organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-6-meth­­oxy-4-[(phenethyl­amino)­methyl­­idene]cyclo­hexa-2,5-dien-1-one methanol monosolvate

aSchool of Life Sciences, ShanDong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 29 November 2011; accepted 8 December 2011; online 14 December 2011)

In the title compound, C16H15Br2NO2·CH4O, the mean planes of the substituted cyclo­hexa-2,5-dien-1-one and phenyl rings are almost parallel [dihedral angle = 7.84 (4)°]. The crystal packing is stabilized by N—H⋯O hydrogen bonds generating infinite [101] chains. The methanol solvent mol­ecules are connected with the main species by O—H⋯O inter­actions.

Related literature

For background to bromo­phenols and their bioactivity, see: Liu et al. (2011[Liu, M., Hansen, P. E. & Lin, X. (2011). Mar. Drugs, 9, 1273-1292.]). For related structures, see: Palmer et al. (1973[Palmer, K. J., Wong, R. Y. & Jurd, L. (1973). Acta Cryst. B29, 1509-1514.]); Li et al. (1995[Li, S., Lundquist, K., Soubbotin, N. & Stomberg, R. (1995). Acta Cryst. C51, 2366-2369.]); Huang et al. (2006[Huang, S.-P., Li, H.-T., Shi, H.-P. & Tan, G.-F. (2006). Acta Cryst. E62, o1541-o1542.]). For structural and theoretical aspects on the keto-enol equilibrium of salicyl­aldehyde Schiff bases, see: Chatziefthimiou et al. (2006[Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110, 23701.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15Br2NO2·CH4O

  • Mr = 445.15

  • Monoclinic, P 21 /n

  • a = 8.752 (6) Å

  • b = 16.308 (10) Å

  • c = 13.001 (8) Å

  • β = 104.047 (6)°

  • V = 1800 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.52 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.337, Tmax = 0.406

  • 8282 measured reflections

  • 3292 independent reflections

  • 1674 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.133

  • S = 1.00

  • 3292 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.93 2.731 (7) 154
O3—H3⋯O1ii 0.82 2.05 2.786 (8) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 2,3-dibromo-4-hydroxy-5-methoxybenzaldehyde acts as an important precursor for the synthesis of bromophenols, which have been reported to possess a variety of biological activities (Liu et al., 2011). As an extension of our work on the 2,3-dibromo-4-hydroxy-5-methoxybenzaldehyde, the title compound was synthesized by condensing 2,3-dibromo-4-hydroxy-5-methoxybenzaldehyde with phenethylamine, and attempts to investigate its biological activities were carried out.

In the crystal structure of the title compound, C16H15Br2NO2.CH4O, the mean planes of the substituted cyclohexa-2,5-dien-1-one and phenyl rings are almost parallel [dihedral angle = 7.84 (4)°]. Difference Fourier maps clearly showed that the N1 atom is protonated rather than the O1 atom indicating a methylidenecyclohexa-2,5-dien-1-one skeleton (Palmer et al., 1973; Huang et al., 2006; Chatziefthimiou et al., 2006). The N1 and O1 atoms are connected via a short intermolecular N—H···O hydrogen bond [N1···O1i = 2.731 (7) Å; (i) = x - 1/2, -y + 3/2, z - 1/2] generating infinite one-dimensional [101] chains (Chatziefthimiou et al., 2006). The solvent molecules of methanol are connected with the main species by O3—H3···O1ii interactions [O3···O1ii = 2.786 (8) Å; (ii) = x - 1, y, z].

Related literature top

For background to bromophenols and their bioactivity, see: Liu et al. (2011). For related structures, see: Palmer et al. (1973); Li et al. (1995); Huang et al. (2006). For structural and theoretical aspects on the keto-enol equilibrium of salicylaldehyde Schiff bases, see: Chatziefthimiou et al. (2006).

Experimental top

2,3-Dibromo-4-hydroxy-5-methoxybenzaldehyde (0.31 g) and phenethylamine (0.12 g) were dissolved in methanol (20 ml). The mixture was stirred at room temperature for 30 min to give a clear solution. Keeping the solution in air for 5 days, yellow block-shaped single crystals suitable for X-ray diffraction analysis were obtained at the bottom of the vessel.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C) for the amino H atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Different views of the crystal packing showing N–H···O and O–H···O hydrogen bonds (dashed lines).
2,3-Dibromo-6-methoxy-4-[(phenethylamino)methylidene]cyclohexa-2,5-dien-1- one methanol monosolvate top
Crystal data top
C16H15Br2NO2·CH4OZ = 4
Mr = 445.15F(000) = 888
Monoclinic, P21/nDx = 1.643 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.752 (6) ŵ = 4.52 mm1
b = 16.308 (10) ÅT = 296 K
c = 13.001 (8) ÅBlock, yellow
β = 104.047 (6)°0.25 × 0.22 × 0.20 mm
V = 1800 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3292 independent reflections
Radiation source: fine-focus sealed tube1674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.337, Tmax = 0.406k = 1914
8282 measured reflectionsl = 1215
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0388P)2 + 2.4528P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3292 reflectionsΔρmax = 0.62 e Å3
211 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0103 (10)
Crystal data top
C16H15Br2NO2·CH4OV = 1800 (2) Å3
Mr = 445.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.752 (6) ŵ = 4.52 mm1
b = 16.308 (10) ÅT = 296 K
c = 13.001 (8) Å0.25 × 0.22 × 0.20 mm
β = 104.047 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3292 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1674 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 0.406Rint = 0.072
8282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.00Δρmax = 0.62 e Å3
3292 reflectionsΔρmin = 0.60 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.50517 (10)0.54245 (5)0.37790 (6)0.0638 (3)
Br20.78645 (10)0.65471 (6)0.52622 (6)0.0728 (3)
O10.9067 (5)0.7788 (3)0.3957 (3)0.0515 (13)
O20.8183 (6)0.8146 (3)0.1919 (3)0.0544 (13)
O30.1533 (9)0.8797 (5)0.3731 (6)0.129 (3)
H30.10900.83840.38730.193*
N10.3484 (6)0.6175 (3)0.0466 (4)0.0429 (15)
H10.38480.65720.01620.051*
C10.5918 (7)0.6306 (4)0.3183 (5)0.0401 (17)
C20.7125 (8)0.6750 (4)0.3797 (5)0.0404 (17)
C30.7919 (8)0.7392 (4)0.3400 (5)0.0373 (16)
C40.7342 (7)0.7544 (4)0.2277 (5)0.0363 (16)
C50.6117 (7)0.7126 (4)0.1670 (5)0.0385 (17)
H50.57640.72600.09560.046*
C60.5359 (7)0.6489 (4)0.2093 (5)0.0347 (16)
C70.4111 (7)0.6048 (4)0.1455 (5)0.0375 (16)
H70.36940.56230.17780.045*
C80.2192 (8)0.5689 (5)0.0177 (5)0.054 (2)
H8A0.13690.60540.05530.065*
H8B0.17490.53420.02830.065*
C90.2756 (8)0.5160 (5)0.0969 (6)0.061 (2)
H9A0.32380.55060.14100.074*
H9B0.35510.47810.05910.074*
C100.1429 (8)0.4687 (5)0.1657 (6)0.0500 (19)
C110.0749 (9)0.4913 (5)0.2688 (6)0.061 (2)
H110.11260.53740.29680.074*
C120.0470 (10)0.4476 (6)0.3314 (7)0.080 (3)
H120.09060.46440.40070.096*
C130.1036 (10)0.3802 (6)0.2923 (7)0.070 (3)
H130.18450.34970.33480.084*
C140.0414 (9)0.3580 (5)0.1913 (7)0.067 (2)
H140.08130.31240.16360.080*
C150.0808 (8)0.4018 (5)0.1279 (6)0.055 (2)
H150.12150.38540.05810.066*
C170.2388 (12)0.8606 (7)0.3029 (8)0.108 (4)
H17A0.30990.90470.29920.162*
H17B0.16950.85200.23420.162*
H17C0.29790.81150.32540.162*
C160.7803 (10)0.8284 (5)0.0801 (6)0.075 (3)
H16A0.79630.77880.04440.112*
H16B0.84680.87080.06390.112*
H16C0.67210.84490.05680.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0743 (6)0.0668 (6)0.0470 (5)0.0142 (5)0.0082 (4)0.0219 (4)
Br20.0894 (7)0.0934 (7)0.0260 (4)0.0155 (5)0.0043 (4)0.0126 (4)
O10.059 (3)0.059 (3)0.031 (3)0.010 (3)0.001 (2)0.010 (2)
O20.072 (3)0.058 (3)0.031 (3)0.023 (3)0.008 (3)0.003 (2)
O30.127 (6)0.181 (8)0.090 (5)0.085 (6)0.049 (5)0.052 (6)
N10.047 (3)0.048 (4)0.029 (3)0.004 (3)0.001 (3)0.001 (3)
C10.039 (4)0.047 (4)0.033 (4)0.008 (3)0.008 (3)0.006 (3)
C20.051 (4)0.046 (4)0.023 (3)0.007 (4)0.006 (3)0.003 (3)
C30.042 (4)0.041 (4)0.028 (4)0.003 (3)0.007 (3)0.006 (3)
C40.043 (4)0.038 (4)0.029 (4)0.001 (3)0.012 (3)0.001 (3)
C50.041 (4)0.048 (4)0.022 (3)0.003 (3)0.001 (3)0.001 (3)
C60.036 (4)0.038 (4)0.029 (4)0.002 (3)0.006 (3)0.000 (3)
C70.043 (4)0.040 (4)0.031 (4)0.002 (3)0.011 (3)0.002 (3)
C80.051 (4)0.067 (5)0.042 (4)0.008 (4)0.009 (4)0.009 (4)
C90.047 (5)0.081 (6)0.057 (5)0.012 (4)0.014 (4)0.024 (4)
C100.040 (4)0.057 (5)0.051 (5)0.001 (4)0.007 (4)0.020 (4)
C110.076 (6)0.060 (5)0.046 (5)0.005 (5)0.012 (5)0.008 (4)
C120.085 (7)0.089 (7)0.052 (5)0.006 (6)0.008 (5)0.019 (5)
C130.060 (6)0.070 (6)0.073 (7)0.001 (5)0.004 (5)0.033 (5)
C140.062 (5)0.062 (6)0.080 (7)0.007 (4)0.022 (5)0.018 (5)
C150.055 (5)0.060 (5)0.048 (5)0.006 (4)0.010 (4)0.009 (4)
C170.111 (9)0.129 (9)0.095 (8)0.031 (7)0.048 (7)0.020 (7)
C160.096 (7)0.081 (6)0.043 (5)0.031 (5)0.010 (5)0.012 (4)
Geometric parameters (Å, º) top
Br1—C11.878 (7)C8—H8B0.9700
Br2—C21.886 (6)C9—C101.497 (9)
O1—C31.263 (7)C9—H9A0.9700
O2—C41.374 (7)C9—H9B0.9700
O2—C161.428 (8)C10—C151.363 (10)
O3—C171.350 (10)C10—C111.377 (9)
O3—H30.8200C11—C121.373 (10)
N1—C71.286 (7)C11—H110.9300
N1—C81.465 (8)C12—C131.355 (11)
N1—H10.8600C12—H120.9300
C1—C21.366 (9)C13—C141.344 (11)
C1—C61.414 (8)C13—H130.9300
C2—C31.422 (9)C14—C151.380 (10)
C3—C41.445 (8)C14—H140.9300
C4—C51.352 (8)C15—H150.9300
C5—C61.414 (8)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C71.399 (8)C17—H17C0.9600
C7—H70.9300C16—H16A0.9600
C8—C91.514 (9)C16—H16B0.9600
C8—H8A0.9700C16—H16C0.9600
C4—O2—C16116.5 (5)C8—C9—H9A109.3
C17—O3—H3109.5C10—C9—H9B109.3
C7—N1—C8124.5 (6)C8—C9—H9B109.3
C7—N1—H1117.7H9A—C9—H9B108.0
C8—N1—H1117.7C15—C10—C11116.6 (7)
C2—C1—C6120.3 (6)C15—C10—C9121.1 (7)
C2—C1—Br1119.8 (5)C11—C10—C9122.3 (7)
C6—C1—Br1119.9 (5)C12—C11—C10121.9 (8)
C1—C2—C3123.7 (6)C12—C11—H11119.0
C1—C2—Br2121.6 (5)C10—C11—H11119.0
C3—C2—Br2114.7 (5)C13—C12—C11120.0 (8)
O1—C3—C2124.0 (6)C13—C12—H12120.0
O1—C3—C4121.7 (6)C11—C12—H12120.0
C2—C3—C4114.3 (6)C14—C13—C12119.1 (8)
C5—C4—O2125.2 (6)C14—C13—H13120.4
C5—C4—C3122.5 (6)C12—C13—H13120.4
O2—C4—C3112.3 (5)C13—C14—C15121.0 (8)
C4—C5—C6121.6 (6)C13—C14—H14119.5
C4—C5—H5119.2C15—C14—H14119.5
C6—C5—H5119.2C10—C15—C14121.2 (7)
C7—C6—C5121.3 (6)C10—C15—H15119.4
C7—C6—C1121.1 (6)C14—C15—H15119.4
C5—C6—C1117.6 (6)O3—C17—H17A109.5
N1—C7—C6126.3 (6)O3—C17—H17B109.5
N1—C7—H7116.9H17A—C17—H17B109.5
C6—C7—H7116.9O3—C17—H17C109.5
N1—C8—C9111.2 (6)H17A—C17—H17C109.5
N1—C8—H8A109.4H17B—C17—H17C109.5
C9—C8—H8A109.4O2—C16—H16A109.5
N1—C8—H8B109.4O2—C16—H16B109.5
C9—C8—H8B109.4H16A—C16—H16B109.5
H8A—C8—H8B108.0O2—C16—H16C109.5
C10—C9—C8111.5 (6)H16A—C16—H16C109.5
C10—C9—H9A109.3H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.932.731 (7)154
O3—H3···O1ii0.822.052.786 (8)150
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H15Br2NO2·CH4O
Mr445.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.752 (6), 16.308 (10), 13.001 (8)
β (°) 104.047 (6)
V3)1800 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.52
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.337, 0.406
No. of measured, independent and
observed [I > 2σ(I)] reflections
8282, 3292, 1674
Rint0.072
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.133, 1.00
No. of reflections3292
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.60

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.932.731 (7)154.4
O3—H3···O1ii0.822.052.786 (8)149.8
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

This project was sponsored by the ShanDong Province Science & Technology Innovation Foundation (People's Republic of China).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110, 23701.  Web of Science CSD CrossRef PubMed Google Scholar
First citationHuang, S.-P., Li, H.-T., Shi, H.-P. & Tan, G.-F. (2006). Acta Cryst. E62, o1541–o1542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S., Lundquist, K., Soubbotin, N. & Stomberg, R. (1995). Acta Cryst. C51, 2366–2369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, M., Hansen, P. E. & Lin, X. (2011). Mar. Drugs, 9, 1273–1292.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPalmer, K. J., Wong, R. Y. & Jurd, L. (1973). Acta Cryst. B29, 1509–1514.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds