metal-organic compounds
Bis{2-[(pyridin-4-yl-κN)sulfanyl]pyrazine}silver(I) tetrafluoridoborate
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn
In the title mononuclear complex, [Ag(C9H7N3S)2]BF4, the AgI ion adopts a virtually linear coordination geometry [N—Ag—N = 178.06 (11)°] with the two ligands bound to the metal atom via the pyridine N atoms. The metal-coordinated pyridine rings are almost coplanar, making a dihedral angle of 1.5 (2)°, while the two pendent pyrazine rings are arranged on the same side of the N—Ag—N line. Along the a axis, the mononuclear coordination units are stacked with π–π interactions between the pyridine rings [centroid–centroid distance = 3.569 (4) Å], leading to infinite chains. The chains are interconnected through intermolecular N(pyrazine)⋯π(pyrazine) interactions forming layers parallel to the ab plane [N⋯centroid = 3.268 (5) Å]. These layers are further stacked along the c-axis direction, furnishing a three-dimensional supramolecular framework with the tetrafluoridoborate anions embedded within the interstices.
Related literature
For metal complexes with chalcogenobispyridines and derivates, see: Baradello et al. (2004); Dunne et al. (1997). For the crystal structures of di-2-pyridyl sulfide and its N-positional isomer complexes, see: Jung et al. (2001, 2003). For the N(pyrazinyl)⋯centroid(pyrazinyl) distance in {[Ni(L)(NO3)2]}∞ (L = bis(2-pyrazylmethyl)sulfide), see: Black et al. (2007); For van der Waals radii, see: Bondi (1964) and for the of phenyl rings, see: Malone et al. (1997).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811051270/zq2141sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811051270/zq2141Isup2.hkl
4-Pyridyl-2-pyrazinyl sulfide was synthesized by reacting 2-chloropyrazine (0.6 g, 5.2 mmol) with sodium pyridine-4-thiolate (5 mmol) in 40 ml methanol. The mixture was refluxed with stirring for 10 hours under the protection of N2. After filtration and concentration in vacuo, the obtained crude product was further purified by
on silica gel using ether acetate/dichloromethane (1:3) as the giving 0.444 g of yellow powder of 4-pyridyl-2-pyrazinyl sulfide in 47% yield. Reaction of 4-pyridyl-2-pyrazinyl sulfide (19 mg, 0.1 mmol) and AgBF4 (20 mg, 0.1 mmol) in 4 ml methanol with stirring at room temperature for 3 hours. The obtained clear solution was filtrated, and the filtration was left evaporation in air. After about one week, the block-like crystals of the title complex were deposited (18.1 mg, yield 63%).The H atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Ag(C9H7N3S)2]BF4 | Z = 4 |
Mr = 573.15 | F(000) = 1136 |
Monoclinic, P21/n | Dx = 1.817 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2232 (2) Å | µ = 1.22 mm−1 |
b = 16.4826 (3) Å | T = 296 K |
