organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,8-Dimesitylboranyl-6H,12H-5,11-methano­dibenzo[b,f][1,5]diazo­cine

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: chunxue1982@126.com

(Received 12 November 2011; accepted 28 November 2011; online 3 December 2011)

In the title compound, C51H56B2N2, a substituted Tröger's base, the dihedral angle between the two benzene rings constituting the Tröger's base framework is 104.42 (6)°. The crystal structure is stabilized by C—H⋯π and weak C—H⋯N inter­actions.

Related literature

For the original Tröger's base, see: Tröger (1887[Tröger, J. (1887). J. Prakt. Chem. 36, 225-245.]). For the chemistry of Tröger's base, see: Valík et al. (2005[Valík, M., Strongin, R. M. & Král, V. (2005). Supramol. Chem. 17, 347-367.]); Dolenský et al. (2007[Dolenský, B., Elguero, J., Král, V., Pardo, C. & Valík, M. (2007). Adv. Heterocycl. Chem. 93, 1-56.]); Sergeyev (2009[Sergeyev, S. (2009). Helv. Chim. Acta, 92, 415-444.]). For optoelectric applications of Tröger's base, see: Yuan et al. (2011[Yuan, C. X., Xin, Q., Liu, H. J., Wang, L., Jiang, M. H. & Tao, X. T. (2011). Sci. Chin. Chem. 54, 587-595.]); Xin et al. (2008[Xin, Q., Tao, X. T., Wang, F. Z., Sun, J. L., Zou, D. C., Wang, F. J., Liu, H. J., Liu, Z. & Jiang, M. H. (2008). Org. Electron. 9, 1076-1086.]); Yuan et al. (2007[Yuan, C. X., Tao, X. T., Ren, Y., Yang, J. X., Yu, W. T., Wang, L. & Jiang, M. H. (2007). J. Phys. Chem. C, 111, 12811-12816.]). For applications of organic boron compounds with dimesitylboryl groups in organic optoelectronics, see: Shirota & Noda (1998[Shirota, Y. & Noda, T. (1998). J. Am. Chem. Soc. 120, 9714-9715.]); Zhao et al. (2006[Zhao, C. H., Wakamiya, A., Inukai, Y. & Yamaguchi, S. (2006). J. Am. Chem. Soc. 128, 15934-15935.]); Collings et al. (2009[Collings, J. C., Poon, S.-Y., Droumaguet, C. L., Charlot, M., Katan, C., Pålsson, L. O., Beeby, A., Mosely, J. A., Kaiser, H. M., Kaufmann, D., Wong, W.-Y., Blanchard-Desce, M. & Marder, T. B. (2009). Chem. Eur. J. 15, 198-208.]); Jäkle (2010[Jäkle, F. (2010). Chem. Rev. 110, 3985-4022.]).

[Scheme 1]

Experimental

Crystal data
  • C51H56B2N2

  • Mr = 718.60

  • Triclinic, [P \overline 1]

  • a = 9.3565 (3) Å

  • b = 14.0077 (6) Å

  • c = 16.3650 (6) Å

  • α = 86.079 (3)°

  • β = 83.808 (3)°

  • γ = 88.377 (3)°

  • V = 2126.87 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.65 × 0.41 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.858, Tmax = 1.000

  • 25278 measured reflections

  • 8341 independent reflections

  • 6172 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.172

  • S = 1.02

  • 8341 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 and Cg8 are the centroids of the C34–C37/C39/C40 and C43/C44/C46/C47/C49/C50 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14C⋯N2i 0.96 2.64 3.448 (3) 141
C15—H15ACg7ii 0.93 2.94 3.844 (2) 166
C38—H40BCg8iii 0.97 3.00 3.751 (3) 136
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tröger's base (TB) (Tröger, 1887), an old compound with more than 100 years' history, has gained current interest because of its C2 symmetry, chirality, and rigid concave shape (Valík et al., 2005; Dolenský et al., 2007; Sergeyev et al., 2009). Our previous research showed that its special lambda (Λ)-shaped configuration is disadvantageous to formation of ππ close stacking, resulting in high solid state fluorescence in organic compounds based on TB (Yuan et al., 2007; Xin et al., 2008; Yuan et al., 2011). In addition, organic boron compounds with dimesitylboryl groups exhibit interesting optoelectronic properties (Shirota & Noda, 1998; Zhao et al.,2006; Collings et al., 2009; Jäkle et al., 2010). In our research in searching for new optoelectronic materials based on TB, the title compound was designed and synthesized. Here, we report the synthesis and crystal structure of the title compound C51H56B2N2 (I).

In the racemic title compound (Fig. 1), the dihedral angle between the two benzene rings constituting the TB framework is 104.42 (6)°, which lies within the normal range for analogs of TB (Dolenský et al., 2007). The packing structure of (I) (Fig. 2) shows that molecules with the same chirality point in the same direction, while molecules with different chirality point in the opposite direction. The isomers stack alternately, forming an infinite three-dimensional network by means of noncovalent intermolecular C—H···π interactions between adjacent different chirality molecules and weak C—H···N interactions between adjacent same chirality molecules (Table 1). As expected, there are no obvious intermolecular π···π interactions in the crystal structure.

Related literature top

For the original Tröger's base, see: Tröger (1887). For the chemistry of Tröger's base, see: Valík et al. (2005); Dolenský et al. (2007); Sergeyev et al. (2009). For optoelectric applications of Tröger's base, see: Yuan et al. (2011); Xin et al. (2008); Yuan et al. (2007). For applications of organic boron compounds with dimesitylboryl groups in organic optoelectronics, see: Shirota & Noda (1998); Zhao et al. (2006); Collings et al. (2009); Jäkle (2010).

Experimental top

The reaction scheme for the synthesis of the title compound is shown in Fig. 3. n-Butyllithium (1.6 M in hexane, 1.86 ml) was added slowly to a solution of 2,8-dibromo-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine (1.243 mmol, 0.472 g) in anhydrous THF (20 ml) under nitrogen at -78 °C, and followed by stirring for a further 1.5 h. Dimesitylboron fluoride (3.729 mmol, 1 g in 5 ml THF) was then added dropwise to the reaction mixture and the reaction mixture was kept at -78 °C for another 1 h, then allowed to naturally rise to room temperature overnight. Water (20 ml) was added and the mixture was extracted with CH2Cl2 three times and the organic phase was dried over anhydrous MgSO4. After removing all solvents, the residue was purified by silica gel column chromatography with petroleum ether/EtOAc (10:1) as the eluent to yield the product as a white powder (0.58 g, 65%). The colorless prismatic single-crystal of compound (I) suitable for X-ray analysis was obtained by slow evaporation of its dichloromethane-petroleum ether solution.

1H NMR (300 MHz, CDCl3), δ (ppm): 1.90 (s, 24H), 2.28 (s, 12H), 4.15 (d, 2H, J = 16.5 Hz), 4.37 (s, 2H), 4.64 (d, 2H, J = 16.5 Hz), 6.78 (s, 8H), 7.04 (m, 4H), 7.27 (m, 2H). 13C NMR (75 MHz, CDCl3), δ (ppm): 20.71, 22.80, 58.77, 66.55, 123.75, 126.58, 127.63, 135.19, 135.35, 137.94, 140.23, 141.16, 151.39.

Refinement top

All H atoms were fixed geometrically and were allowed to ride on their attached atoms, with C—H = 0.93 Å (aromatic), 0.97 (CH2), and 0.96 Å (CH3). The Uiso values were constrained to be 1.5Ueq(C) of the carrier atom for methyl H atoms and 1.2Ueq(C) for the remaining H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing structure of the title compound viewed down the a axis, showing intermolecular C—H···π and C—H···N interactions as blue and orange dashed lines, respectively. H atoms not involved in C—H···π and C—H···N interactions have been omitted for clarity. (S, S)-(I) and (R, R)-(I) are colored as green and purple, respectively.
[Figure 3] Fig. 3. Synthetic scheme for the synthesis of (I)
5-[bis(2,4,6-trimethylphenyl)boranyl]-13-[(2,4,5-trimethylphenyl)(2,4,6- trimethylphenyl)boranyl]-1,9-diazatetracyclo[7.7.1.02,7.010,15]heptadeca- 2,4,6,10 (15),11,13-hexaene top
Crystal data top
C51H56B2N2Z = 2
Mr = 718.60F(000) = 772
Triclinic, P1Dx = 1.122 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3565 (3) ÅCell parameters from 8341 reflections
b = 14.0077 (6) Åθ = 3.2–26°
c = 16.3650 (6) ŵ = 0.06 mm1
α = 86.079 (3)°T = 293 K
β = 83.808 (3)°Prism, colourless
γ = 88.377 (3)°0.65 × 0.41 × 0.22 mm
V = 2126.87 (14) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini CCD
diffractometer
8341 independent reflections
Radiation source: fine-focus sealed tube6172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.858, Tmax = 1.000k = 1717
25278 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.8104P]
where P = (Fo2 + 2Fc2)/3
8341 reflections(Δ/σ)max < 0.001
496 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C51H56B2N2γ = 88.377 (3)°
Mr = 718.60V = 2126.87 (14) Å3
Triclinic, P1Z = 2
a = 9.3565 (3) ÅMo Kα radiation
b = 14.0077 (6) ŵ = 0.06 mm1
c = 16.3650 (6) ÅT = 293 K
α = 86.079 (3)°0.65 × 0.41 × 0.22 mm
β = 83.808 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini CCD
diffractometer
8341 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
6172 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 1.000Rint = 0.026
25278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
8341 reflectionsΔρmin = 0.28 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51726 (17)0.23628 (12)0.05204 (10)0.0431 (4)
N20.68504 (18)0.10503 (11)0.07519 (10)0.0423 (4)
B20.7203 (2)0.04164 (15)0.27696 (14)0.0393 (5)
B10.9474 (2)0.51197 (16)0.18209 (13)0.0392 (5)
C10.5453 (2)0.14646 (15)0.09129 (13)0.0506 (5)
H1A0.54260.15770.15030.061*
H1B0.47070.10160.07080.061*
C20.7951 (2)0.16395 (13)0.12414 (12)0.0429 (5)
H2A0.79950.14940.18150.052*
H2B0.88820.14830.10530.052*
C30.7623 (2)0.26997 (13)0.11699 (11)0.0364 (4)
C40.63185 (19)0.30059 (13)0.07553 (11)0.0366 (4)
C50.6121 (2)0.39681 (14)0.06065 (12)0.0416 (4)
H5A0.52900.41700.02960.050*
C60.7135 (2)0.46231 (14)0.09109 (12)0.0417 (4)
H6A0.69750.52620.08000.050*
C70.8414 (2)0.43589 (13)0.13864 (11)0.0382 (4)
C80.8623 (2)0.33790 (13)0.14839 (11)0.0378 (4)
H8A0.94740.31730.17730.045*
C90.8986 (2)0.62122 (13)0.18429 (12)0.0389 (4)
C100.9727 (2)0.68868 (14)0.14580 (12)0.0420 (4)
C111.0972 (2)0.65917 (17)0.09758 (14)0.0556 (6)
H11A1.13380.71460.07610.083*
H11B1.17180.62990.13310.083*
H11C1.06510.61420.05290.083*
C120.9304 (2)0.78453 (14)0.15086 (13)0.0480 (5)
H12A0.97810.82760.12320.058*
C130.8197 (2)0.81844 (14)0.19557 (13)0.0470 (5)
C140.7811 (3)0.92348 (15)0.20363 (17)0.0670 (7)
H14A0.70240.93320.23660.100*
H14B0.86270.95820.22950.100*
H14C0.75370.94600.15000.100*
C150.7466 (2)0.75212 (14)0.23226 (13)0.0459 (5)
H15A0.67180.77320.26250.055*
C160.7802 (2)0.65504 (14)0.22575 (12)0.0436 (5)
C170.6879 (3)0.58954 (16)0.26633 (17)0.0622 (6)
H17A0.61390.62660.29090.093*
H17B0.64470.54330.22580.093*
H17C0.74650.55710.30810.093*
C181.0993 (2)0.48020 (13)0.22664 (13)0.0435 (5)
C191.1326 (3)0.49816 (15)0.31254 (14)0.0534 (5)
C201.0258 (3)0.5441 (2)0.36643 (15)0.0751 (8)
H20A1.06870.55000.42250.113*
H20B0.99830.60640.34840.113*
H20C0.94230.50510.36280.113*
C211.2663 (3)0.47011 (18)0.35033 (17)0.0684 (7)
H21A1.28520.48060.40710.082*
C221.3716 (3)0.42734 (19)0.3067 (2)0.0720 (8)
C231.5150 (3)0.3967 (3)0.3497 (3)0.1117 (14)
H23A1.57420.36850.30980.168*
H23B1.56170.45150.37810.168*
H23C1.50000.35070.38870.168*
C241.3400 (2)0.41133 (17)0.22313 (19)0.0662 (7)
H24A1.41040.38400.19240.079*
C251.2059 (2)0.43463 (15)0.18253 (15)0.0512 (5)
C261.1834 (3)0.4101 (2)0.09124 (16)0.0723 (7)
H26A1.26880.37940.07340.108*
H26B1.10410.36760.07900.108*
H26C1.16280.46750.06300.108*
C270.4894 (2)0.21334 (15)0.03740 (12)0.0467 (5)
H27A0.39450.18660.05000.056*
H27B0.49140.27160.06610.056*
C280.60092 (19)0.14230 (13)0.06734 (11)0.0377 (4)
C290.69825 (19)0.09638 (13)0.01080 (11)0.0367 (4)
C300.8076 (2)0.03798 (13)0.03987 (12)0.0401 (4)
H30A0.87440.00890.00260.048*
C310.8177 (2)0.02289 (14)0.12294 (12)0.0413 (4)
H31A0.89260.01540.14060.050*
C320.7184 (2)0.06351 (13)0.18185 (11)0.0385 (4)
C330.6120 (2)0.12375 (14)0.15082 (12)0.0396 (4)
H33A0.54540.15280.18810.048*
C340.6102 (2)0.09831 (14)0.33754 (11)0.0406 (4)
C350.6192 (2)0.19725 (15)0.34510 (12)0.0457 (5)
C420.7362 (3)0.25709 (17)0.29743 (16)0.0668 (7)
H37A0.72310.32250.31130.100*
H37B0.73120.25340.23940.100*
H37C0.82840.23340.31130.100*
C360.5181 (2)0.24404 (17)0.39760 (13)0.0538 (5)
H38A0.52870.30880.40400.065*
C370.4024 (3)0.19763 (19)0.44059 (13)0.0588 (6)
C380.2895 (3)0.2517 (3)0.49355 (19)0.0949 (10)
H40A0.31460.31780.49180.142*
H40B0.28430.22480.54930.142*
H40C0.19780.24670.47310.142*
C390.3923 (2)0.10108 (19)0.43229 (14)0.0586 (6)
H41A0.31480.06870.46070.070*
C400.4933 (2)0.05027 (16)0.38313 (12)0.0467 (5)
C410.4710 (3)0.05449 (17)0.37687 (17)0.0651 (7)
H43A0.38670.07390.41210.098*
H43B0.55310.09030.39360.098*
H43C0.45880.06630.32100.098*
C430.8282 (2)0.03840 (14)0.30881 (11)0.0410 (4)
C440.8245 (2)0.13399 (15)0.28621 (12)0.0484 (5)
C450.7138 (3)0.16693 (17)0.23423 (17)0.0706 (7)
H46A0.72950.23370.22580.106*
H46B0.72230.13090.18190.106*
H46C0.61930.15710.26190.106*
C460.9208 (3)0.20248 (17)0.31466 (14)0.0594 (6)
H47A0.91440.26530.30050.071*
C471.0246 (3)0.1808 (2)0.36275 (15)0.0654 (7)
C481.1298 (4)0.2561 (3)0.3933 (2)0.1131 (13)
H49A1.11100.31660.37280.170*
H49B1.11860.26150.45240.170*
H49C1.22630.23780.37390.170*
C491.0302 (2)0.0873 (2)0.38415 (14)0.0614 (6)
H50A1.10130.07110.41600.074*
C500.9336 (2)0.01686 (16)0.35988 (12)0.0481 (5)
C510.9476 (3)0.08288 (19)0.38673 (16)0.0653 (7)
H52A1.02460.08380.42100.098*
H52B0.85930.10220.41720.098*
H52C0.96770.12620.33910.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0345 (8)0.0484 (10)0.0461 (9)0.0048 (7)0.0092 (7)0.0084 (7)
N20.0504 (10)0.0381 (8)0.0387 (9)0.0070 (7)0.0052 (7)0.0019 (7)
B20.0376 (11)0.0381 (11)0.0428 (12)0.0068 (9)0.0072 (9)0.0001 (9)
B10.0407 (11)0.0400 (11)0.0385 (11)0.0025 (9)0.0096 (9)0.0042 (9)
C10.0517 (12)0.0526 (12)0.0498 (12)0.0127 (10)0.0177 (10)0.0042 (10)
C20.0540 (12)0.0358 (10)0.0372 (10)0.0014 (9)0.0043 (9)0.0042 (8)
C30.0415 (10)0.0357 (9)0.0316 (9)0.0013 (8)0.0035 (8)0.0008 (7)
C40.0333 (9)0.0423 (10)0.0339 (9)0.0014 (8)0.0072 (8)0.0035 (8)
C50.0329 (9)0.0467 (11)0.0437 (11)0.0078 (8)0.0002 (8)0.0016 (8)
C60.0429 (11)0.0352 (10)0.0469 (11)0.0053 (8)0.0043 (9)0.0053 (8)
C70.0373 (10)0.0380 (10)0.0391 (10)0.0015 (8)0.0038 (8)0.0026 (8)
C80.0360 (9)0.0395 (10)0.0368 (9)0.0029 (8)0.0010 (8)0.0030 (8)
C90.0382 (10)0.0361 (10)0.0417 (10)0.0042 (8)0.0001 (8)0.0027 (8)
C100.0414 (10)0.0421 (11)0.0414 (10)0.0106 (8)0.0044 (8)0.0053 (8)
C110.0534 (13)0.0603 (14)0.0553 (13)0.0144 (11)0.0108 (11)0.0061 (11)
C120.0493 (12)0.0415 (11)0.0524 (12)0.0146 (9)0.0077 (10)0.0135 (9)
C130.0459 (11)0.0341 (10)0.0568 (12)0.0021 (9)0.0158 (10)0.0055 (9)
C140.0688 (16)0.0363 (11)0.0908 (18)0.0001 (11)0.0171 (14)0.0080 (11)
C150.0423 (11)0.0400 (11)0.0536 (12)0.0018 (9)0.0011 (9)0.0015 (9)
C160.0440 (11)0.0377 (10)0.0495 (11)0.0014 (8)0.0050 (9)0.0054 (8)
C170.0648 (15)0.0453 (12)0.0817 (17)0.0009 (11)0.0311 (13)0.0052 (11)
C180.0420 (11)0.0358 (10)0.0528 (12)0.0061 (8)0.0016 (9)0.0073 (9)
C190.0609 (13)0.0411 (11)0.0569 (13)0.0092 (10)0.0060 (11)0.0096 (10)
C200.096 (2)0.0772 (18)0.0498 (14)0.0014 (16)0.0017 (14)0.0002 (12)
C210.0740 (17)0.0557 (14)0.0716 (16)0.0175 (13)0.0236 (14)0.0203 (12)
C220.0468 (13)0.0620 (16)0.107 (2)0.0127 (12)0.0158 (15)0.0387 (15)
C230.0571 (17)0.113 (3)0.165 (4)0.0117 (17)0.032 (2)0.076 (3)
C240.0419 (12)0.0555 (14)0.105 (2)0.0005 (10)0.0108 (13)0.0305 (14)
C250.0421 (11)0.0432 (11)0.0699 (14)0.0015 (9)0.0085 (10)0.0120 (10)
C260.0622 (15)0.0836 (18)0.0741 (17)0.0123 (14)0.0258 (13)0.0042 (14)
C270.0330 (10)0.0547 (12)0.0494 (12)0.0028 (9)0.0001 (9)0.0106 (9)
C280.0308 (9)0.0389 (10)0.0419 (10)0.0007 (8)0.0010 (8)0.0040 (8)
C290.0381 (10)0.0337 (9)0.0381 (10)0.0077 (8)0.0029 (8)0.0009 (7)
C300.0376 (10)0.0398 (10)0.0421 (10)0.0023 (8)0.0017 (8)0.0058 (8)
C310.0348 (10)0.0403 (10)0.0483 (11)0.0048 (8)0.0054 (8)0.0015 (8)
C320.0361 (10)0.0381 (10)0.0407 (10)0.0011 (8)0.0033 (8)0.0008 (8)
C330.0335 (9)0.0427 (10)0.0407 (10)0.0020 (8)0.0027 (8)0.0002 (8)
C340.0387 (10)0.0468 (11)0.0357 (10)0.0007 (8)0.0046 (8)0.0033 (8)
C350.0453 (11)0.0470 (11)0.0432 (11)0.0001 (9)0.0011 (9)0.0014 (9)
C420.0692 (16)0.0493 (13)0.0771 (17)0.0102 (12)0.0163 (13)0.0044 (12)
C360.0595 (13)0.0572 (13)0.0440 (11)0.0090 (11)0.0028 (10)0.0070 (10)
C370.0519 (13)0.0812 (17)0.0397 (11)0.0125 (12)0.0050 (10)0.0002 (11)
C380.081 (2)0.119 (3)0.0756 (19)0.0248 (19)0.0261 (16)0.0110 (18)
C390.0442 (12)0.0805 (17)0.0471 (12)0.0031 (11)0.0042 (10)0.0109 (11)
C400.0413 (11)0.0562 (12)0.0415 (11)0.0036 (9)0.0054 (9)0.0071 (9)
C410.0548 (14)0.0626 (15)0.0768 (17)0.0161 (12)0.0074 (12)0.0114 (12)
C430.0407 (10)0.0475 (11)0.0338 (9)0.0001 (8)0.0018 (8)0.0008 (8)
C440.0559 (12)0.0469 (12)0.0404 (11)0.0036 (10)0.0001 (9)0.0019 (9)
C450.096 (2)0.0479 (13)0.0715 (16)0.0103 (13)0.0217 (15)0.0085 (12)
C460.0688 (15)0.0538 (13)0.0492 (13)0.0147 (11)0.0123 (12)0.0070 (10)
C470.0513 (13)0.0804 (18)0.0567 (14)0.0226 (12)0.0073 (11)0.0202 (13)
C480.089 (2)0.115 (3)0.127 (3)0.052 (2)0.010 (2)0.027 (2)
C490.0398 (12)0.0920 (19)0.0499 (13)0.0043 (12)0.0058 (10)0.0127 (12)
C500.0401 (11)0.0653 (14)0.0376 (10)0.0018 (10)0.0021 (9)0.0030 (9)
C510.0590 (14)0.0805 (17)0.0607 (15)0.0077 (13)0.0188 (12)0.0125 (13)
Geometric parameters (Å, º) top
N1—C41.424 (2)C23—H23C0.9600
N1—C11.456 (3)C24—C251.396 (3)
N1—C271.474 (2)C24—H24A0.9300
N2—C291.422 (2)C25—C261.504 (3)
N2—C11.458 (3)C26—H26A0.9600
N2—C21.470 (2)C26—H26B0.9600
B2—C321.567 (3)C26—H26C0.9600
B2—C431.587 (3)C27—C281.518 (3)
B2—C341.586 (3)C27—H27A0.9700
B1—C71.558 (3)C27—H27B0.9700
B1—C91.584 (3)C28—C331.388 (3)
B1—C181.593 (3)C28—C291.402 (3)
C1—H1A0.9700C29—C301.395 (3)
C1—H1B0.9700C30—C311.374 (3)
C2—C31.518 (2)C30—H30A0.9300
C2—H2A0.9700C31—C321.403 (3)
C2—H2B0.9700C31—H31A0.9300
C3—C81.388 (3)C32—C331.401 (3)
C3—C41.402 (3)C33—H33A0.9300
C4—C51.390 (3)C34—C351.405 (3)
C5—C61.369 (3)C34—C401.415 (3)
C5—H5A0.9300C35—C361.389 (3)
C6—C71.410 (3)C35—C421.512 (3)
C6—H6A0.9300C42—H37A0.9600
C7—C81.398 (3)C42—H37B0.9600
C8—H8A0.9300C42—H37C0.9600
C9—C101.408 (3)C36—C371.379 (3)
C9—C161.415 (3)C36—H38A0.9300
C10—C121.389 (3)C37—C391.375 (4)
C10—C111.509 (3)C37—C381.512 (3)
C11—H11A0.9600C38—H40A0.9600
C11—H11B0.9600C38—H40B0.9600
C11—H11C0.9600C38—H40C0.9600
C12—C131.386 (3)C39—C401.387 (3)
C12—H12A0.9300C39—H41A0.9300
C13—C151.376 (3)C40—C411.500 (3)
C13—C141.505 (3)C41—H43A0.9600
C14—H14A0.9600C41—H43B0.9600
C14—H14B0.9600C41—H43C0.9600
C14—H14C0.9600C43—C501.411 (3)
C15—C161.387 (3)C43—C441.416 (3)
C15—H15A0.9300C44—C461.389 (3)
C16—C171.510 (3)C44—C451.510 (3)
C17—H17A0.9600C45—H46A0.9600
C17—H17B0.9600C45—H46B0.9600
C17—H17C0.9600C45—H46C0.9600
C18—C251.407 (3)C46—C471.368 (4)
C18—C191.413 (3)C46—H47A0.9300
C19—C211.393 (3)C47—C491.381 (4)
C19—C201.506 (4)C47—C481.519 (3)
C20—H20A0.9600C48—H49A0.9600
C20—H20B0.9600C48—H49B0.9600
C20—H20C0.9600C48—H49C0.9600
C21—C221.378 (4)C49—C501.387 (3)
C21—H21A0.9300C49—H50A0.9300
C22—C241.372 (4)C50—C511.506 (3)
C22—C231.512 (3)C51—H52A0.9600
C23—H23A0.9600C51—H52B0.9600
C23—H23B0.9600C51—H52C0.9600
C4—N1—C1110.56 (16)C24—C25—C18120.2 (2)
C4—N1—C27114.46 (15)C24—C25—C26117.1 (2)
C1—N1—C27107.63 (16)C18—C25—C26122.75 (19)
C29—N2—C1110.91 (16)C25—C26—H26A109.5
C29—N2—C2114.56 (15)C25—C26—H26B109.5
C1—N2—C2107.14 (15)H26A—C26—H26B109.5
C32—B2—C43118.92 (17)C25—C26—H26C109.5
C32—B2—C34118.46 (17)H26A—C26—H26C109.5
C43—B2—C34122.59 (17)H26B—C26—H26C109.5
C7—B1—C9118.77 (17)N1—C27—C28111.06 (16)
C7—B1—C18120.67 (17)N1—C27—H27A109.4
C9—B1—C18120.52 (17)C28—C27—H27A109.4
N1—C1—N2111.36 (16)N1—C27—H27B109.4
N1—C1—H1A109.4C28—C27—H27B109.4
N2—C1—H1A109.4H27A—C27—H27B108.0
N1—C1—H1B109.4C33—C28—C29118.57 (17)
N2—C1—H1B109.4C33—C28—C27120.96 (17)
H1A—C1—H1B108.0C29—C28—C27120.43 (17)
N2—C2—C3111.47 (15)C30—C29—C28119.17 (17)
N2—C2—H2A109.3C30—C29—N2119.18 (16)
C3—C2—H2A109.3C28—C29—N2121.60 (17)
N2—C2—H2B109.3C31—C30—C29120.74 (17)
C3—C2—H2B109.3C31—C30—H30A119.6
H2A—C2—H2B108.0C29—C30—H30A119.6
C8—C3—C4118.87 (16)C30—C31—C32122.02 (17)
C8—C3—C2120.89 (16)C30—C31—H31A119.0
C4—C3—C2120.20 (17)C32—C31—H31A119.0
C5—C4—C3118.98 (17)C33—C32—C31115.95 (17)
C5—C4—N1119.50 (16)C33—C32—B2120.79 (17)
C3—C4—N1121.45 (17)C31—C32—B2123.23 (17)
C6—C5—C4120.86 (17)C28—C33—C32123.43 (17)
C6—C5—H5A119.6C28—C33—H33A118.3
C4—C5—H5A119.6C32—C33—H33A118.3
C5—C6—C7122.04 (17)C35—C34—C40117.55 (18)
C5—C6—H6A119.0C35—C34—B2122.38 (17)
C7—C6—H6A119.0C40—C34—B2119.99 (18)
C8—C7—C6115.80 (17)C36—C35—C34120.17 (19)
C8—C7—B1122.30 (17)C36—C35—C42117.3 (2)
C6—C7—B1121.79 (17)C34—C35—C42122.54 (18)
C3—C8—C7123.14 (17)C35—C42—H37A109.5
C3—C8—H8A118.4C35—C42—H37B109.5
C7—C8—H8A118.4H37A—C42—H37B109.5
C10—C9—C16117.43 (17)C35—C42—H37C109.5
C10—C9—B1121.20 (17)H37A—C42—H37C109.5
C16—C9—B1121.36 (16)H37B—C42—H37C109.5
C12—C10—C9119.99 (19)C37—C36—C35122.2 (2)
C12—C10—C11118.57 (18)C37—C36—H38A118.9
C9—C10—C11121.44 (18)C35—C36—H38A118.9
C10—C11—H11A109.5C39—C37—C36117.6 (2)
C10—C11—H11B109.5C39—C37—C38121.4 (2)
H11A—C11—H11B109.5C36—C37—C38121.0 (3)
C10—C11—H11C109.5C37—C38—H40A109.5
H11A—C11—H11C109.5C37—C38—H40B109.5
H11B—C11—H11C109.5H40A—C38—H40B109.5
C13—C12—C10122.51 (18)C37—C38—H40C109.5
C13—C12—H12A118.7H40A—C38—H40C109.5
C10—C12—H12A118.7H40B—C38—H40C109.5
C15—C13—C12117.24 (18)C37—C39—C40122.4 (2)
C15—C13—C14121.4 (2)C37—C39—H41A118.8
C12—C13—C14121.4 (2)C40—C39—H41A118.8
C13—C14—H14A109.5C39—C40—C34119.9 (2)
C13—C14—H14B109.5C39—C40—C41118.3 (2)
H14A—C14—H14B109.5C34—C40—C41121.66 (19)
C13—C14—H14C109.5C40—C41—H43A109.5
H14A—C14—H14C109.5C40—C41—H43B109.5
H14B—C14—H14C109.5H43A—C41—H43B109.5
C13—C15—C16122.4 (2)C40—C41—H43C109.5
C13—C15—H15A118.8H43A—C41—H43C109.5
C16—C15—H15A118.8H43B—C41—H43C109.5
C15—C16—C9120.22 (18)C50—C43—C44117.15 (19)
C15—C16—C17117.08 (19)C50—C43—B2121.31 (18)
C9—C16—C17122.68 (18)C44—C43—B2121.53 (17)
C16—C17—H17A109.5C46—C44—C43120.3 (2)
C16—C17—H17B109.5C46—C44—C45117.3 (2)
H17A—C17—H17B109.5C43—C44—C45122.30 (19)
C16—C17—H17C109.5C44—C45—H46A109.5
H17A—C17—H17C109.5C44—C45—H46B109.5
H17B—C17—H17C109.5H46A—C45—H46B109.5
C25—C18—C19117.46 (19)C44—C45—H46C109.5
C25—C18—B1121.76 (18)H46A—C45—H46C109.5
C19—C18—B1120.78 (19)H46B—C45—H46C109.5
C21—C19—C18119.9 (2)C47—C46—C44122.3 (2)
C21—C19—C20117.8 (2)C47—C46—H47A118.9
C18—C19—C20122.2 (2)C44—C46—H47A118.9
C19—C20—H20A109.5C46—C47—C49117.8 (2)
C19—C20—H20B109.5C46—C47—C48121.9 (3)
H20A—C20—H20B109.5C49—C47—C48120.3 (3)
C19—C20—H20C109.5C47—C48—H49A109.5
H20A—C20—H20C109.5C47—C48—H49B109.5
H20B—C20—H20C109.5H49A—C48—H49B109.5
C22—C21—C19122.5 (2)C47—C48—H49C109.5
C22—C21—H21A118.8H49A—C48—H49C109.5
C19—C21—H21A118.8H49B—C48—H49C109.5
C24—C22—C21117.5 (2)C47—C49—C50122.4 (2)
C24—C22—C23121.3 (3)C47—C49—H50A118.8
C21—C22—C23121.1 (3)C50—C49—H50A118.8
C22—C23—H23A109.5C49—C50—C43120.1 (2)
C22—C23—H23B109.5C49—C50—C51118.5 (2)
H23A—C23—H23B109.5C43—C50—C51121.33 (19)
C22—C23—H23C109.5C50—C51—H52A109.5
H23A—C23—H23C109.5C50—C51—H52B109.5
H23B—C23—H23C109.5H52A—C51—H52B109.5
C22—C24—C25122.4 (2)C50—C51—H52C109.5
C22—C24—H24A118.8H52A—C51—H52C109.5
C25—C24—H24A118.8H52B—C51—H52C109.5
C4—N1—C1—N253.9 (2)C19—C18—C25—C26179.0 (2)
C27—N1—C1—N271.8 (2)B1—C18—C25—C261.8 (3)
C29—N2—C1—N153.3 (2)C4—N1—C27—C2876.7 (2)
C2—N2—C1—N172.4 (2)C1—N1—C27—C2846.6 (2)
C29—N2—C2—C378.0 (2)N1—C27—C28—C33168.09 (17)
C1—N2—C2—C345.4 (2)N1—C27—C28—C299.7 (3)
N2—C2—C3—C8170.59 (16)C33—C28—C29—C303.5 (3)
N2—C2—C3—C47.0 (2)C27—C28—C29—C30174.35 (17)
C8—C3—C4—C55.8 (3)C33—C28—C29—N2174.10 (16)
C2—C3—C4—C5171.83 (17)C27—C28—C29—N28.0 (3)
C8—C3—C4—N1171.16 (16)C1—N2—C29—C30164.55 (17)
C2—C3—C4—N111.2 (3)C2—N2—C29—C3074.0 (2)
C1—N1—C4—C5165.27 (17)C1—N2—C29—C2813.1 (2)
C27—N1—C4—C573.0 (2)C2—N2—C29—C28108.4 (2)
C1—N1—C4—C311.6 (2)C28—C29—C30—C312.1 (3)
C27—N1—C4—C3110.09 (19)N2—C29—C30—C31175.63 (17)
C3—C4—C5—C64.8 (3)C29—C30—C31—C321.1 (3)
N1—C4—C5—C6172.19 (17)C30—C31—C32—C332.7 (3)
C4—C5—C6—C70.1 (3)C30—C31—C32—B2175.32 (18)
C5—C6—C7—C83.9 (3)C43—B2—C32—C33171.14 (17)
C5—C6—C7—B1172.35 (18)C34—B2—C32—C336.9 (3)
C9—B1—C7—C8166.36 (17)C43—B2—C32—C316.8 (3)
C18—B1—C7—C811.2 (3)C34—B2—C32—C31175.19 (17)
C9—B1—C7—C69.6 (3)C29—C28—C33—C322.0 (3)
C18—B1—C7—C6172.85 (17)C27—C28—C33—C32175.89 (18)
C4—C3—C8—C72.0 (3)C31—C32—C33—C281.1 (3)
C2—C3—C8—C7175.62 (18)B2—C32—C33—C28176.96 (17)
C6—C7—C8—C32.8 (3)C32—B2—C34—C3567.2 (2)
B1—C7—C8—C3173.40 (17)C43—B2—C34—C35114.8 (2)
C7—B1—C9—C10117.5 (2)C32—B2—C34—C40109.4 (2)
C18—B1—C9—C1064.9 (3)C43—B2—C34—C4068.6 (2)
C7—B1—C9—C1663.2 (3)C40—C34—C35—C361.8 (3)
C18—B1—C9—C16114.3 (2)B2—C34—C35—C36178.43 (19)
C16—C9—C10—C121.3 (3)C40—C34—C35—C42177.9 (2)
B1—C9—C10—C12178.00 (18)B2—C34—C35—C421.3 (3)
C16—C9—C10—C11177.87 (18)C34—C35—C36—C373.3 (3)
B1—C9—C10—C112.8 (3)C42—C35—C36—C37176.4 (2)
C9—C10—C12—C132.6 (3)C35—C36—C37—C392.3 (3)
C11—C10—C12—C13178.26 (19)C35—C36—C37—C38176.5 (2)
C10—C12—C13—C153.3 (3)C36—C37—C39—C400.2 (3)
C10—C12—C13—C14176.79 (19)C38—C37—C39—C40179.0 (2)
C12—C13—C15—C160.1 (3)C37—C39—C40—C341.6 (3)
C14—C13—C15—C16180.0 (2)C37—C39—C40—C41178.8 (2)
C13—C15—C16—C93.7 (3)C35—C34—C40—C390.6 (3)
C13—C15—C16—C17177.8 (2)B2—C34—C40—C39176.12 (19)
C10—C9—C16—C154.3 (3)C35—C34—C40—C41177.68 (19)
B1—C9—C16—C15174.97 (18)B2—C34—C40—C411.0 (3)
C10—C9—C16—C17177.3 (2)C32—B2—C43—C50120.6 (2)
B1—C9—C16—C173.4 (3)C34—B2—C43—C5061.4 (3)
C7—B1—C18—C2564.2 (3)C32—B2—C43—C4458.3 (3)
C9—B1—C18—C25118.3 (2)C34—B2—C43—C44119.6 (2)
C7—B1—C18—C19116.6 (2)C50—C43—C44—C460.7 (3)
C9—B1—C18—C1960.9 (3)B2—C43—C44—C46179.66 (19)
C25—C18—C19—C210.6 (3)C50—C43—C44—C45177.9 (2)
B1—C18—C19—C21179.77 (19)B2—C43—C44—C453.1 (3)
C25—C18—C19—C20178.3 (2)C43—C44—C46—C472.1 (3)
B1—C18—C19—C202.5 (3)C45—C44—C46—C47179.4 (2)
C18—C19—C21—C222.0 (3)C44—C46—C47—C491.1 (3)
C20—C19—C21—C22179.9 (2)C44—C46—C47—C48179.7 (2)
C19—C21—C22—C241.0 (4)C46—C47—C49—C501.2 (3)
C19—C21—C22—C23179.3 (2)C48—C47—C49—C50177.9 (2)
C21—C22—C24—C251.5 (3)C47—C49—C50—C432.6 (3)
C23—C22—C24—C25176.7 (2)C47—C49—C50—C51179.6 (2)
C22—C24—C25—C183.0 (3)C44—C43—C50—C491.6 (3)
C22—C24—C25—C26177.8 (2)B2—C43—C50—C49177.44 (19)
C19—C18—C25—C241.8 (3)C44—C43—C50—C51179.37 (19)
B1—C18—C25—C24177.36 (19)B2—C43—C50—C510.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg7 and Cg8 are the centroids of the C34–C37/C39/C40 and C43/C44/C46/C47/C49/C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14C···N2i0.962.643.448 (3)141
C15—H15A···Cg7ii0.932.943.844 (2)166
C38—H40B···Cg8iii0.973.003.751 (3)136
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC51H56B2N2
Mr718.60
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3565 (3), 14.0077 (6), 16.3650 (6)
α, β, γ (°)86.079 (3), 83.808 (3), 88.377 (3)
V3)2126.87 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.65 × 0.41 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.858, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25278, 8341, 6172
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.172, 1.02
No. of reflections8341
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg7 and Cg8 are the centroids of the C34–C37/C39/C40 and C43/C44/C46/C47/C49/C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14C···N2i0.962.643.448 (3)141.4
C15—H15A···Cg7ii0.932.9363.844 (2)165.8
C38—H40B···Cg8iii0.972.9973.751 (3)136.4
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1.
 

References

First citationCollings, J. C., Poon, S.-Y., Droumaguet, C. L., Charlot, M., Katan, C., Pålsson, L. O., Beeby, A., Mosely, J. A., Kaiser, H. M., Kaufmann, D., Wong, W.-Y., Blanchard-Desce, M. & Marder, T. B. (2009). Chem. Eur. J. 15, 198–208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolenský, B., Elguero, J., Král, V., Pardo, C. & Valík, M. (2007). Adv. Heterocycl. Chem. 93, 1–56.  Google Scholar
First citationJäkle, F. (2010). Chem. Rev. 110, 3985–4022.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSergeyev, S. (2009). Helv. Chim. Acta, 92, 415–444.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirota, Y. & Noda, T. (1998). J. Am. Chem. Soc. 120, 9714–9715.  Google Scholar
First citationTröger, J. (1887). J. Prakt. Chem. 36, 225–245.  CrossRef Google Scholar
First citationValík, M., Strongin, R. M. & Král, V. (2005). Supramol. Chem. 17, 347–367.  Google Scholar
First citationXin, Q., Tao, X. T., Wang, F. Z., Sun, J. L., Zou, D. C., Wang, F. J., Liu, H. J., Liu, Z. & Jiang, M. H. (2008). Org. Electron. 9, 1076–1086.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, C. X., Tao, X. T., Ren, Y., Yang, J. X., Yu, W. T., Wang, L. & Jiang, M. H. (2007). J. Phys. Chem. C, 111, 12811–12816.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, C. X., Xin, Q., Liu, H. J., Wang, L., Jiang, M. H. & Tao, X. T. (2011). Sci. Chin. Chem. 54, 587–595.  Web of Science CrossRef CAS Google Scholar
First citationZhao, C. H., Wakamiya, A., Inukai, Y. & Yamaguchi, S. (2006). J. Am. Chem. Soc. 128, 15934–15935.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds