metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ2-di-3-pyridyl­methanone-κ2N:N′)(μ2-hexa­fluoro­silicato-κ2F:F′)copper(II)] dihydrate]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: ylcnu@yahoo.cn

(Received 20 November 2011; accepted 18 January 2012; online 31 January 2012)

In the title complex, {[Cu(SiF6)(C11H8N2O)2]·2H2O}n, the CuII atom adopts an N4F2-octa­hedral coordination geometry with four pyridine N atoms in the equatorial sites and two F atoms in the axial sites. The di-3-pyridyl­methanone and hexa­fluoro­silicate ligands act as bidentate ligands, linking symmetry-related CuII atoms. Water mol­ecules form O—H⋯O and O—H⋯F hydrogen bonds with the di-3-pyridyl­methanone and hexa­fluoro­silicate ligands. The Cu2+ and SiF62− ions are each located on a twofold axis.

Related literature

For background to the coordination chemistry of pyridyl-based derivatives, see: Manriquez et al. (1991[Manriquez, J. M., Yee, G. T., Mclean, R. S., Epstein, A. J. & Miller, J. S. (1991). Science, 252, 1415-1417.]); Wang et al. (2009[Wang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137-2145.]). For dipyridyl­methanone, see: Boudalis et al. (2003[Boudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411-3418.]). For transition metal complexes of di-3-pyridyl­methanone, see: Chen et al. (2005[Chen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766-768.], 2009[Chen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518-6528.]); Chen & Mak (2005[Chen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1-6.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SiF6)(C11H8N2O)2]·2H2O

  • Mr = 610.05

  • Monoclinic, C 2/c

  • a = 22.276 (3) Å

  • b = 8.0625 (11) Å

  • c = 15.773 (2) Å

  • β = 123.757 (2)°

  • V = 2355.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 296 K

  • 0.40 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector' diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.742, Tmax = 1.000

  • 6195 measured reflections

  • 2082 independent reflections

  • 1822 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.02

  • 2082 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1B⋯F1 0.89 1.89 2.777 (6) 173
O1W—H1A⋯O1i 0.89 2.03 2.850 (3) 153
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridyl-based building blocks are widely used in construction various supramolecules of transition metal complexes (Manriquez et al. 1991; Wang et al., 2009). Among them, dipyridylmethanone derivates are famous for their versatile linkage behavior in numbers of coordination supramolecular assemblies (Boudalis et al., 2003). Di-3-pyridinylmethanone was provided to act as a flexible µ2-bridging mode in many coordination frameworks, such as one-dimensional helical and zigzag chains (Chen & Mak, 2005), two-dimensional nets (Chen et al., 2005) as well as honeycomb-like three-dimensional frameworks (Chen et al., 2009). Herein, we report a new structure derived from di-3-pyridinylmethanone, namely {[Cu(C11H8N2O)2SiF6].2H2O}n.

In the title complex, the CuII atom adopts an N4F2-octahedral coordination geometry with four pyridyl N atoms at the equatorial sites and two F atoms at the axial sites (Fig. 1). The di-3-pyridylmethanone and hexafluorosilicate ligands act as bidentate ligands linking symmetry-related CuII atoms. Water molecules form hydrogen bonds with di-3-pyridylmethanone and hexafluorosilicate ligands bridging them together (Table 1). Cu2+ and SiF62- ions are located on a twofold axis, see Fig. 2 and Fig. 3. The structure of the title complex is remarkable different from a similar complex [(CuL2)(BF4)2]n (L = di-3-pyridylmethanone, Chen et al. 2005), where the CuII adopts a square-plane N4-geometry with four ligands around the metal center, forming a (4,4) net structure.

Related literature top

For background to the coordination chemistry of pyridyl-based derivatives, see: Manriquez et al. (1991); Wang et al. (2009). For dipyridylmethanone, see: Boudalis et al. (2003). For transition metal complexes of di-3-pyridylmethanone, see: Chen et al. (2005, 2009); Chen & Mak (2005).

Experimental top

The ligand was obtained according to the reported procedure (Chen & Mak, 2005). The Cu(BF4-)2.6H2O (35 mg, 0.1 mmol) and di-3-pyridylmethanone (38 mg, 0.2 mmol) were dissolved in a mixed solvent of 1ml methanol and 3 ml acetonitrile with stirring at room temperature. The (NH4)2SiF6 (18 mg, 0.1 mmol) was subsequently added to the solution. After 4 hours, the resulted clear solution was filtered and the filtrate was left to stay in air. The block crystals suitable for x-ray diffraction analysis were obtained after about one weak (29.9 mg, 49% yield).

Refinement top

All the H atoms were located in the difference electron density maps but were placed in idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title complex showing the atom-numbering scheme, with displacement ellipsoids shown at the 30% probability level. Hydrogen atoms are omitted for clarity. Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, -z+0.5; (iii) x, -y+1, z-0.5; (iv) x, y+1, z.
[Figure 2] Fig. 2. Lateral view of the two-dimensional framework in the bc plane of the title complex.The O atoms of lattice water are shown as red ball mode. All H atoms except water H atoms are omitted for clarity. The Si—F are shown in a thick bond mode. The red dashed lines represent H-bonding interactions.
[Figure 3] Fig. 3. The packing diagram of the title complex.
Poly[[(µ2-di-3-pyridylmethanone-κ2N:N')(µ2- hexafluorosilicato-κ2F:F')copper(II)] dihydrate] top
Crystal data top
[Cu(SiF6)(C11H8N2O)2]·2H2OF(000) = 1236
Mr = 610.05Dx = 1.720 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 245 reflections
a = 22.276 (3) Åθ = 2.2–26.1°
b = 8.0625 (11) ŵ = 1.07 mm1
c = 15.773 (2) ÅT = 296 K
β = 123.757 (2)°Block, blue
V = 2355.2 (5) Å30.40 × 0.32 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector'
diffractometer
2082 independent reflections
Radiation source: fine-focus sealed tube1822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2226
Tmin = 0.742, Tmax = 1.000k = 89
6195 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0499P)2 + 3.641P] P = (Fo2 + 2Fc2)/3
2082 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(SiF6)(C11H8N2O)2]·2H2OV = 2355.2 (5) Å3
Mr = 610.05Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.276 (3) ŵ = 1.07 mm1
b = 8.0625 (11) ÅT = 296 K
c = 15.773 (2) Å0.40 × 0.32 × 0.30 mm
β = 123.757 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector'
diffractometer
2082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1822 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 1.000Rint = 0.031
6195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.02Δρmax = 0.54 e Å3
2082 reflectionsΔρmin = 0.31 e Å3
174 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.74249 (4)0.25000.02213 (16)
F10.41305 (11)0.2547 (2)0.15265 (16)0.0656 (6)
F20.50000.4646 (2)0.25000.0430 (6)
F30.52519 (13)0.25362 (17)0.16853 (16)0.0567 (6)
F40.50000.0403 (2)0.25000.0423 (5)
O10.71275 (11)0.6013 (2)0.74098 (13)0.0495 (5)
N10.55932 (11)0.2545 (2)0.68811 (15)0.0247 (4)
N20.59150 (11)0.7466 (2)0.39361 (16)0.0255 (4)
C10.55661 (14)0.1248 (3)0.63175 (18)0.0317 (5)
H10.53440.02720.63190.038*
C20.58540 (15)0.1321 (3)0.5744 (2)0.0379 (6)
H20.58200.04090.53590.045*
C30.61944 (15)0.2748 (3)0.5736 (2)0.0357 (6)
H30.63730.28340.53260.043*
C40.62620 (12)0.4052 (3)0.63604 (16)0.0267 (5)
C50.59552 (12)0.3905 (3)0.69197 (17)0.0260 (5)
H50.60020.47810.73360.031*
C70.66029 (13)0.6594 (3)0.56799 (17)0.0271 (5)
C80.70977 (14)0.7864 (3)0.59181 (19)0.0337 (6)
H80.74930.80050.65850.040*
C90.69953 (14)0.8907 (3)0.51563 (19)0.0369 (6)
H90.73220.97530.52990.044*
C100.63992 (13)0.8673 (3)0.41792 (18)0.0309 (5)
H100.63300.93820.36670.037*
C110.60197 (13)0.6426 (3)0.46786 (17)0.0270 (5)
H110.56910.55730.45130.032*
C60.66989 (13)0.5574 (3)0.65383 (17)0.0310 (5)
Si10.50000.25199 (9)0.25000.0252 (2)
O1W0.2808 (2)0.1657 (6)0.1183 (4)0.168 (2)
H1A0.27770.20890.16760.252*
H1B0.32440.18560.13080.252*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0264 (2)0.0224 (2)0.0210 (2)0.0000.01529 (19)0.000
F10.0410 (11)0.0637 (13)0.0584 (13)0.0046 (8)0.0067 (10)0.0081 (8)
F20.0645 (15)0.0182 (9)0.0684 (15)0.0000.0506 (13)0.000
F30.1013 (17)0.0365 (9)0.0722 (13)0.0090 (8)0.0731 (13)0.0082 (7)
F40.0658 (15)0.0203 (9)0.0571 (14)0.0000.0442 (13)0.000
O10.0502 (12)0.0604 (13)0.0247 (10)0.0200 (10)0.0126 (9)0.0002 (8)
N10.0289 (11)0.0259 (10)0.0233 (10)0.0010 (7)0.0171 (9)0.0014 (7)
N20.0282 (11)0.0240 (10)0.0259 (10)0.0003 (7)0.0160 (9)0.0008 (7)
C10.0396 (14)0.0261 (12)0.0355 (13)0.0020 (10)0.0247 (11)0.0023 (10)
C20.0507 (16)0.0341 (13)0.0412 (14)0.0035 (11)0.0332 (13)0.0097 (11)
C30.0418 (15)0.0406 (14)0.0334 (14)0.0016 (11)0.0264 (12)0.0009 (11)
C40.0251 (12)0.0301 (12)0.0221 (11)0.0032 (9)0.0114 (10)0.0056 (9)
C50.0276 (12)0.0264 (11)0.0235 (11)0.0023 (9)0.0139 (10)0.0010 (9)
C70.0287 (12)0.0284 (11)0.0267 (11)0.0012 (9)0.0170 (10)0.0005 (9)
C80.0305 (13)0.0378 (13)0.0284 (13)0.0090 (11)0.0136 (11)0.0047 (10)
C90.0386 (14)0.0338 (13)0.0400 (14)0.0112 (11)0.0229 (12)0.0023 (11)
C100.0372 (13)0.0271 (11)0.0339 (12)0.0031 (10)0.0232 (11)0.0017 (10)
C110.0296 (12)0.0256 (11)0.0278 (12)0.0027 (9)0.0172 (10)0.0010 (9)
C60.0284 (12)0.0372 (13)0.0267 (12)0.0014 (10)0.0149 (11)0.0021 (10)
Si10.0328 (5)0.0179 (5)0.0280 (5)0.0000.0188 (4)0.000
O1W0.105 (3)0.176 (4)0.257 (5)0.047 (3)0.121 (4)0.145 (4)
Geometric parameters (Å, º) top
Cu1—N1i2.033 (2)C2—H20.9300
Cu1—N1ii2.033 (2)C3—C41.390 (3)
Cu1—N22.038 (2)C3—H30.9300
Cu1—N2iii2.038 (2)C4—C51.389 (3)
Cu1—F22.241 (2)C4—C61.493 (3)
Cu1—F4iv2.401 (2)C5—H50.9300
F1—Si11.6747 (19)C7—C111.386 (3)
F2—Si11.714 (2)C7—C81.394 (3)
F3—Si11.6636 (17)C7—C61.494 (3)
F4—Si11.707 (2)C8—C91.378 (4)
F4—Cu1v2.401 (2)C8—H80.9300
O1—C61.212 (3)C9—C101.378 (4)
N1—C51.342 (3)C9—H90.9300
N1—C11.352 (3)C10—H100.9300
N1—Cu1ii2.033 (2)C11—H110.9300
N2—C101.341 (3)Si1—F3iii1.6636 (17)
N2—C111.351 (3)Si1—F1iii1.6747 (19)
C1—C21.371 (4)O1W—H1A0.8900
C1—H10.9300O1W—H1B0.8901
C2—C31.382 (4)
N1i—Cu1—N1ii178.65 (9)N1—C5—H5118.8
N1i—Cu1—N291.03 (8)C4—C5—H5118.8
N1ii—Cu1—N288.95 (8)C11—C7—C8118.6 (2)
N1i—Cu1—N2iii88.95 (8)C11—C7—C6123.4 (2)
N1ii—Cu1—N2iii91.03 (8)C8—C7—C6117.8 (2)
N2—Cu1—N2iii178.15 (9)C9—C8—C7119.4 (2)
N1i—Cu1—F290.68 (5)C9—C8—H8120.3
N1ii—Cu1—F290.68 (5)C7—C8—H8120.3
N2—Cu1—F290.93 (5)C8—C9—C10118.8 (2)
N2iii—Cu1—F290.93 (5)C8—C9—H9120.6
N1i—Cu1—F4iv89.32 (5)C10—C9—H9120.6
N1ii—Cu1—F4iv89.32 (5)N2—C10—C9122.8 (2)
N2—Cu1—F4iv89.07 (5)N2—C10—H10118.6
N2iii—Cu1—F4iv89.07 (5)C9—C10—H10118.6
F2—Cu1—F4iv180.0N2—C11—C7121.9 (2)
Si1—F2—Cu1180.000 (1)N2—C11—H11119.1
Si1—F4—Cu1v180.000 (1)C7—C11—H11119.1
C5—N1—C1117.9 (2)O1—C6—C4118.3 (2)
C5—N1—Cu1ii120.21 (15)O1—C6—C7119.5 (2)
C1—N1—Cu1ii121.42 (16)C4—C6—C7122.1 (2)
C10—N2—C11118.6 (2)F3—Si1—F3iii179.09 (11)
C10—N2—Cu1118.57 (16)F3—Si1—F1iii89.62 (12)
C11—N2—Cu1122.52 (15)F3iii—Si1—F1iii90.36 (12)
N1—C1—C2122.3 (2)F3—Si1—F190.36 (12)
N1—C1—H1118.8F3iii—Si1—F189.62 (12)
C2—C1—H1118.8F1iii—Si1—F1178.52 (13)
C1—C2—C3120.2 (2)F3—Si1—F490.45 (5)
C1—C2—H2119.9F3iii—Si1—F490.45 (5)
C3—C2—H2119.9F1iii—Si1—F490.74 (6)
C2—C3—C4117.8 (2)F1—Si1—F490.74 (6)
C2—C3—H3121.1F3—Si1—F289.55 (5)
C4—C3—H3121.1F3iii—Si1—F289.55 (5)
C5—C4—C3119.2 (2)F1iii—Si1—F289.26 (6)
C5—C4—C6116.8 (2)F1—Si1—F289.26 (6)
C3—C4—C6123.9 (2)F4—Si1—F2180.0
N1—C5—C4122.4 (2)H1A—O1W—H1B109.8
N1i—Cu1—N2—C1054.16 (18)C11—C7—C8—C90.2 (4)
N1ii—Cu1—N2—C10124.49 (18)C6—C7—C8—C9175.2 (2)
F2—Cu1—N2—C10144.85 (17)C7—C8—C9—C100.7 (4)
F4iv—Cu1—N2—C1035.15 (17)C11—N2—C10—C90.6 (4)
N1i—Cu1—N2—C11132.42 (18)Cu1—N2—C10—C9173.0 (2)
N1ii—Cu1—N2—C1148.93 (18)C8—C9—C10—N20.3 (4)
F2—Cu1—N2—C1141.73 (17)C10—N2—C11—C71.2 (3)
F4iv—Cu1—N2—C11138.27 (17)Cu1—N2—C11—C7172.22 (17)
C5—N1—C1—C24.1 (4)C8—C7—C11—N20.8 (4)
Cu1ii—N1—C1—C2167.9 (2)C6—C7—C11—N2173.9 (2)
N1—C1—C2—C30.8 (4)C5—C4—C6—O145.3 (3)
C1—C2—C3—C43.0 (4)C3—C4—C6—O1129.8 (3)
C2—C3—C4—C53.4 (4)C5—C4—C6—C7132.4 (2)
C2—C3—C4—C6171.6 (2)C3—C4—C6—C752.6 (3)
C1—N1—C5—C43.7 (3)C11—C7—C6—O1164.2 (2)
Cu1ii—N1—C5—C4168.43 (17)C8—C7—C6—O110.6 (4)
C3—C4—C5—N10.0 (3)C11—C7—C6—C413.4 (4)
C6—C4—C5—N1175.3 (2)C8—C7—C6—C4171.8 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1/2; (iv) x, y+1, z; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···F10.891.892.777 (6)173
O1W—H1A···O1ii0.892.032.850 (3)153
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(SiF6)(C11H8N2O)2]·2H2O
Mr610.05
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.276 (3), 8.0625 (11), 15.773 (2)
β (°) 123.757 (2)
V3)2355.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.40 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector'
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.742, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6195, 2082, 1822
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.02
No. of reflections2082
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.31

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···F10.891.892.777 (6)173
O1W—H1A···O1i0.892.032.850 (3)153
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The author is grateful for financial support from the Beijing Municipal Education Commission.

References

First citationBoudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411–3418.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766–768.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationManriquez, J. M., Yee, G. T., Mclean, R. S., Epstein, A. J. & Miller, J. S. (1991). Science, 252, 1415–1417.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137–2145.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds