2)C12—N2—C11—S1168.35 (14)
C4—C5—C6—C7179.90 (19)C15—N2—C11—S16.2 (2)
C8—C5—C6—C70.70 (19)C12—N2—C11—S211.7 (2)
C8—N1—C7—O2179.46 (18)C15—N2—C11—S2173.86 (12)
C9—N1—C7—O25.4 (3)C10—S2—C11—N2178.69 (12)
C8—N1—C7—C61.28 (18)C10—S2—C11—S11.28 (13)
C9—N1—C7—C6173.87 (15)C11—N2—C12—C13150.62 (16)
O1—C6—C7—O21.3 (3)C15—N2—C12—C1346.3 (2)
C5—C6—C7—O2179.54 (18)C14—N3—C13—C1263.3 (2)
O1—C6—C7—N1177.94 (19)C16—N3—C13—C12175.16 (16)
C5—C6—C7—N11.21 (18)N2—C12—C13—N355.4 (2)
C2—C1—C8—C50.7 (3)C13—N3—C14—C1562.61 (18)
C2—C1—C8—N1179.63 (17)C16—N3—C14—C15175.73 (14)
C4—C5—C8—C10.9 (3)C11—N2—C15—C14151.30 (15)
C6—C5—C8—C1179.65 (16)C12—N2—C15—C1445.1 (2)
C4—C5—C8—N1179.43 (16)N3—C14—C15—N253.36 (19)
C6—C5—C8—N10.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O2i0.972.503.225 (2)131
C12—H12A···O2ii0.972.613.385 (2)137
C15—H15B···O2ii0.972.623.383 (2)136
C1—H1A···O1iii0.932.703.282 (3)121
C2—H2A···O1iii0.932.673.275 (2)124
C12—H12B···S2i0.972.973.866 (3)155
C11—S1···Cg1iv1.67 (1)3.40 (1)3.695 (3)86 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+5/2, y+1/2, z+3/2; (iv) x+5/2, y+3/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H18FN3O2S2
Mr367.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.0258 (4), 15.9925 (6), 11.0016 (5)
β (°) 106.656 (3)
V3)1689.96 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2007)
Tmin, Tmax0.658, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
18809, 3861, 3058
Rint0.031
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.04
No. of reflections3861
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O2i0.972.503.225 (2)131
C12—H12A···O2ii0.972.613.385 (2)137
C15—H15B···O2ii0.972.623.383 (2)136
C1—H1A···O1iii0.932.703.282 (3)121
C2—H2A···O1iii0.932.673.275 (2)124
C12—H12B···S2i0.972.973.866 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+5/2, y+1/2, z+3/2.
CS···π-electron ring interactions (Å) top
CS···CgC···CgS···Cg
C11S1···Cg1i3.695 (3)3.403 (2)
Symmetry code: (i) -x+2,-y+1,-z+1. Cg1 is the centroid of N1-C8-C5-C6-C7 (pyrrole).
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education for financial support.

References

First citationBhattacharya, S. K. & Chakrabarti, A. (1998). Indian J. Exp. Biol. 36, 118–121.  CAS PubMed Google Scholar
First citationBlack, C. A., Hanton, L. R. & Spicer, M. D. (2007). Inorg. Chem. 46, 3669–3679.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–51.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, S. L., Feng, Y. P., Jiang, Y. Y., Liu, S. Y., Ding, G. Y. & Li, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 1915–1917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGaspari, P., Banerjee, T., Malachowski, W. P., Muller, A. J., Prendergast, G. C., DuHadaway, J., Bennett, S. & Donovan, A. M. (2006). J. Med. Chem. 49, 684–692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J Chem. Soc. Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationMedvedev, A. E., Clow, A., Sandler, M. & Glover, V. (1996). Biochem. Pharmacol. 52, 385–391.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOzkirimli, S., Apak, T. I., Kiraz, M. & Yegenoglu, Y. (2005). Arch. Pharm. Res. 28, 1213–1218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Wan, C.-Q., Cao, S.-L. & Zheng, T. (2010). Acta Cryst. E66, o2243.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o94-o95
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds