organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(3-Benzoyl-4-hy­dr­oxy-1,1-dioxo-2H-1λ6,2-benzo­thia­zin-2-yl)meth­yl]benzo­nitrile

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 1 December 2011; accepted 7 December 2011; online 10 December 2011)

There are two independent mol­ecules in the asymmetric unit of the title compound, C23H17N2O4S, with significant differences in their conformations, e.g. the benzene rings of the benzothia­zine and benzonitrile units are inclined at 28.19 (10) and 17.89 (7)° in the two mol­ecules, with the centroids of the rings separated by 3.975 (2) and 3.637 (2) Å, respectively. Moreover, the N—C—C—C torsion angles involving the benzoyl group are 14.3 (5) and 8.2 (5)° in the two mol­ecules, showing different degrees of rotation of this group. In both mol­ecules, the heterocyclic thia­zine rings adopt half-chair conformations, with the S and N atoms displaced by 0.427 (6) and 0.365 (6) Å, respectively, in one mol­ecule and by 0.356 (6) and 0.432 (6) Å, respectively, in the other, on opposite sides of the mean planes formed by the remaining ring atoms. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds and further consolidated by intra­molecular O—H⋯O hydrogen bonds.

Related literature

For the biological activity of benzothia­zine derivatives, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]).

[Scheme 1]

Experimental

Crystal data
  • C23H16N2O4S

  • Mr = 416.44

  • Orthorhombic, P b c a

  • a = 12.2900 (2) Å

  • b = 24.7970 (6) Å

  • c = 25.6080 (6) Å

  • V = 7804.2 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.20 × 0.12 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.961, Tmax = 0.976

  • 16724 measured reflections

  • 8869 independent reflections

  • 6212 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.164

  • S = 1.13

  • 8869 reflections

  • 543 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O3i 0.99 2.57 3.382 (4) 139
C16—H16B⋯O1i 0.99 2.60 3.456 (4) 145
C28—H28⋯O2ii 0.95 2.45 3.188 (4) 135
O3—H3O⋯O4 0.84 1.76 2.503 (4) 146
O7—H7O⋯O8 0.84 1.73 2.484 (4) 148
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Ahmad et al., 2010), we now report the synthesis and crystal structure of the title compound in this article.

There are two independent molecules in an asymmetric unit of the title compound, labeled as molecules A (Fig. 1) and B (Fig. 2) containing the S1 and S2 atoms, respectively. There are significant differences in the conformations of the two molecules, e.g., the benzene rings of the benzothiazine and benzonitrile moieties are inclined at 28.19 (10) and 17.89 (7)° in the molecules A and B with centroids of the rings separated by 3.975 (2) and 3.637 (2) Å, respectively. Moreover, the torsion angles N1–C8–C9–C10 and N3–C31–C32–C33 in molecules A and B are 14.3 (5) and 8.2 (5)°, respectively, showing different degrees of rotation of these groups (Fig. 3). In both molecules, the heterocyclic thiazine rings adopt half chair conformations with atoms S and N displaced by 0.427 (6) and 0.365 (6) Å, in molecule A and 0.356 (6) and 0.432 (6) Å, in molecule B, respectively, on the opposite sides from the mean planes formed by the remaining ring atoms. The bond distances and angles in both molecules agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008).

The methylene H-atoms bonded to C16 in molecule A are hydrogen bonded to O1 and O3 of two symmetry related molecules A (Tab. 1 and Fig. 4). On the other hand, an aryl H-atom, H28 of molecule B, is hydrogen bonded to O2 of molecule A. The structure is consolidated by intramolecular interactions of the types O—H···O, C—H···N and C—H···O.

Related literature top

For the biological activity of benzothiazine derivatives, see: Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008).

Experimental top

An aqueous solution of sodium hydroxide (0.4 g, 9.96 mmol) was added to a solution of 3-benzoyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide (1.5 g, 4.9 mmol) in acetone (15 ml). 3-(Bromomethyl)benzonitrile (1.17 g, 5.98 mmol) was added with stirring and the reaction mixture was ultrasonicated for 15 minutes at 318 K. The completion of reaction was monitored with the help of thin layer chromatography (TLC). The contents of the flask were acidified to pH 3.0 by HCl (5%). Yellow precipitates of the title compound were filtered off and washed with excess of distilled water. Crystals suitable for crystallographic study were grown from methanol at room temperature. Yield = 1.93 g, 93.23%; m.p. = 444 - 446 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: O—H = 0.84, C—H = 0.95 and 0.99 Å, for aryl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(C/O). The final difference map was essentially featurless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecule A of the title compound with displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. Molecule B of the title compound with displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).
[Figure 3] Fig. 3. A plot of the molecule A (red) overlapping molecule B (blue) plotted with the aid of Mercury (Macrae et al., 2008) showing the conformational differences in the two molecules.
[Figure 4] Fig. 4. A partial unit cell packing diagram of the title compound showing hydrogen bonding interactions drwan as dashed lines. H-atoms not involved in H-bonding interactions have been excluded.
3-[(3-Benzoyl-4-hydroxy-1,1-dioxo-2H-1λ6,2-benzothiazin-2- yl)methyl]benzonitrile top
Crystal data top
C23H16N2O4SF(000) = 3456
Mr = 416.44Dx = 1.418 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9408 reflections
a = 12.2900 (2) Åθ = 1.0–27.5°
b = 24.7970 (6) ŵ = 0.20 mm1
c = 25.6080 (6) ÅT = 173 K
V = 7804.2 (3) Å3Block, yellow
Z = 160.20 × 0.12 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
8869 independent reflections
Radiation source: fine-focus sealed tube6212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω and ϕ scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1515
Tmin = 0.961, Tmax = 0.976k = 3232
16724 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0236P)2 + 17.5304P]
where P = (Fo2 + 2Fc2)/3
8869 reflections(Δ/σ)max < 0.001
543 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C23H16N2O4SV = 7804.2 (3) Å3
Mr = 416.44Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 12.2900 (2) ŵ = 0.20 mm1
b = 24.7970 (6) ÅT = 173 K
c = 25.6080 (6) Å0.20 × 0.12 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
8869 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
6212 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.976Rint = 0.058
16724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0236P)2 + 17.5304P]
where P = (Fo2 + 2Fc2)/3
8869 reflectionsΔρmax = 0.53 e Å3
543 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66138 (7)0.09623 (3)0.72876 (3)0.0309 (2)
S20.62373 (8)0.15753 (4)0.53600 (3)0.0381 (2)
O10.5677 (2)0.11000 (10)0.75941 (10)0.0396 (6)
O20.7437 (2)0.13609 (10)0.72052 (10)0.0437 (7)
O30.5218 (2)0.05972 (10)0.71527 (10)0.0374 (6)
H3O0.52990.07700.74320.045*
O40.5978 (2)0.08015 (10)0.80376 (10)0.0396 (6)
O50.7262 (2)0.14821 (11)0.51155 (11)0.0540 (8)
O60.5474 (3)0.11417 (10)0.54076 (10)0.0497 (7)
O70.7200 (2)0.32119 (10)0.55411 (10)0.0408 (6)
H7O0.71620.33670.52500.049*
O80.6761 (2)0.33403 (10)0.46026 (10)0.0425 (6)
N10.7180 (2)0.04324 (11)0.75556 (10)0.0263 (6)
N20.9770 (3)0.08686 (16)0.52782 (14)0.0597 (10)
N30.5641 (2)0.20673 (11)0.50442 (10)0.0327 (7)
N40.3416 (3)0.15139 (16)0.72641 (14)0.0588 (10)
C10.6164 (3)0.07036 (14)0.66852 (13)0.0306 (7)
C20.6175 (3)0.10096 (16)0.62378 (14)0.0409 (9)
H20.64450.13680.62430.049*
C30.5782 (4)0.07843 (19)0.57778 (15)0.0507 (11)
H30.57940.09890.54640.061*
C40.5379 (3)0.02693 (19)0.57723 (15)0.0499 (11)
H40.51010.01220.54570.060*
C50.5374 (3)0.00393 (16)0.62239 (14)0.0378 (9)
H50.50890.03950.62170.045*
C60.5784 (3)0.01727 (14)0.66865 (13)0.0290 (7)
C70.5841 (3)0.01593 (13)0.71623 (12)0.0271 (7)
C80.6473 (3)0.00275 (12)0.75820 (12)0.0263 (7)
C90.6458 (3)0.03566 (14)0.80539 (13)0.0316 (8)
C100.6942 (3)0.01798 (14)0.85579 (13)0.0305 (7)
C110.6997 (3)0.03570 (16)0.87115 (14)0.0411 (9)
H110.67870.06320.84740.049*
C120.7352 (4)0.04952 (18)0.92032 (15)0.0491 (10)
H120.73800.08640.93030.059*
C130.7665 (3)0.0104 (2)0.95496 (15)0.0508 (11)
H130.79060.01990.98900.061*
C140.7628 (4)0.04306 (19)0.93996 (16)0.0564 (12)
H140.78600.07040.96350.068*
C150.7258 (3)0.05697 (17)0.89121 (15)0.0452 (10)
H150.72200.09390.88170.054*
C160.8353 (3)0.03171 (15)0.74483 (13)0.0336 (8)
H16A0.86200.00550.77100.040*
H16B0.87730.06540.74930.040*
C170.8573 (3)0.00952 (15)0.69091 (13)0.0328 (8)
C180.8915 (3)0.04363 (15)0.65099 (14)0.0345 (8)
H180.90220.08090.65770.041*
C190.9100 (3)0.02299 (16)0.60115 (14)0.0375 (8)
C200.8937 (3)0.03093 (16)0.59040 (15)0.0422 (9)
H200.90520.04450.55610.051*
C210.8604 (3)0.06509 (17)0.63033 (17)0.0480 (10)
H210.84940.10230.62350.058*
C220.8431 (3)0.04491 (16)0.68026 (15)0.0393 (9)
H220.82140.06870.70740.047*
C230.9475 (3)0.05877 (17)0.56028 (15)0.0439 (9)
C240.6470 (3)0.18666 (14)0.59754 (13)0.0321 (8)
C250.6401 (3)0.15611 (16)0.64282 (14)0.0398 (9)
H250.62380.11870.64110.048*
C260.6573 (3)0.18092 (18)0.69031 (15)0.0466 (10)
H260.65270.16050.72160.056*
C270.6813 (3)0.23523 (18)0.69267 (15)0.0490 (11)
H270.69380.25190.72550.059*
C280.6870 (3)0.26550 (16)0.64761 (14)0.0398 (9)
H280.70310.30290.64970.048*
C290.6696 (3)0.24188 (15)0.59913 (13)0.0328 (8)
C300.6720 (3)0.27439 (14)0.55122 (13)0.0325 (8)
C310.6264 (3)0.25614 (14)0.50470 (13)0.0307 (7)
C320.6338 (3)0.28706 (15)0.45824 (14)0.0339 (8)
C330.5929 (3)0.26812 (17)0.40689 (14)0.0414 (9)
C340.6057 (4)0.21534 (18)0.39001 (15)0.0493 (11)
H340.63910.18930.41200.059*
C350.5691 (4)0.2010 (2)0.34075 (16)0.0693 (16)
H350.57890.16520.32840.083*
C360.5181 (5)0.2390 (3)0.30966 (19)0.095 (2)
H360.49090.22880.27640.114*
C370.5062 (5)0.2912 (3)0.3262 (2)0.093 (2)
H370.47170.31700.30430.112*
C380.5443 (4)0.3061 (2)0.37450 (18)0.0625 (13)
H380.53750.34250.38580.075*
C390.4440 (3)0.21431 (16)0.50995 (13)0.0379 (9)
H39A0.41830.23900.48220.046*
H39B0.40750.17910.50480.046*
C400.4112 (3)0.23689 (15)0.56239 (13)0.0331 (8)
C410.3888 (3)0.20189 (15)0.60331 (13)0.0330 (8)
H410.38610.16410.59720.040*
C420.3703 (3)0.22178 (16)0.65298 (14)0.0372 (8)
C430.3724 (3)0.27700 (17)0.66260 (16)0.0483 (10)
H430.36050.29060.69680.058*
C440.3921 (3)0.31156 (17)0.62160 (17)0.0502 (10)
H440.39290.34940.62760.060*
C450.4107 (3)0.29198 (16)0.57163 (16)0.0415 (9)
H450.42320.31640.54370.050*
C460.3519 (3)0.18360 (17)0.69450 (15)0.0434 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0379 (5)0.0250 (4)0.0298 (4)0.0035 (4)0.0008 (4)0.0020 (3)
S20.0559 (6)0.0277 (5)0.0305 (4)0.0016 (4)0.0034 (4)0.0030 (4)
O10.0445 (15)0.0310 (13)0.0432 (15)0.0048 (11)0.0059 (12)0.0061 (11)
O20.0533 (16)0.0319 (14)0.0459 (15)0.0144 (12)0.0033 (13)0.0076 (12)
O30.0440 (15)0.0278 (13)0.0405 (15)0.0091 (11)0.0007 (12)0.0025 (11)
O40.0459 (15)0.0277 (13)0.0450 (15)0.0075 (11)0.0002 (12)0.0096 (11)
O50.066 (2)0.0449 (17)0.0514 (17)0.0127 (15)0.0158 (15)0.0044 (14)
O60.084 (2)0.0293 (14)0.0359 (15)0.0147 (14)0.0030 (14)0.0010 (11)
O70.0501 (16)0.0322 (14)0.0400 (14)0.0122 (12)0.0021 (12)0.0000 (11)
O80.0481 (16)0.0334 (14)0.0460 (15)0.0069 (12)0.0071 (12)0.0063 (12)
N10.0259 (14)0.0266 (14)0.0264 (14)0.0030 (11)0.0022 (11)0.0050 (11)
N20.073 (3)0.062 (2)0.044 (2)0.000 (2)0.0116 (19)0.0078 (19)
N30.0446 (18)0.0295 (15)0.0239 (14)0.0095 (13)0.0012 (12)0.0004 (12)
N40.075 (3)0.062 (2)0.0398 (19)0.018 (2)0.0150 (18)0.0064 (18)
C10.0307 (18)0.0320 (18)0.0293 (17)0.0013 (15)0.0002 (14)0.0034 (14)
C20.042 (2)0.040 (2)0.041 (2)0.0005 (17)0.0006 (17)0.0127 (17)
C30.054 (3)0.066 (3)0.032 (2)0.003 (2)0.0057 (18)0.015 (2)
C40.053 (3)0.070 (3)0.0266 (19)0.002 (2)0.0075 (17)0.0055 (19)
C50.041 (2)0.041 (2)0.0321 (19)0.0009 (17)0.0051 (16)0.0060 (16)
C60.0267 (17)0.0306 (18)0.0297 (17)0.0068 (14)0.0009 (13)0.0022 (14)
C70.0282 (17)0.0220 (16)0.0311 (17)0.0005 (13)0.0042 (13)0.0043 (13)
C80.0287 (17)0.0228 (15)0.0275 (17)0.0014 (13)0.0033 (13)0.0037 (12)
C90.0306 (18)0.0299 (18)0.0341 (18)0.0021 (15)0.0029 (14)0.0037 (14)
C100.0308 (18)0.0296 (18)0.0312 (17)0.0035 (14)0.0056 (14)0.0062 (14)
C110.054 (2)0.037 (2)0.0326 (19)0.0121 (18)0.0005 (17)0.0055 (16)
C120.061 (3)0.051 (3)0.035 (2)0.004 (2)0.0004 (19)0.0057 (19)
C130.053 (3)0.071 (3)0.0281 (19)0.005 (2)0.0031 (18)0.005 (2)
C140.067 (3)0.061 (3)0.042 (2)0.011 (2)0.017 (2)0.025 (2)
C150.056 (3)0.039 (2)0.041 (2)0.0064 (19)0.0116 (19)0.0138 (17)
C160.0257 (17)0.044 (2)0.0316 (18)0.0042 (15)0.0015 (14)0.0038 (16)
C170.0225 (17)0.043 (2)0.0323 (18)0.0025 (15)0.0010 (14)0.0029 (15)
C180.0290 (18)0.037 (2)0.0372 (19)0.0005 (15)0.0028 (15)0.0010 (15)
C190.0308 (19)0.046 (2)0.0358 (19)0.0019 (16)0.0050 (15)0.0011 (17)
C200.042 (2)0.045 (2)0.040 (2)0.0006 (18)0.0017 (17)0.0091 (18)
C210.048 (2)0.036 (2)0.060 (3)0.0004 (19)0.003 (2)0.0057 (19)
C220.032 (2)0.041 (2)0.045 (2)0.0039 (17)0.0039 (16)0.0090 (17)
C230.045 (2)0.051 (3)0.036 (2)0.0059 (19)0.0039 (17)0.0040 (19)
C240.0323 (19)0.0337 (19)0.0302 (17)0.0019 (15)0.0036 (14)0.0031 (14)
C250.042 (2)0.039 (2)0.039 (2)0.0022 (17)0.0084 (17)0.0082 (16)
C260.052 (2)0.054 (3)0.033 (2)0.005 (2)0.0125 (18)0.0113 (18)
C270.051 (2)0.063 (3)0.032 (2)0.010 (2)0.0112 (18)0.0040 (19)
C280.044 (2)0.039 (2)0.036 (2)0.0098 (17)0.0068 (16)0.0038 (16)
C290.0276 (17)0.039 (2)0.0316 (18)0.0006 (15)0.0014 (14)0.0010 (15)
C300.0318 (18)0.0308 (18)0.0348 (18)0.0009 (15)0.0022 (15)0.0024 (15)
C310.0357 (18)0.0287 (18)0.0276 (16)0.0036 (15)0.0017 (14)0.0002 (13)
C320.0304 (18)0.036 (2)0.0357 (18)0.0008 (15)0.0042 (15)0.0038 (15)
C330.040 (2)0.053 (2)0.0313 (19)0.0142 (18)0.0005 (16)0.0107 (17)
C340.057 (3)0.058 (3)0.034 (2)0.013 (2)0.0097 (19)0.0008 (19)
C350.087 (4)0.088 (4)0.032 (2)0.043 (3)0.009 (2)0.010 (2)
C360.120 (5)0.128 (6)0.037 (3)0.071 (5)0.021 (3)0.022 (3)
C370.116 (5)0.098 (5)0.066 (4)0.046 (4)0.042 (3)0.042 (3)
C380.071 (3)0.066 (3)0.050 (3)0.020 (3)0.017 (2)0.023 (2)
C390.040 (2)0.045 (2)0.0282 (18)0.0172 (17)0.0049 (15)0.0058 (16)
C400.0270 (17)0.039 (2)0.0328 (18)0.0045 (15)0.0042 (14)0.0005 (15)
C410.0320 (19)0.0333 (19)0.0337 (18)0.0031 (15)0.0014 (15)0.0003 (15)
C420.036 (2)0.043 (2)0.0326 (18)0.0082 (17)0.0006 (15)0.0003 (16)
C430.053 (3)0.046 (2)0.045 (2)0.013 (2)0.001 (2)0.0074 (19)
C440.049 (3)0.038 (2)0.063 (3)0.0089 (19)0.002 (2)0.006 (2)
C450.035 (2)0.039 (2)0.050 (2)0.0032 (17)0.0028 (17)0.0092 (18)
C460.048 (2)0.048 (2)0.035 (2)0.0126 (19)0.0075 (17)0.0014 (18)
Geometric parameters (Å, º) top
S1—O21.430 (3)C17—C181.392 (5)
S1—O11.434 (3)C18—C191.394 (5)
S1—N11.638 (3)C18—H180.9500
S1—C11.760 (3)C19—C201.380 (5)
S2—O51.425 (3)C19—C231.447 (5)
S2—O61.432 (3)C20—C211.389 (6)
S2—N31.637 (3)C20—H200.9500
S2—C241.757 (3)C21—C221.389 (5)
O3—C71.329 (4)C21—H210.9500
O3—H3O0.8400C22—H220.9500
O4—C91.252 (4)C24—C251.388 (5)
O7—C301.304 (4)C24—C291.398 (5)
O7—H7O0.8400C25—C261.379 (5)
O8—C321.276 (4)C25—H250.9500
N1—C81.435 (4)C26—C271.380 (6)
N1—C161.495 (4)C26—H260.9500
N2—C231.143 (5)C27—C281.378 (5)
N3—C311.445 (4)C27—H270.9500
N3—C391.495 (5)C28—C291.389 (5)
N4—C461.150 (5)C28—H280.9500
C1—C21.374 (5)C29—C301.468 (5)
C1—C61.397 (5)C30—C311.392 (5)
C2—C31.390 (5)C31—C321.419 (5)
C2—H20.9500C32—C331.484 (5)
C3—C41.370 (6)C33—C341.387 (6)
C3—H30.9500C33—C381.391 (6)
C4—C51.386 (5)C34—C351.386 (6)
C4—H40.9500C34—H340.9500
C5—C61.391 (5)C35—C361.384 (8)
C5—H50.9500C35—H350.9500
C6—C71.472 (5)C36—C371.370 (9)
C7—C81.366 (4)C36—H360.9500
C8—C91.458 (4)C37—C381.374 (7)
C9—C101.487 (5)C37—H370.9500
C10—C151.381 (5)C38—H380.9500
C10—C111.390 (5)C39—C401.510 (5)
C11—C121.376 (5)C39—H39A0.9900
C11—H110.9500C39—H39B0.9900
C12—C131.371 (6)C40—C451.386 (5)
C12—H120.9500C40—C411.388 (5)
C13—C141.380 (6)C41—C421.383 (5)
C13—H130.9500C41—H410.9500
C14—C151.373 (5)C42—C431.391 (5)
C14—H140.9500C42—C461.441 (5)
C15—H150.9500C43—C441.377 (6)
C16—C171.511 (5)C43—H430.9500
C16—H16A0.9900C44—C451.388 (6)
C16—H16B0.9900C44—H440.9500
C17—C221.388 (5)C45—H450.9500
O2—S1—O1118.94 (16)C19—C20—C21119.1 (4)
O2—S1—N1108.41 (15)C19—C20—H20120.4
O1—S1—N1107.60 (15)C21—C20—H20120.4
O2—S1—C1110.17 (16)C22—C21—C20120.2 (4)
O1—S1—C1108.35 (16)C22—C21—H21119.9
N1—S1—C1102.02 (15)C20—C21—H21119.9
O5—S2—O6119.62 (18)C17—C22—C21120.8 (4)
O5—S2—N3107.42 (17)C17—C22—H22119.6
O6—S2—N3107.96 (17)C21—C22—H22119.6
O5—S2—C24108.49 (18)N2—C23—C19179.7 (5)
O6—S2—C24109.82 (16)C25—C24—C29121.5 (3)
N3—S2—C24102.09 (16)C25—C24—S2121.0 (3)
C7—O3—H3O109.5C29—C24—S2117.5 (3)
C30—O7—H7O109.5C26—C25—C24118.9 (4)
C8—N1—C16116.1 (3)C26—C25—H25120.5
C8—N1—S1113.6 (2)C24—C25—H25120.5
C16—N1—S1119.1 (2)C25—C26—C27120.4 (4)
C31—N3—C39114.6 (3)C25—C26—H26119.8
C31—N3—S2113.1 (2)C27—C26—H26119.8
C39—N3—S2119.3 (2)C28—C27—C26120.4 (4)
C2—C1—C6121.7 (3)C28—C27—H27119.8
C2—C1—S1121.8 (3)C26—C27—H27119.8
C6—C1—S1116.5 (2)C27—C28—C29120.7 (4)
C1—C2—C3118.8 (4)C27—C28—H28119.7
C1—C2—H2120.6C29—C28—H28119.7
C3—C2—H2120.6C28—C29—C24118.0 (3)
C4—C3—C2120.6 (4)C28—C29—C30120.8 (3)
C4—C3—H3119.7C24—C29—C30121.2 (3)
C2—C3—H3119.7O7—C30—C31121.3 (3)
C3—C4—C5120.5 (4)O7—C30—C29116.7 (3)
C3—C4—H4119.7C31—C30—C29121.9 (3)
C5—C4—H4119.7C30—C31—C32121.1 (3)
C4—C5—C6120.0 (4)C30—C31—N3119.6 (3)
C4—C5—H5120.0C32—C31—N3119.2 (3)
C6—C5—H5120.0O8—C32—C31119.1 (3)
C5—C6—C1118.4 (3)O8—C32—C33117.6 (3)
C5—C6—C7120.7 (3)C31—C32—C33123.4 (3)
C1—C6—C7120.9 (3)C34—C33—C38120.2 (4)
O3—C7—C8122.5 (3)C34—C33—C32122.4 (4)
O3—C7—C6114.5 (3)C38—C33—C32117.3 (4)
C8—C7—C6123.0 (3)C35—C34—C33119.2 (4)
C7—C8—N1119.8 (3)C35—C34—H34120.4
C7—C8—C9120.7 (3)C33—C34—H34120.4
N1—C8—C9119.4 (3)C36—C35—C34119.8 (5)
O4—C9—C8118.1 (3)C36—C35—H35120.1
O4—C9—C10118.5 (3)C34—C35—H35120.1
C8—C9—C10123.3 (3)C37—C36—C35120.9 (5)
C15—C10—C11118.1 (3)C37—C36—H36119.5
C15—C10—C9118.4 (3)C35—C36—H36119.5
C11—C10—C9123.2 (3)C36—C37—C38119.8 (5)
C12—C11—C10120.9 (4)C36—C37—H37120.1
C12—C11—H11119.6C38—C37—H37120.1
C10—C11—H11119.6C37—C38—C33120.1 (5)
C13—C12—C11120.3 (4)C37—C38—H38120.0
C13—C12—H12119.8C33—C38—H38120.0
C11—C12—H12119.8N3—C39—C40113.3 (3)
C12—C13—C14119.4 (4)N3—C39—H39A108.9
C12—C13—H13120.3C40—C39—H39A108.9
C14—C13—H13120.3N3—C39—H39B108.9
C15—C14—C13120.4 (4)C40—C39—H39B108.9
C15—C14—H14119.8H39A—C39—H39B107.7
C13—C14—H14119.8C45—C40—C41119.1 (3)
C14—C15—C10121.0 (4)C45—C40—C39121.2 (3)
C14—C15—H15119.5C41—C40—C39119.5 (3)
C10—C15—H15119.5C42—C41—C40120.2 (3)
N1—C16—C17114.2 (3)C42—C41—H41119.9
N1—C16—H16A108.7C40—C41—H41119.9
C17—C16—H16A108.7C41—C42—C43120.7 (4)
N1—C16—H16B108.7C41—C42—C46118.0 (3)
C17—C16—H16B108.7C43—C42—C46121.3 (4)
H16A—C16—H16B107.6C44—C43—C42118.7 (4)
C22—C17—C18119.0 (3)C44—C43—H43120.6
C22—C17—C16120.7 (3)C42—C43—H43120.6
C18—C17—C16120.3 (3)C43—C44—C45121.0 (4)
C17—C18—C19119.9 (4)C43—C44—H44119.5
C17—C18—H18120.0C45—C44—H44119.5
C19—C18—H18120.0C40—C45—C44120.2 (4)
C20—C19—C18121.0 (4)C40—C45—H45119.9
C20—C19—C23119.7 (4)C44—C45—H45119.9
C18—C19—C23119.3 (4)N4—C46—C42176.3 (4)
O2—S1—N1—C8170.7 (2)C18—C19—C20—C211.3 (6)
O1—S1—N1—C859.5 (3)C23—C19—C20—C21178.4 (4)
C1—S1—N1—C854.4 (2)C19—C20—C21—C220.4 (6)
O2—S1—N1—C1628.2 (3)C18—C17—C22—C211.4 (5)
O1—S1—N1—C16158.1 (2)C16—C17—C22—C21178.2 (3)
C1—S1—N1—C1688.0 (3)C20—C21—C22—C170.9 (6)
O5—S2—N3—C3159.5 (3)O5—S2—C24—C25102.0 (3)
O6—S2—N3—C31170.3 (2)O6—S2—C24—C2530.4 (4)
C24—S2—N3—C3154.6 (3)N3—S2—C24—C25144.8 (3)
O5—S2—N3—C39161.3 (3)O5—S2—C24—C2979.7 (3)
O6—S2—N3—C3931.0 (3)O6—S2—C24—C29147.9 (3)
C24—S2—N3—C3984.7 (3)N3—S2—C24—C2933.6 (3)
O2—S1—C1—C229.8 (4)C29—C24—C25—C260.7 (6)
O1—S1—C1—C2101.9 (3)S2—C24—C25—C26179.0 (3)
N1—S1—C1—C2144.8 (3)C24—C25—C26—C270.2 (6)
O2—S1—C1—C6151.0 (3)C25—C26—C27—C280.7 (7)
O1—S1—C1—C677.4 (3)C26—C27—C28—C290.4 (6)
N1—S1—C1—C636.0 (3)C27—C28—C29—C240.4 (6)
C6—C1—C2—C30.8 (6)C27—C28—C29—C30177.8 (4)
S1—C1—C2—C3178.4 (3)C25—C24—C29—C281.0 (5)
C1—C2—C3—C40.9 (6)S2—C24—C29—C28179.3 (3)
C2—C3—C4—C51.1 (7)C25—C24—C29—C30177.3 (3)
C3—C4—C5—C60.3 (6)S2—C24—C29—C301.1 (5)
C4—C5—C6—C12.0 (5)C28—C29—C30—O718.8 (5)
C4—C5—C6—C7176.5 (3)C24—C29—C30—O7163.0 (3)
C2—C1—C6—C52.2 (5)C28—C29—C30—C31161.9 (3)
S1—C1—C6—C5177.0 (3)C24—C29—C30—C3116.4 (5)
C2—C1—C6—C7176.3 (3)O7—C30—C31—C322.2 (5)
S1—C1—C6—C74.5 (4)C29—C30—C31—C32177.1 (3)
C5—C6—C7—O317.8 (5)O7—C30—C31—N3173.5 (3)
C1—C6—C7—O3163.8 (3)C29—C30—C31—N37.2 (5)
C5—C6—C7—C8162.8 (3)C39—N3—C31—C3095.1 (4)
C1—C6—C7—C815.6 (5)S2—N3—C31—C3046.1 (4)
O3—C7—C8—N1176.1 (3)C39—N3—C31—C3280.7 (4)
C6—C7—C8—N14.5 (5)S2—N3—C31—C32138.0 (3)
O3—C7—C8—C92.4 (5)C30—C31—C32—O85.2 (5)
C6—C7—C8—C9176.9 (3)N3—C31—C32—O8170.6 (3)
C16—N1—C8—C7100.3 (3)C30—C31—C32—C33176.0 (3)
S1—N1—C8—C743.3 (4)N3—C31—C32—C338.2 (5)
C16—N1—C8—C978.3 (4)O8—C32—C33—C34140.8 (4)
S1—N1—C8—C9138.1 (3)C31—C32—C33—C3440.4 (6)
C7—C8—C9—O410.1 (5)O8—C32—C33—C3836.6 (5)
N1—C8—C9—O4168.4 (3)C31—C32—C33—C38142.2 (4)
C7—C8—C9—C10167.1 (3)C38—C33—C34—C350.3 (6)
N1—C8—C9—C1014.3 (5)C32—C33—C34—C35177.6 (4)
O4—C9—C10—C1526.9 (5)C33—C34—C35—C361.6 (7)
C8—C9—C10—C15155.9 (3)C34—C35—C36—C372.1 (8)
O4—C9—C10—C11146.8 (4)C35—C36—C37—C380.6 (10)
C8—C9—C10—C1130.4 (5)C36—C37—C38—C331.3 (9)
C15—C10—C11—C120.3 (6)C34—C33—C38—C371.7 (7)
C9—C10—C11—C12173.4 (4)C32—C33—C38—C37179.1 (4)
C10—C11—C12—C130.5 (6)C31—N3—C39—C4065.9 (4)
C11—C12—C13—C140.4 (7)S2—N3—C39—C4072.8 (4)
C12—C13—C14—C151.4 (7)N3—C39—C40—C4585.6 (4)
C13—C14—C15—C101.6 (7)N3—C39—C40—C4189.6 (4)
C11—C10—C15—C140.7 (6)C45—C40—C41—C422.4 (5)
C9—C10—C15—C14174.7 (4)C39—C40—C41—C42172.9 (3)
C8—N1—C16—C1767.1 (4)C40—C41—C42—C430.8 (6)
S1—N1—C16—C1774.4 (4)C40—C41—C42—C46177.4 (3)
N1—C16—C17—C2282.0 (4)C41—C42—C43—C440.7 (6)
N1—C16—C17—C1897.5 (4)C46—C42—C43—C44178.9 (4)
C22—C17—C18—C190.6 (5)C42—C43—C44—C450.7 (6)
C16—C17—C18—C19179.0 (3)C41—C40—C45—C442.4 (5)
C17—C18—C19—C200.8 (5)C39—C40—C45—C44172.8 (3)
C17—C18—C19—C23178.9 (3)C43—C44—C45—C400.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.992.573.382 (4)139
C16—H16B···O1i0.992.603.456 (4)145
C28—H28···O2ii0.952.453.188 (4)135
O3—H3O···O40.841.762.503 (4)146
O7—H7O···O80.841.732.484 (4)148
C11—H11···N10.952.452.974 (4)115
C16—H16B···O20.992.512.890 (5)102
C34—H34···N30.952.582.982 (5)106
C39—H39B···O60.992.532.899 (5)102
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC23H16N2O4S
Mr416.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)12.2900 (2), 24.7970 (6), 25.6080 (6)
V3)7804.2 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.12 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.961, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
16724, 8869, 6212
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.164, 1.13
No. of reflections8869
No. of parameters543
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0236P)2 + 17.5304P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.53, 0.45

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.992.573.382 (4)139.4
C16—H16B···O1i0.992.603.456 (4)145.1
C28—H28···O2ii0.952.453.188 (4)134.5
O3—H3O···O40.841.762.503 (4)145.8
O7—H7O···O80.841.732.484 (4)147.9
C11—H11···N10.952.452.974 (4)114.6
C34—H34···N30.952.582.982 (5)106.0
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+3/2, y1/2, z.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds