organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)-2-(1H-imidazol-1-yl)ethanol

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: taoxiao@njut.edu.cn

(Received 13 November 2011; accepted 12 December 2011; online 17 December 2011)

In the title compound, C11H11FN2O, the dihedral angle between the mean planes of the two rings is 1.30 (4)°. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For related compounds containing a 2-(1H-imidazol-1-yl)-1-phenyl­ethanol fragment, see: Porretta et al. (1993[Porretta, G. C., Fioravanti, R., Biava, M., Cirilli, R., Simonetti, N., Villa, A., Bello, U., Faccendini, P. & Tita, B. (1993). Eur. J. Med. Chem. 28, 749-760.]). For related structures, see: Tao et al. (2007[Tao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330-o1331.]); Liu et al. (2011[Liu, D., Li, C., Yu, G. & Xiao, T. (2011). Acta Cryst. E67, o2036.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11FN2O

  • Mr = 206.22

  • Monoclinic, P 21

  • a = 7.1220 (14) Å

  • b = 5.4690 (11) Å

  • c = 12.981 (3) Å

  • β = 98.13 (3)°

  • V = 500.53 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 1992 measured reflections

  • 1024 independent reflections

  • 876 reflections with I > 2σ(I)

  • Rint = 0.029

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.00

  • 1024 reflections

  • 139 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H0A⋯N2i 0.87 (4) 1.90 (4) 2.762 (4) 171 (5)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, C11H11ON2F, is the key intermediate in the synthesis of a new kind of antifungal drug (Porretta et al., 1993). As a part of our ongoing studies (Tao et al., 2007; Liu et al., 2011), the crystal structure determination of the title compound has been carried out in order to elucidate its molecular conformation. The molecular structure of the title compound is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The dihedral angle between the mean planes of the two rings is 1.30 (4)°. In the crystal structure, intermolecular O—H···N hydrogen bonds (Table 1) link the molecules in chains along the b axis.

Related literature top

For related compounds containing a 2-(1H-imidazol-1-yl)-1-phenylethanol fragment, see: Porretta et al. (1993). For related structures, see: Tao et al. (2007); Liu et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 1-(4-fluorophenyl)-2-(1H-imidazol-1-yl)ethanone (2.04 g, 10 mol), sodium borohydride (0.756 g, 20 mmol) and 30 ml dry ethanol was refluxed for 3 h. After solvent evaporation, the mixture was neutralized with dilute hydrochloric acid and then refluxed for 30 min. After the mixture was cooled, the solution was alkalinized with sodium hydroxide, the precipitate was collected, recrystallized with ethanol, and a yellow deposit was obtain (m.p. 410–412 K). Crystals suitable for a X-ray analysis were obtained by dissolving the crude product (1.0 g) in ethanol (30 ml) and then allowing the solution to evaporate slowly at room temperature for about 7 d.

Refinement top

The H atom of the hydroxy group was located in a difference Fourier map and was freely refined with Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), and 0.98 Å (methine) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The absolute structure parameter is meaningless because the compound is a weak anomalous scatterer (Z < Si, MoKα). The Friedel-pair data were merged and the absolute structure parameter was removed from the CIF.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.
1-(4-Fluorophenyl)-2-(1H-imidazol-1-yl)ethanol top
Crystal data top
C11H11FN2OF(000) = 216
Mr = 206.22Dx = 1.368 Mg m3
Monoclinic, P21Melting point: 410 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.1220 (14) ÅCell parameters from 25 reflections
b = 5.4690 (11) Åθ = 9–14°
c = 12.981 (3) ŵ = 0.10 mm1
β = 98.13 (3)°T = 293 K
V = 500.53 (19) Å3Block, colourless
Z = 20.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
876 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 08
Absorption correction: multi-scan
(North et al., 1968)
k = 66
Tmin = 0.970, Tmax = 0.990l = 1515
1992 measured reflections3 standard reflections every 200 reflections
1024 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
1024 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C11H11FN2OV = 500.53 (19) Å3
Mr = 206.22Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.1220 (14) ŵ = 0.10 mm1
b = 5.4690 (11) ÅT = 293 K
c = 12.981 (3) Å0.30 × 0.20 × 0.10 mm
β = 98.13 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
876 reflections with I > 2σ(I)
Absorption correction: multi-scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.970, Tmax = 0.9903 standard reflections every 200 reflections
1992 measured reflections intensity decay: 1%
1024 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.13 e Å3
1024 reflectionsΔρmin = 0.18 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.9055 (3)0.3909 (5)0.52854 (19)0.0796 (8)
O0.2786 (4)0.0461 (4)0.19125 (18)0.0557 (7)
H0A0.275 (6)0.068 (9)0.125 (3)0.078*
N10.0381 (3)0.2845 (5)0.16087 (19)0.0445 (6)
C10.5787 (5)0.4661 (7)0.2920 (3)0.0524 (8)
H1A0.55090.57900.23840.063*
C20.7277 (5)0.5097 (7)0.3702 (3)0.0575 (9)
H2A0.80260.64860.36890.069*
N20.2416 (4)0.3439 (6)0.0183 (2)0.0558 (8)
C30.7627 (5)0.3446 (7)0.4495 (3)0.0528 (9)
C40.6583 (5)0.1347 (7)0.4532 (3)0.0554 (9)
H4A0.68540.02460.50800.066*
C50.5115 (5)0.0912 (7)0.3732 (2)0.0479 (8)
H5A0.43970.05070.37390.057*
C60.4702 (4)0.2556 (6)0.2925 (2)0.0412 (7)
C70.3052 (4)0.2069 (6)0.2080 (2)0.0426 (7)
H7A0.33110.28360.14320.051*
C80.1259 (4)0.3188 (7)0.2395 (2)0.0499 (8)
H8A0.10100.24480.30410.060*
H8B0.14600.49240.25180.060*
C90.1609 (5)0.0911 (7)0.1518 (3)0.0538 (9)
H9A0.15920.04110.19700.065*
C100.2855 (5)0.1288 (8)0.0645 (3)0.0538 (9)
H10A0.38530.02540.03950.065*
C110.0933 (5)0.4306 (7)0.0793 (3)0.0518 (8)
H11A0.03360.57700.06720.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.0595 (12)0.0851 (18)0.0844 (15)0.0039 (12)0.0237 (11)0.0152 (13)
O0.0673 (15)0.0462 (14)0.0498 (13)0.0048 (12)0.0049 (12)0.0048 (11)
N10.0383 (13)0.0482 (15)0.0465 (14)0.0036 (13)0.0049 (11)0.0024 (12)
C10.0580 (19)0.0450 (19)0.0544 (18)0.0012 (16)0.0083 (16)0.0045 (15)
C20.050 (2)0.0474 (18)0.074 (2)0.0045 (16)0.0051 (17)0.0051 (19)
N20.0467 (15)0.065 (2)0.0539 (15)0.0065 (14)0.0007 (12)0.0065 (15)
C30.0438 (17)0.054 (2)0.0572 (19)0.0073 (16)0.0035 (14)0.0126 (17)
C40.063 (2)0.056 (2)0.0449 (18)0.0105 (18)0.0012 (15)0.0034 (16)
C50.0486 (17)0.0496 (19)0.0452 (16)0.0010 (16)0.0057 (14)0.0024 (15)
C60.0384 (15)0.0433 (18)0.0426 (16)0.0063 (13)0.0084 (12)0.0042 (13)
C70.0459 (16)0.0440 (17)0.0374 (15)0.0043 (13)0.0041 (13)0.0003 (13)
C80.0492 (18)0.053 (2)0.0474 (17)0.0050 (17)0.0047 (14)0.0054 (16)
C90.0556 (19)0.053 (2)0.0545 (19)0.0056 (16)0.0128 (16)0.0074 (16)
C100.0409 (16)0.066 (2)0.0550 (18)0.0048 (16)0.0077 (15)0.0031 (18)
C110.0437 (16)0.0496 (19)0.062 (2)0.0009 (16)0.0054 (15)0.0104 (16)
Geometric parameters (Å, º) top
F—C31.362 (4)C4—C51.387 (5)
O—C71.409 (5)C4—H4A0.9300
O—H0A0.86 (4)C5—C61.380 (5)
N1—C111.340 (4)C5—H5A0.9300
N1—C91.367 (5)C6—C71.514 (4)
N1—C81.450 (4)C7—C81.523 (4)
C1—C21.382 (5)C7—H7A0.9800
C1—C61.387 (5)C8—H8A0.9700
C1—H1A0.9300C8—H8B0.9700
C2—C31.365 (5)C9—C101.353 (5)
C2—H2A0.9300C9—H9A0.9300
N2—C111.316 (4)C10—H10A0.9300
N2—C101.376 (5)C11—H11A0.9300
C3—C41.372 (6)
C7—O—H0A106 (3)C1—C6—C7121.2 (3)
C11—N1—C9106.3 (3)O—C7—C6111.0 (3)
C11—N1—C8126.6 (3)O—C7—C8109.6 (3)
C9—N1—C8127.0 (3)C6—C7—C8109.2 (2)
C2—C1—C6120.6 (3)O—C7—H7A109.0
C2—C1—H1A119.7C6—C7—H7A109.0
C6—C1—H1A119.7C8—C7—H7A109.0
C3—C2—C1118.6 (4)N1—C8—C7112.4 (3)
C3—C2—H2A120.7N1—C8—H8A109.1
C1—C2—H2A120.7C7—C8—H8A109.1
C11—N2—C10105.0 (3)N1—C8—H8B109.1
C2—C3—F118.8 (3)C7—C8—H8B109.1
C2—C3—C4122.5 (3)H8A—C8—H8B107.9
F—C3—C4118.6 (3)C10—C9—N1106.9 (3)
C3—C4—C5118.2 (3)C10—C9—H9A126.6
C3—C4—H4A120.9N1—C9—H9A126.6
C5—C4—H4A120.9C9—C10—N2109.5 (3)
C6—C5—C4120.9 (3)C9—C10—H10A125.3
C6—C5—H5A119.5N2—C10—H10A125.3
C4—C5—H5A119.5N2—C11—N1112.4 (3)
C5—C6—C1119.1 (3)N2—C11—H11A123.8
C5—C6—C7119.7 (3)N1—C11—H11A123.8
C6—C1—C2—C31.7 (5)C1—C6—C7—C889.0 (3)
C1—C2—C3—F177.9 (3)C11—N1—C8—C787.2 (4)
C1—C2—C3—C41.5 (5)C9—N1—C8—C789.0 (4)
C2—C3—C4—C50.3 (5)O—C7—C8—N159.6 (4)
F—C3—C4—C5179.0 (3)C6—C7—C8—N1178.6 (3)
C3—C4—C5—C60.6 (5)C11—N1—C9—C100.1 (3)
C4—C5—C6—C10.3 (5)C8—N1—C9—C10176.7 (3)
C4—C5—C6—C7178.1 (3)N1—C9—C10—N20.2 (4)
C2—C1—C6—C50.9 (5)C11—N2—C10—C90.5 (4)
C2—C1—C6—C7179.3 (3)C10—N2—C11—N10.6 (4)
C5—C6—C7—O31.6 (4)C9—N1—C11—N20.5 (4)
C1—C6—C7—O150.0 (3)C8—N1—C11—N2176.3 (3)
C5—C6—C7—C889.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0A···N2i0.87 (4)1.90 (4)2.762 (4)171 (5)
Symmetry code: (i) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaC11H11FN2O
Mr206.22
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.1220 (14), 5.4690 (11), 12.981 (3)
β (°) 98.13 (3)
V3)500.53 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
1992, 1024, 876
Rint0.029
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.00
No. of reflections1024
No. of parameters139
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H0A···N2i0.87 (4)1.90 (4)2.762 (4)171 (5)
Symmetry code: (i) x, y1/2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, D., Li, C., Yu, G. & Xiao, T. (2011). Acta Cryst. E67, o2036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPorretta, G. C., Fioravanti, R., Biava, M., Cirilli, R., Simonetti, N., Villa, A., Bello, U., Faccendini, P. & Tita, B. (1993). Eur. J. Med. Chem. 28, 749–760.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, X., Yuan, L., Zhang, X.-Q., Jing, C. & Wang, J.-T. (2007). Acta Cryst. E63, o1330–o1331.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds