metal-organic compounds
Poly[[(μ2-di-3-pyridylmethanone-κ2N:N′)(μ2-hexafluorosilicato-κ2F:F′)copper(II)] dihydrate]
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: ylcnu@yahoo.cn
In the title complex, {[Cu(SiF6)(C11H8N2O)2]·2H2O}n, the CuII atom adopts an N4F2-octahedral coordination geometry with four pyridine N atoms in the equatorial sites and two F atoms in the axial sites. The di-3-pyridylmethanone and hexafluorosilicate ligands act as bidentate ligands, linking symmetry-related CuII atoms. Water molecules form O—H⋯O and O—H⋯F hydrogen bonds with the di-3-pyridylmethanone and hexafluorosilicate ligands. The Cu2+ and SiF62− ions are each located on a twofold axis.
Related literature
For background to the coordination chemistry of pyridyl-based derivatives, see: Manriquez et al. (1991); Wang et al. (2009). For dipyridylmethanone, see: Boudalis et al. (2003). For transition metal complexes of di-3-pyridylmethanone, see: Chen et al. (2005, 2009); Chen & Mak (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812002267/aa2040sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812002267/aa2040Isup2.hkl
The ligand was obtained according to the reported procedure (Chen & Mak, 2005). The Cu(BF4-)2.6H2O (35 mg, 0.1 mmol) and di-3-pyridylmethanone (38 mg, 0.2 mmol) were dissolved in a mixed solvent of 1ml methanol and 3 ml acetonitrile with stirring at room temperature. The (NH4)2SiF6 (18 mg, 0.1 mmol) was subsequently added to the solution. After 4 hours, the resulted clear solution was filtered and the filtrate was left to stay in air. The block crystals suitable for x-ray
were obtained after about one weak (29.9 mg, 49% yield).All the H atoms were located in the difference electron density maps but were placed in idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cu(SiF6)(C11H8N2O)2]·2H2O | F(000) = 1236 |
Mr = 610.05 | Dx = 1.720 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 245 reflections |
a = 22.276 (3) Å | θ = 2.2–26.1° |
b = 8.0625 (11) Å | µ = 1.07 mm−1 |
c = 15.773 (2) Å | T = 296 K |
β = 123.757 (2)° | Block, blue |
V = 2355.2 (5) Å3 | 0.40 × 0.32 × 0.30 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector' diffractometer | 2082 independent reflections |
Radiation source: fine-focus sealed tube | 1822 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −22→26 |
Tmin = 0.742, Tmax = 1.000 | k = −8→9 |
6195 measured reflections | l = −18→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0499P)2 + 3.641P] P = (Fo2 + 2Fc2)/3 |
2082 reflections | (Δ/σ)max < 0.001 |
174 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Cu(SiF6)(C11H8N2O)2]·2H2O | V = 2355.2 (5) Å3 |
Mr = 610.05 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.276 (3) Å | µ = 1.07 mm−1 |
b = 8.0625 (11) Å | T = 296 K |
c = 15.773 (2) Å | 0.40 × 0.32 × 0.30 mm |
β = 123.757 (2)° |
Bruker SMART APEXII CCD area-detector' diffractometer | 2082 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1822 reflections with I > 2σ(I) |
Tmin = 0.742, Tmax = 1.000 | Rint = 0.031 |
6195 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.54 e Å−3 |
2082 reflections | Δρmin = −0.31 e Å−3 |
174 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.74249 (4) | 0.2500 | 0.02213 (16) | |
F1 | 0.41305 (11) | 0.2547 (2) | 0.15265 (16) | 0.0656 (6) | |
F2 | 0.5000 | 0.4646 (2) | 0.2500 | 0.0430 (6) | |
F3 | 0.52519 (13) | 0.25362 (17) | 0.16853 (16) | 0.0567 (6) | |
F4 | 0.5000 | 0.0403 (2) | 0.2500 | 0.0423 (5) | |
O1 | 0.71275 (11) | 0.6013 (2) | 0.74098 (13) | 0.0495 (5) | |
N1 | 0.55932 (11) | 0.2545 (2) | 0.68811 (15) | 0.0247 (4) | |
N2 | 0.59150 (11) | 0.7466 (2) | 0.39361 (16) | 0.0255 (4) | |
C1 | 0.55661 (14) | 0.1248 (3) | 0.63175 (18) | 0.0317 (5) | |
H1 | 0.5344 | 0.0272 | 0.6319 | 0.038* | |
C2 | 0.58540 (15) | 0.1321 (3) | 0.5744 (2) | 0.0379 (6) | |
H2 | 0.5820 | 0.0409 | 0.5359 | 0.045* | |
C3 | 0.61944 (15) | 0.2748 (3) | 0.5736 (2) | 0.0357 (6) | |
H3 | 0.6373 | 0.2834 | 0.5326 | 0.043* | |
C4 | 0.62620 (12) | 0.4052 (3) | 0.63604 (16) | 0.0267 (5) | |
C5 | 0.59552 (12) | 0.3905 (3) | 0.69197 (17) | 0.0260 (5) | |
H5 | 0.6002 | 0.4781 | 0.7336 | 0.031* | |
C7 | 0.66029 (13) | 0.6594 (3) | 0.56799 (17) | 0.0271 (5) | |
C8 | 0.70977 (14) | 0.7864 (3) | 0.59181 (19) | 0.0337 (6) | |
H8 | 0.7493 | 0.8005 | 0.6585 | 0.040* | |
C9 | 0.69953 (14) | 0.8907 (3) | 0.51563 (19) | 0.0369 (6) | |
H9 | 0.7322 | 0.9753 | 0.5299 | 0.044* | |
C10 | 0.63992 (13) | 0.8673 (3) | 0.41792 (18) | 0.0309 (5) | |
H10 | 0.6330 | 0.9382 | 0.3667 | 0.037* | |
C11 | 0.60197 (13) | 0.6426 (3) | 0.46786 (17) | 0.0270 (5) | |
H11 | 0.5691 | 0.5573 | 0.4513 | 0.032* | |
C6 | 0.66989 (13) | 0.5574 (3) | 0.65383 (17) | 0.0310 (5) | |
Si1 | 0.5000 | 0.25199 (9) | 0.2500 | 0.0252 (2) | |
O1W | 0.2808 (2) | 0.1657 (6) | 0.1183 (4) | 0.168 (2) | |
H1A | 0.2777 | 0.2089 | 0.1676 | 0.252* | |
H1B | 0.3244 | 0.1856 | 0.1308 | 0.252* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0264 (2) | 0.0224 (2) | 0.0210 (2) | 0.000 | 0.01529 (19) | 0.000 |
F1 | 0.0410 (11) | 0.0637 (13) | 0.0584 (13) | −0.0046 (8) | 0.0067 (10) | 0.0081 (8) |
F2 | 0.0645 (15) | 0.0182 (9) | 0.0684 (15) | 0.000 | 0.0506 (13) | 0.000 |
F3 | 0.1013 (17) | 0.0365 (9) | 0.0722 (13) | −0.0090 (8) | 0.0731 (13) | −0.0082 (7) |
F4 | 0.0658 (15) | 0.0203 (9) | 0.0571 (14) | 0.000 | 0.0442 (13) | 0.000 |
O1 | 0.0502 (12) | 0.0604 (13) | 0.0247 (10) | −0.0200 (10) | 0.0126 (9) | −0.0002 (8) |
N1 | 0.0289 (11) | 0.0259 (10) | 0.0233 (10) | 0.0010 (7) | 0.0171 (9) | 0.0014 (7) |
N2 | 0.0282 (11) | 0.0240 (10) | 0.0259 (10) | −0.0003 (7) | 0.0160 (9) | 0.0008 (7) |
C1 | 0.0396 (14) | 0.0261 (12) | 0.0355 (13) | −0.0020 (10) | 0.0247 (11) | −0.0023 (10) |
C2 | 0.0507 (16) | 0.0341 (13) | 0.0412 (14) | −0.0035 (11) | 0.0332 (13) | −0.0097 (11) |
C3 | 0.0418 (15) | 0.0406 (14) | 0.0334 (14) | −0.0016 (11) | 0.0264 (12) | −0.0009 (11) |
C4 | 0.0251 (12) | 0.0301 (12) | 0.0221 (11) | 0.0032 (9) | 0.0114 (10) | 0.0056 (9) |
C5 | 0.0276 (12) | 0.0264 (11) | 0.0235 (11) | 0.0023 (9) | 0.0139 (10) | 0.0010 (9) |
C7 | 0.0287 (12) | 0.0284 (11) | 0.0267 (11) | −0.0012 (9) | 0.0170 (10) | 0.0005 (9) |
C8 | 0.0305 (13) | 0.0378 (13) | 0.0284 (13) | −0.0090 (11) | 0.0136 (11) | −0.0047 (10) |
C9 | 0.0386 (14) | 0.0338 (13) | 0.0400 (14) | −0.0112 (11) | 0.0229 (12) | −0.0023 (11) |
C10 | 0.0372 (13) | 0.0271 (11) | 0.0339 (12) | −0.0031 (10) | 0.0232 (11) | 0.0017 (10) |
C11 | 0.0296 (12) | 0.0256 (11) | 0.0278 (12) | −0.0027 (9) | 0.0172 (10) | 0.0010 (9) |
C6 | 0.0284 (12) | 0.0372 (13) | 0.0267 (12) | −0.0014 (10) | 0.0149 (11) | 0.0021 (10) |
Si1 | 0.0328 (5) | 0.0179 (5) | 0.0280 (5) | 0.000 | 0.0188 (4) | 0.000 |
O1W | 0.105 (3) | 0.176 (4) | 0.257 (5) | −0.047 (3) | 0.121 (4) | −0.145 (4) |
Cu1—N1i | 2.033 (2) | C2—H2 | 0.9300 |
Cu1—N1ii | 2.033 (2) | C3—C4 | 1.390 (3) |
Cu1—N2 | 2.038 (2) | C3—H3 | 0.9300 |
Cu1—N2iii | 2.038 (2) | C4—C5 | 1.389 (3) |
Cu1—F2 | 2.241 (2) | C4—C6 | 1.493 (3) |
Cu1—F4iv | 2.401 (2) | C5—H5 | 0.9300 |
F1—Si1 | 1.6747 (19) | C7—C11 | 1.386 (3) |
F2—Si1 | 1.714 (2) | C7—C8 | 1.394 (3) |
F3—Si1 | 1.6636 (17) | C7—C6 | 1.494 (3) |
F4—Si1 | 1.707 (2) | C8—C9 | 1.378 (4) |
F4—Cu1v | 2.401 (2) | C8—H8 | 0.9300 |
O1—C6 | 1.212 (3) | C9—C10 | 1.378 (4) |
N1—C5 | 1.342 (3) | C9—H9 | 0.9300 |
N1—C1 | 1.352 (3) | C10—H10 | 0.9300 |
N1—Cu1ii | 2.033 (2) | C11—H11 | 0.9300 |
N2—C10 | 1.341 (3) | Si1—F3iii | 1.6636 (17) |
N2—C11 | 1.351 (3) | Si1—F1iii | 1.6747 (19) |
C1—C2 | 1.371 (4) | O1W—H1A | 0.8900 |
C1—H1 | 0.9300 | O1W—H1B | 0.8901 |
C2—C3 | 1.382 (4) | ||
N1i—Cu1—N1ii | 178.65 (9) | N1—C5—H5 | 118.8 |
N1i—Cu1—N2 | 91.03 (8) | C4—C5—H5 | 118.8 |
N1ii—Cu1—N2 | 88.95 (8) | C11—C7—C8 | 118.6 (2) |
N1i—Cu1—N2iii | 88.95 (8) | C11—C7—C6 | 123.4 (2) |
N1ii—Cu1—N2iii | 91.03 (8) | C8—C7—C6 | 117.8 (2) |
N2—Cu1—N2iii | 178.15 (9) | C9—C8—C7 | 119.4 (2) |
N1i—Cu1—F2 | 90.68 (5) | C9—C8—H8 | 120.3 |
N1ii—Cu1—F2 | 90.68 (5) | C7—C8—H8 | 120.3 |
N2—Cu1—F2 | 90.93 (5) | C8—C9—C10 | 118.8 (2) |
N2iii—Cu1—F2 | 90.93 (5) | C8—C9—H9 | 120.6 |
N1i—Cu1—F4iv | 89.32 (5) | C10—C9—H9 | 120.6 |
N1ii—Cu1—F4iv | 89.32 (5) | N2—C10—C9 | 122.8 (2) |
N2—Cu1—F4iv | 89.07 (5) | N2—C10—H10 | 118.6 |
N2iii—Cu1—F4iv | 89.07 (5) | C9—C10—H10 | 118.6 |
F2—Cu1—F4iv | 180.0 | N2—C11—C7 | 121.9 (2) |
Si1—F2—Cu1 | 180.000 (1) | N2—C11—H11 | 119.1 |
Si1—F4—Cu1v | 180.000 (1) | C7—C11—H11 | 119.1 |
C5—N1—C1 | 117.9 (2) | O1—C6—C4 | 118.3 (2) |
C5—N1—Cu1ii | 120.21 (15) | O1—C6—C7 | 119.5 (2) |
C1—N1—Cu1ii | 121.42 (16) | C4—C6—C7 | 122.1 (2) |
C10—N2—C11 | 118.6 (2) | F3—Si1—F3iii | 179.09 (11) |
C10—N2—Cu1 | 118.57 (16) | F3—Si1—F1iii | 89.62 (12) |
C11—N2—Cu1 | 122.52 (15) | F3iii—Si1—F1iii | 90.36 (12) |
N1—C1—C2 | 122.3 (2) | F3—Si1—F1 | 90.36 (12) |
N1—C1—H1 | 118.8 | F3iii—Si1—F1 | 89.62 (12) |
C2—C1—H1 | 118.8 | F1iii—Si1—F1 | 178.52 (13) |
C1—C2—C3 | 120.2 (2) | F3—Si1—F4 | 90.45 (5) |
C1—C2—H2 | 119.9 | F3iii—Si1—F4 | 90.45 (5) |
C3—C2—H2 | 119.9 | F1iii—Si1—F4 | 90.74 (6) |
C2—C3—C4 | 117.8 (2) | F1—Si1—F4 | 90.74 (6) |
C2—C3—H3 | 121.1 | F3—Si1—F2 | 89.55 (5) |
C4—C3—H3 | 121.1 | F3iii—Si1—F2 | 89.55 (5) |
C5—C4—C3 | 119.2 (2) | F1iii—Si1—F2 | 89.26 (6) |
C5—C4—C6 | 116.8 (2) | F1—Si1—F2 | 89.26 (6) |
C3—C4—C6 | 123.9 (2) | F4—Si1—F2 | 180.0 |
N1—C5—C4 | 122.4 (2) | H1A—O1W—H1B | 109.8 |
N1i—Cu1—N2—C10 | 54.16 (18) | C11—C7—C8—C9 | −0.2 (4) |
N1ii—Cu1—N2—C10 | −124.49 (18) | C6—C7—C8—C9 | −175.2 (2) |
F2—Cu1—N2—C10 | 144.85 (17) | C7—C8—C9—C10 | 0.7 (4) |
F4iv—Cu1—N2—C10 | −35.15 (17) | C11—N2—C10—C9 | −0.6 (4) |
N1i—Cu1—N2—C11 | −132.42 (18) | Cu1—N2—C10—C9 | 173.0 (2) |
N1ii—Cu1—N2—C11 | 48.93 (18) | C8—C9—C10—N2 | −0.3 (4) |
F2—Cu1—N2—C11 | −41.73 (17) | C10—N2—C11—C7 | 1.2 (3) |
F4iv—Cu1—N2—C11 | 138.27 (17) | Cu1—N2—C11—C7 | −172.22 (17) |
C5—N1—C1—C2 | −4.1 (4) | C8—C7—C11—N2 | −0.8 (4) |
Cu1ii—N1—C1—C2 | 167.9 (2) | C6—C7—C11—N2 | 173.9 (2) |
N1—C1—C2—C3 | 0.8 (4) | C5—C4—C6—O1 | 45.3 (3) |
C1—C2—C3—C4 | 3.0 (4) | C3—C4—C6—O1 | −129.8 (3) |
C2—C3—C4—C5 | −3.4 (4) | C5—C4—C6—C7 | −132.4 (2) |
C2—C3—C4—C6 | 171.6 (2) | C3—C4—C6—C7 | 52.6 (3) |
C1—N1—C5—C4 | 3.7 (3) | C11—C7—C6—O1 | −164.2 (2) |
Cu1ii—N1—C5—C4 | −168.43 (17) | C8—C7—C6—O1 | 10.6 (4) |
C3—C4—C5—N1 | 0.0 (3) | C11—C7—C6—C4 | 13.4 (4) |
C6—C4—C5—N1 | −175.3 (2) | C8—C7—C6—C4 | −171.8 (2) |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y, −z+1/2; (iv) x, y+1, z; (v) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1B···F1 | 0.89 | 1.89 | 2.777 (6) | 173 |
O1W—H1A···O1ii | 0.89 | 2.03 | 2.850 (3) | 153 |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(SiF6)(C11H8N2O)2]·2H2O |
Mr | 610.05 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 22.276 (3), 8.0625 (11), 15.773 (2) |
β (°) | 123.757 (2) |
V (Å3) | 2355.2 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.07 |
Crystal size (mm) | 0.40 × 0.32 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector' diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.742, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6195, 2082, 1822 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.094, 1.02 |
No. of reflections | 2082 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.54, −0.31 |
Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1B···F1 | 0.89 | 1.89 | 2.777 (6) | 173 |
O1W—H1A···O1i | 0.89 | 2.03 | 2.850 (3) | 153 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The author is grateful for financial support from the Beijing Municipal Education Commission.
References
Boudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411–3418. Web of Science CSD CrossRef Google Scholar
Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, X. D., Guo, J. H., Du, M. & Mak, T. C. W. (2005). Inorg. Chem. Commun. 8, 766–768. Web of Science CSD CrossRef CAS Google Scholar
Chen, X. D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Chen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. & Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518–6528. Web of Science CSD CrossRef PubMed CAS Google Scholar
Manriquez, J. M., Yee, G. T., Mclean, R. S., Epstein, A. J. & Miller, J. S. (1991). Science, 252, 1415–1417. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y., Zhao, X.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 2137–2145. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridyl-based building blocks are widely used in construction various supramolecules of transition metal complexes (Manriquez et al. 1991; Wang et al., 2009). Among them, dipyridylmethanone derivates are famous for their versatile linkage behavior in numbers of coordination supramolecular assemblies (Boudalis et al., 2003). Di-3-pyridinylmethanone was provided to act as a flexible µ2-bridging mode in many coordination frameworks, such as one-dimensional helical and zigzag chains (Chen & Mak, 2005), two-dimensional nets (Chen et al., 2005) as well as honeycomb-like three-dimensional frameworks (Chen et al., 2009). Herein, we report a new structure derived from di-3-pyridinylmethanone, namely {[Cu(C11H8N2O)2SiF6].2H2O}n.
In the title complex, the CuII atom adopts an N4F2-octahedral coordination geometry with four pyridyl N atoms at the equatorial sites and two F atoms at the axial sites (Fig. 1). The di-3-pyridylmethanone and hexafluorosilicate ligands act as bidentate ligands linking symmetry-related CuII atoms. Water molecules form hydrogen bonds with di-3-pyridylmethanone and hexafluorosilicate ligands bridging them together (Table 1). Cu2+ and SiF62- ions are located on a twofold axis, see Fig. 2 and Fig. 3. The structure of the title complex is remarkable different from a similar complex [(CuL2)(BF4)2]n (L = di-3-pyridylmethanone, Chen et al. 2005), where the CuII adopts a square-plane N4-geometry with four ligands around the metal center, forming a (4,4) net structure.