c = 17.6098 (4) Å | Block, yellow |
β = 91.666 (1)° | 0.40 × 0.30 × 0.20 mm |
V = 2095.69 (8) Å3 |
'Bruker SMART APEXII CCD area-detector' diffractometer | 3597 independent reflections |
Radiation source: fine-focus sealed tube | 3215 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −8→8 |
Tmin = 0.616, Tmax = 0.746 | k = −19→19 |
14794 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0584P)2 + 2.8465P] P = (Fo2 + 2Fc2)/3 |
3597 reflections | (Δ/σ)max = 0.001 |
289 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
[Ag(C9H7N3S)2]BF4 | V = 2095.69 (8) Å3 |
Mr = 573.15 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2232 (2) Å | µ = 1.22 mm−1 |
b = 16.4826 (3) Å | T = 296 K |
c = 17.6098 (4) Å | 0.40 × 0.30 × 0.20 mm |
β = 91.666 (1)° |
'Bruker SMART APEXII CCD area-detector' diffractometer | 3597 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 3215 reflections with I > 2σ(I) |
Tmin = 0.616, Tmax = 0.746 | Rint = 0.028 |
14794 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.40 e Å−3 |
3597 reflections | Δρmin = −0.62 e Å−3 |
289 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.49553 (4) | 0.746244 (18) | 0.040102 (19) | 0.04882 (15) | |
S1 | 1.31192 (14) | 0.55322 (8) | 0.04143 (6) | 0.0556 (3) | |
S2 | −0.31897 (14) | 0.94030 (8) | 0.04687 (6) | 0.0554 (3) | |
N1 | 1.3844 (4) | 0.62555 (19) | 0.1758 (2) | 0.0456 (8) | |
N2 | 1.5853 (5) | 0.4934 (2) | 0.2314 (2) | 0.0557 (9) | |
N3 | 0.7552 (4) | 0.68164 (18) | 0.04124 (17) | 0.0392 (7) | |
N4 | 0.2344 (4) | 0.81040 (18) | 0.04305 (18) | 0.0409 (7) | |
N5 | −0.3990 (4) | 0.85798 (19) | 0.1733 (2) | 0.0459 (8) | |
N6 | −0.5935 (5) | 0.9876 (2) | 0.2337 (2) | 0.0582 (10) | |
C1 | 1.4578 (6) | 0.6243 (3) | 0.2450 (3) | 0.0532 (10) | |
H1A | 1.4393 | 0.6685 | 0.2767 | 0.064* | |
C2 | 1.5609 (6) | 0.5599 (3) | 0.2723 (3) | 0.0576 (11) | |
H2A | 1.6150 | 0.5630 | 0.3208 | 0.069* | |
C3 | 1.5056 (6) | 0.4919 (2) | 0.1643 (2) | 0.0482 (9) | |
H3A | 1.5164 | 0.4456 | 0.1346 | 0.058* | |
C4 | 1.4040 (5) | 0.5577 (2) | 0.1353 (2) | 0.0387 (8) | |
C5 | 1.0957 (5) | 0.6030 (2) | 0.0462 (2) | 0.0378 (8) | |
C6 | 1.0216 (6) | 0.6326 (3) | −0.0213 (2) | 0.0499 (10) | |
H6A | 1.0862 | 0.6276 | −0.0660 | 0.060* | |
C7 | 0.8514 (6) | 0.6697 (3) | −0.0217 (2) | 0.0487 (10) | |
H7A | 0.8005 | 0.6874 | −0.0679 | 0.058* | |
C8 | 0.8306 (5) | 0.6540 (3) | 0.1058 (2) | 0.0458 (9) | |
H8A | 0.7667 | 0.6626 | 0.1502 | 0.055* | |
C9 | 0.9972 (5) | 0.6135 (3) | 0.1114 (2) | 0.0479 (10) | |
H9A | 1.0421 | 0.5938 | 0.1579 | 0.057* | |
C10 | 0.1515 (6) | 0.8409 (3) | −0.0177 (3) | 0.0569 (11) | |
H10A | 0.2110 | 0.8369 | −0.0637 | 0.068* | |
C11 | −0.0205 (6) | 0.8788 (3) | −0.0173 (2) | 0.0546 (11) | |
H11A | −0.0779 | 0.8967 | −0.0622 | 0.066* | |
C12 | −0.1045 (5) | 0.8893 (2) | 0.0520 (2) | 0.0398 (8) | |
C13 | −0.0160 (5) | 0.8602 (3) | 0.1160 (2) | 0.0472 (9) | |
H13A | −0.0676 | 0.8671 | 0.1634 | 0.057* | |
C14 | 0.1513 (5) | 0.8204 (3) | 0.1094 (2) | 0.0462 (9) | |
H14A | 0.2089 | 0.7997 | 0.1532 | 0.055* | |
C15 | −0.4147 (5) | 0.9284 (2) | 0.1376 (2) | 0.0373 (8) | |
C16 | −0.4753 (6) | 0.8546 (3) | 0.2415 (3) | 0.0560 (11) | |
H16A | −0.4609 | 0.8077 | 0.2703 | 0.067* | |
C17 | −0.5735 (6) | 0.9177 (3) | 0.2701 (3) | 0.0580 (11) | |
H17A | −0.6283 | 0.9115 | 0.3169 | 0.070* | |
C18 | −0.5097 (6) | 0.9934 (2) | 0.1678 (2) | 0.0457 (9) | |
H18A | −0.5148 | 1.0422 | 0.1412 | 0.055* | |
B1 | 0.4920 (7) | 0.7584 (3) | −0.1658 (3) | 0.0479 (11) | |
F1 | 0.5771 (6) | 0.8120 (2) | −0.1155 (2) | 0.0970 (11) | |
F2 | 0.4070 (6) | 0.7015 (2) | −0.1210 (2) | 0.0977 (11) | |
F3 | 0.3676 (6) | 0.7987 (3) | −0.2082 (3) | 0.1304 (16) | |
F4 | 0.6212 (6) | 0.7205 (3) | −0.2054 (3) | 0.1233 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0314 (2) | 0.0524 (2) | 0.0627 (2) | 0.01446 (12) | 0.00139 (14) | −0.00343 (13) |
S1 | 0.0364 (5) | 0.0807 (8) | 0.0494 (6) | 0.0263 (5) | −0.0019 (4) | −0.0044 (5) |
S2 | 0.0389 (5) | 0.0792 (8) | 0.0483 (6) | 0.0271 (5) | 0.0076 (4) | 0.0090 (5) |
N1 | 0.0355 (17) | 0.0401 (17) | 0.061 (2) | 0.0034 (13) | 0.0009 (15) | 0.0044 (15) |
N2 | 0.053 (2) | 0.057 (2) | 0.056 (2) | 0.0147 (17) | −0.0056 (17) | 0.0105 (17) |
N3 | 0.0299 (15) | 0.0427 (17) | 0.0450 (17) | 0.0059 (12) | −0.0009 (13) | −0.0034 (13) |
N4 | 0.0309 (15) | 0.0422 (17) | 0.0496 (18) | 0.0059 (12) | 0.0039 (13) | 0.0010 (13) |
N5 | 0.0373 (17) | 0.0398 (17) | 0.061 (2) | 0.0029 (13) | 0.0068 (15) | −0.0034 (15) |
N6 | 0.057 (2) | 0.061 (2) | 0.057 (2) | 0.0122 (17) | 0.0154 (18) | −0.0127 (18) |
C1 | 0.045 (2) | 0.050 (2) | 0.064 (3) | 0.0002 (18) | 0.001 (2) | −0.0068 (19) |
C2 | 0.048 (2) | 0.071 (3) | 0.054 (3) | 0.004 (2) | −0.0018 (19) | 0.004 (2) |
C3 | 0.046 (2) | 0.042 (2) | 0.057 (2) | 0.0077 (17) | 0.0040 (18) | 0.0045 (18) |
C4 | 0.0239 (16) | 0.042 (2) | 0.051 (2) | 0.0038 (14) | 0.0030 (15) | 0.0082 (16) |
C5 | 0.0277 (17) | 0.0403 (19) | 0.045 (2) | 0.0046 (14) | −0.0009 (14) | −0.0010 (15) |
C6 | 0.042 (2) | 0.068 (3) | 0.040 (2) | 0.0146 (19) | 0.0011 (16) | −0.0026 (18) |
C7 | 0.040 (2) | 0.065 (3) | 0.041 (2) | 0.0171 (18) | −0.0053 (16) | 0.0010 (18) |
C8 | 0.0258 (17) | 0.067 (3) | 0.045 (2) | 0.0037 (17) | 0.0081 (15) | 0.0042 (18) |
C9 | 0.0332 (19) | 0.067 (3) | 0.044 (2) | 0.0065 (17) | 0.0023 (16) | 0.0182 (18) |
C10 | 0.052 (2) | 0.066 (3) | 0.054 (2) | 0.023 (2) | 0.023 (2) | 0.010 (2) |
C11 | 0.051 (2) | 0.072 (3) | 0.041 (2) | 0.026 (2) | 0.0096 (18) | 0.015 (2) |
C12 | 0.0314 (18) | 0.0379 (19) | 0.050 (2) | 0.0032 (14) | 0.0055 (15) | −0.0012 (15) |
C13 | 0.0333 (19) | 0.067 (3) | 0.041 (2) | 0.0074 (18) | 0.0025 (15) | −0.0054 (18) |
C14 | 0.0289 (18) | 0.064 (2) | 0.046 (2) | 0.0058 (17) | −0.0004 (15) | −0.0009 (18) |
C15 | 0.0248 (16) | 0.0421 (19) | 0.0450 (19) | 0.0033 (14) | 0.0010 (14) | −0.0050 (15) |
C16 | 0.048 (2) | 0.053 (3) | 0.067 (3) | −0.0004 (19) | 0.008 (2) | 0.014 (2) |
C17 | 0.052 (3) | 0.075 (3) | 0.048 (2) | 0.009 (2) | 0.0100 (19) | 0.002 (2) |
C18 | 0.042 (2) | 0.042 (2) | 0.054 (2) | 0.0072 (16) | 0.0028 (17) | −0.0039 (17) |
B1 | 0.055 (3) | 0.053 (3) | 0.036 (2) | 0.010 (2) | 0.002 (2) | −0.0037 (18) |
F1 | 0.132 (3) | 0.073 (2) | 0.085 (2) | −0.0111 (19) | −0.030 (2) | −0.0048 (16) |
F2 | 0.129 (3) | 0.073 (2) | 0.093 (2) | −0.013 (2) | 0.034 (2) | 0.0027 (17) |
F3 | 0.127 (4) | 0.134 (4) | 0.127 (4) | 0.035 (3) | −0.057 (3) | 0.029 (3) |
F4 | 0.124 (3) | 0.130 (3) | 0.119 (3) | 0.032 (3) | 0.061 (3) | −0.021 (3) |
Ag1—N3 | 2.156 (3) | C5—C9 | 1.380 (5) |
Ag1—N4 | 2.165 (3) | C6—C7 | 1.373 (6) |
S1—C4 | 1.765 (4) | C6—H6A | 0.9300 |
S1—C5 | 1.768 (3) | C7—H7A | 0.9300 |
S2—C12 | 1.763 (4) | C8—C9 | 1.378 (5) |
S2—C15 | 1.770 (4) | C8—H8A | 0.9300 |
N1—C1 | 1.315 (6) | C9—H9A | 0.9300 |
N1—C4 | 1.337 (5) | C10—C11 | 1.391 (6) |
N2—C3 | 1.300 (6) | C10—H10A | 0.9300 |
N2—C2 | 1.326 (6) | C11—C12 | 1.389 (5) |
N3—C8 | 1.327 (5) | C11—H11A | 0.9300 |
N3—C7 | 1.340 (5) | C12—C13 | 1.366 (6) |
N4—C10 | 1.311 (5) | C13—C14 | 1.383 (5) |
N4—C14 | 1.339 (5) | C13—H13A | 0.9300 |
N5—C15 | 1.324 (5) | C14—H14A | 0.9300 |
N5—C16 | 1.336 (6) | C15—C18 | 1.386 (5) |
N6—C17 | 1.324 (6) | C16—C17 | 1.364 (6) |
N6—C18 | 1.328 (5) | C16—H16A | 0.9300 |
C1—C2 | 1.376 (6) | C17—H17A | 0.9300 |
C1—H1A | 0.9300 | C18—H18A | 0.9300 |
C2—H2A | 0.9300 | B1—F3 | 1.330 (6) |
C3—C4 | 1.397 (5) | B1—F4 | 1.337 (6) |
C3—H3A | 0.9300 | B1—F2 | 1.380 (6) |
C5—C6 | 1.378 (5) | B1—F1 | 1.382 (6) |
N3—Ag1—N4 | 178.06 (11) | C8—C9—C5 | 118.1 (4) |
C4—S1—C5 | 104.22 (17) | C8—C9—H9A | 120.9 |
C12—S2—C15 | 105.47 (18) | C5—C9—H9A | 120.9 |
C1—N1—C4 | 115.8 (3) | N4—C10—C11 | 123.6 (4) |
C3—N2—C2 | 116.6 (4) | N4—C10—H10A | 118.2 |
C8—N3—C7 | 116.7 (3) | C11—C10—H10A | 118.2 |
C8—N3—Ag1 | 120.8 (2) | C12—C11—C10 | 118.3 (4) |
C7—N3—Ag1 | 122.5 (3) | C12—C11—H11A | 120.9 |
C10—N4—C14 | 117.4 (3) | C10—C11—H11A | 120.9 |
C10—N4—Ag1 | 123.0 (3) | C13—C12—C11 | 118.4 (3) |
C14—N4—Ag1 | 119.6 (3) | C13—C12—S2 | 126.8 (3) |
C15—N5—C16 | 115.5 (3) | C11—C12—S2 | 114.8 (3) |
C17—N6—C18 | 116.1 (4) | C12—C13—C14 | 119.1 (4) |
N1—C1—C2 | 122.4 (4) | C12—C13—H13A | 120.5 |
N1—C1—H1A | 118.8 | C14—C13—H13A | 120.5 |
C2—C1—H1A | 118.8 | N4—C14—C13 | 123.1 (4) |
N2—C2—C1 | 121.8 (4) | N4—C14—H14A | 118.4 |
N2—C2—H2A | 119.1 | C13—C14—H14A | 118.4 |
C1—C2—H2A | 119.1 | N5—C15—C18 | 122.2 (3) |
N2—C3—C4 | 122.1 (4) | N5—C15—S2 | 119.7 (3) |
N2—C3—H3A | 118.9 | C18—C15—S2 | 118.1 (3) |
C4—C3—H3A | 118.9 | N5—C16—C17 | 122.2 (4) |
N1—C4—C3 | 121.1 (4) | N5—C16—H16A | 118.9 |
N1—C4—S1 | 119.5 (3) | C17—C16—H16A | 118.9 |
C3—C4—S1 | 119.3 (3) | N6—C17—C16 | 122.3 (4) |
C6—C5—C9 | 118.4 (3) | N6—C17—H17A | 118.8 |
C6—C5—S1 | 116.4 (3) | C16—C17—H17A | 118.8 |
C9—C5—S1 | 125.1 (3) | N6—C18—C15 | 121.5 (4) |
C7—C6—C5 | 119.2 (4) | N6—C18—H18A | 119.3 |
C7—C6—H6A | 120.4 | C15—C18—H18A | 119.3 |
C5—C6—H6A | 120.4 | F3—B1—F4 | 114.3 (5) |
N3—C7—C6 | 123.1 (4) | F3—B1—F2 | 110.8 (5) |
N3—C7—H7A | 118.4 | F4—B1—F2 | 108.0 (4) |
C6—C7—H7A | 118.4 | F3—B1—F1 | 108.7 (4) |
N3—C8—C9 | 124.3 (3) | F4—B1—F1 | 109.2 (5) |
N3—C8—H8A | 117.8 | F2—B1—F1 | 105.4 (4) |
C9—C8—H8A | 117.8 | ||
C4—N1—C1—C2 | 4.9 (6) | C14—N4—C10—C11 | −3.5 (7) |
C3—N2—C2—C1 | −0.5 (7) | Ag1—N4—C10—C11 | 176.8 (4) |
N1—C1—C2—N2 | −3.1 (7) | N4—C10—C11—C12 | 3.9 (8) |
C2—N2—C3—C4 | 2.0 (6) | C10—C11—C12—C13 | −1.4 (7) |
C1—N1—C4—C3 | −3.4 (5) | C10—C11—C12—S2 | 178.4 (4) |
C1—N1—C4—S1 | −179.6 (3) | C15—S2—C12—C13 | −11.0 (4) |
N2—C3—C4—N1 | −0.1 (6) | C15—S2—C12—C11 | 169.1 (3) |
N2—C3—C4—S1 | 176.1 (3) | C11—C12—C13—C14 | −1.1 (6) |
C5—S1—C4—N1 | −40.5 (3) | S2—C12—C13—C14 | 179.1 (3) |
C5—S1—C4—C3 | 143.3 (3) | C10—N4—C14—C13 | 0.6 (6) |
C4—S1—C5—C6 | 158.8 (3) | Ag1—N4—C14—C13 | −179.6 (3) |
C4—S1—C5—C9 | −21.7 (4) | C12—C13—C14—N4 | 1.6 (7) |
C9—C5—C6—C7 | −1.5 (7) | C16—N5—C15—C18 | −2.2 (6) |
S1—C5—C6—C7 | 178.1 (3) | C16—N5—C15—S2 | 180.0 (3) |
C8—N3—C7—C6 | −1.4 (6) | C12—S2—C15—N5 | −40.4 (3) |
Ag1—N3—C7—C6 | 176.3 (3) | C12—S2—C15—C18 | 141.7 (3) |
C5—C6—C7—N3 | 2.7 (7) | C15—N5—C16—C17 | 4.3 (6) |
C7—N3—C8—C9 | −1.1 (6) | C18—N6—C17—C16 | −1.0 (7) |
Ag1—N3—C8—C9 | −178.8 (3) | N5—C16—C17—N6 | −2.8 (8) |
N3—C8—C9—C5 | 2.1 (7) | C17—N6—C18—C15 | 3.0 (7) |
C6—C5—C9—C8 | −0.7 (6) | N5—C15—C18—N6 | −1.4 (6) |
S1—C5—C9—C8 | 179.7 (3) | S2—C15—C18—N6 | 176.4 (3) |
Experimental details
Crystal data | |
Chemical formula | [Ag(C9H7N3S)2]BF4 |
Mr | 573.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 7.2232 (2), 16.4826 (3), 17.6098 (4) |
β (°) | 91.666 (1) |
V (Å3) | 2095.69 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.22 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | 'Bruker SMART APEXII CCD area-detector' diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.616, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14794, 3597, 3215 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.116, 1.11 |
No. of reflections | 3597 |
No. of parameters | 289 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.62 |
Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
The authors are grateful for financial support from the Beijing Municipal Education Commission.
References
Baradello, L., Lo Schiavo, S., Nicolò, F., Alibrandi, G., Tresoldi, G. & Lanza, S. (2004). Eur. J. Inorg. Chem. pp. 3358–3369. Web of Science CSD CrossRef Google Scholar
Black, C. A., Hanton, L. R. & Spicer, M. D. (2007). Inorg. Chem. 46, 3669–3679. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dunne, S. J., Summers, L. A. & von Nagy-Felsobuki, E. I. (1997). Coord. Chem. Rev. 165, 1–92. CrossRef CAS Google Scholar
Jung, O.-S., Kim, Y. J., Lee, Y.-A., Chae, H. K., Jang, H. G. & Hong, J. (2001). Inorg. Chem. 40, 2105–2110. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jung, O.-S., Kim, Y. J., Lee, Y.-A., Park, K.-M. & Lee, S. S. (2003). Inorg. Chem. 42, 844–850. Web of Science CSD CrossRef PubMed CAS Google Scholar
Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J Chem. Soc. Faraday Trans. 93, 3429–3436. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcogenobispyridines and derivates were widely used as versatile building blocks for supramolecular assembly (Baradello et al., 2004; Dunne et al., 1997). The ligand, such as the di-2-pyridyl sulfide and its N-positional isomers, endowed with the rotatable C(sp2)—S bond and a variable C(sp2)—S—C(sp2) angle (about 100°), exhibits flexible ligation modes in construction of diverse coordination motifs with unusual properties (Jung et al., 2001; Jung et al., 2003). Herein, we report a new silver complex derived from the 2-(pyridin-4-ylsulfanyl)pyrazine ligand.
In the mononuclear complex, [Ag(C9H7N3S)2]+.BF4-, the siver(I) ion adopts a linear coordination geometry [N3—Ag1—N4 = 178.06 (1)°] with the two ligands bound to the metal center via the 4-pyridyl N atoms (Fig. 1). The two pyridyl rings bound to AgI are almost coplanar, while the two pendent pyrazinyl rings are arranged on the same side of the N—Ag—N line. The dihedral angle between the mean planes of the two pendent pyrazinyl rings is 48.89 (1)°. Along the a axis, the mononuclear units are stacked with π–π interactions between the 4-pyridyl rings [Cg1···Cg2i 3.569 (4) Å; symmetry code: (i) = x+1, y, z] leading to infinite chains (Cg1 = C5-C6-C7-N3-C8-C9; Cg2 = N4-C10-C11-C12-C13-C14). The formed chains interconnect through intermolecular N(pyrazinyl)···π(pyrazinyl) interactions forming layers parallel to the ab plane (Fig. 2). For the N(pyrazinyl)···π(pyrazinyl) contact, the N6···Cg3ii distance equals 3.268 (5) Å (Cg3 = N1-C1-C2-N2-C3-C4; (ii) = -x, -y, -z) which is comparable to that N(pyrazinyl)···centroid(pyrazinyl) of 3.05 Å reported by Black et al. (2007) in {[Ni(L)(NO3)2]}∞ (L = bis(2-pyrazylmethyl)sulfide). These distances are shorter than the van der Waals separation of 3.40 Å on the basis of Pauling's values for the half thickness of phenyl rings (1.85 Å) (Malone et al., 1997) and the van der Waals radius of N (1.55 Å) (Bondi, 1964). The almost parallel layers are further stacked along the c direction to furnish a three-dimensional supramolecular framework with the tetrafluoridoborate anions embedded within the interstices (Fig. 3).