organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Gliclazide impurity F: N-[(perhydro­cyclo­penta­[c]pyrrol-2-yl)amino­carbon­yl]-o-toluene­sulfonamide

aDepartment of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China, bTianJin Centralpharm Limited Company, Tianjin 300072, People's Republic of China, and cHigh Pressure Adsorption Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: sytju@163.com

(Received 11 October 2011; accepted 21 December 2011; online 18 January 2012)

The title compound, C15H21N3O3S, is known to be an impurity of gliclazide [systematic name: N-(hexa­hydro-1H-cyclopenta[c]pyrrol-2-ylcarbamo­yl)-4-methyl­benzene­sulfonamide], a sul­fonyl­urea anti­diabetic drug. Gliclazide has a p-tolyl group substituting the sulfonamide functionality, while the title mol­ecule contains an o-tolyl group. Both five-membered fused rings adopt envelope conformations. In the crystal, N—H⋯O hydrogen bonds are formed between HN(C=O)NH groups, building centrosymmetric dimers. These dimers are further linked through N—H⋯O(sulfon­yl) contacts, forming chains in [100].

Related literature

For general background to gliclazide and the impurities of gliclazide, see: Lebovitz & Feinglos (1983[Lebovitz, H. E. & Feinglos, M. N. (1983). Diabetes Mellitus: Theory and Practices, 3rd ed., edited by M. Ellenberg & H. Rifkin, pp. 591-610. New York: Medical Examination Publishing.]). For the crystal structure of gliclazide, see: Parvez et al. (1999[Parvez, M., Arayne, M. S., Zaman, M. K. & Sultana, N. (1999). Acta Cryst. C55, 74-75.]); Winters et al. (1994[Winters, C., Shields, L., Timmins, P. & York, P. (1994). J. Pharm. Sci. 83, 300-304.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21N3O3S

  • Mr = 323.41

  • Monoclinic, P 21 /c

  • a = 10.891 (7) Å

  • b = 11.226 (7) Å

  • c = 13.477 (9) Å

  • β = 95.509 (9)°

  • V = 1640.2 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.959, Tmax = 0.979

  • 16805 measured reflections

  • 3904 independent reflections

  • 3461 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.04

  • 3904 reflections

  • 208 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.90 (1) 1.92 (1) 2.820 (2) 177 (2)
N1—H1⋯O2ii 0.89 (1) 2.23 (1) 3.077 (2) 158 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Gliclazide Impurity F is one of the gliclazide impurities, as described in the European Pharmacopoeia. Gliclazide is a second-generation sulfonylurea oral hypoglycemic agent, which can reduce blood sugar and improve blood clotting function (Lebovitz & Feinglos, 1983). It not only can improve the metabolism of diabetic patients, but also improve or delay the incidence of vascular complications of diabetes.

The reason for the existence of this impurity is mainly due to the generation of ortho-isomeride during the production process of raw material, 4-methylphenylsulfonylurea or ethyl-[(4-methylphenyl)sulfonyl]carbamate. In the liquid chromatography separation experiments, the ortho gliclazide derivative has frequently been used as working sample. In this paper, we report the crystal structure of this compound.

The molecular structure is shown in Fig. 1. Molecular dimensions are within the normal ranges. The similar corresponding bond distances and angles have been reported in structure of gliclazide (Parvez et al., 1999; Winters et al., 1994). The methyl position of toluenesulfonyl moiety is the important difference between the two structures. The mean bond distances in the o-toluenesulfonyl moiety are C—Caromatic = 1.507 (2), S=O = 1.4354 (14), Csp2-Csp2=1.394 (3) and S—Csp2 = 1.7690 (18) Å, the aromatic ring being essentially planar. The mean values of the bond distances in the perhydrocyclopenta[c]pyrrole moiety in the title compound are Csp3-Csp3 =1.536 (3) and Csp3-N=1.473 (2) Å. The pyrrole (N3, C9, C10, C14, C15) ring and the fused five-membered cyclopentane (C10···C14) adopt N3- and C12- envelope conformations, respectively, with N3 0.624 and C12 0.611Å out of the planes of the remaining atoms of the corresponding rings.

The molecules are linked into dimers by intermolecular hydrogen bonds involving amino H-atoms. Intermolecular contacts between symmetry-related dimers form chains in the [100] direction.

Related literature top

For general background to gliclazide and the impurities of gliclazide, see: Lebovitz & Feinglos (1983). For the crystal structure of gliclazide, see: Parvez et al. (1999); Winters et al. (1994).

Experimental top

A 1000 ml reactor fitted with an electric heater in the bottom, a mechanical stirrer, a thermometer and a condenser was loaded with urea (100 g) and sodium hydroxide (5 g). Slow heating and addition of o-toluenesulfonamide (48 g) after the reactants changed the mixture to the molten state. When the reaction was completed after 6 h, water and hydrochloric acid were added until pH = 7. After filtering, draining and vacuum drying, the o-toluene sulfonylurea was obtained (yield 90%). The o-toluene sulfonylurea was added to the equal amount of azolidine hydrochloride in acetonitrile under reflux for 6 h. Then, the desired products were obtained after cooling down, and filtered (yield 86%). Finally, the products were recrystallized from methanol.

Refinement top

H atoms were positioned geometrically, with C—H bond lengths fixed to 0.95 (aromatic CH), 0.98 (methyl CH3), 0.99 (methylene CH2) or 1.00 Å (methine CH), and constrained to ride on their parent atoms. H atoms bonded to N1 and N2 were refined freely, with N—H bond lengths restrained to 0.90 (1) Å. For all H atoms, isotropic displacement parameters were calculated as Uiso(H) = xUeq(carrier atom), where x = 1.2 or 1.5.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms at the 50% probability level.
1-(2-Methylphenylsulfonyl)-3-(perhydrocyclopenta[c]pyrrol-2-yl)urea top
Crystal data top
C15H21N3O3SF(000) = 688
Mr = 323.41Dx = 1.310 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5900 reflections
a = 10.891 (7) Åθ = 1.5–27.9°
b = 11.226 (7) ŵ = 0.21 mm1
c = 13.477 (9) ÅT = 113 K
β = 95.509 (9)°Prism, colourless
V = 1640.2 (18) Å30.20 × 0.18 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD
diffractometer
3904 independent reflections
Radiation source: rotating anode3461 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.070
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and ϕ scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 1413
Tmin = 0.959, Tmax = 0.979l = 1717
16805 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.7703P]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.51 e Å3
0 constraints
Crystal data top
C15H21N3O3SV = 1640.2 (18) Å3
Mr = 323.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.891 (7) ŵ = 0.21 mm1
b = 11.226 (7) ÅT = 113 K
c = 13.477 (9) Å0.20 × 0.18 × 0.10 mm
β = 95.509 (9)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3904 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
3461 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.979Rint = 0.070
16805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
3904 reflectionsΔρmin = 0.51 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88574 (3)0.63900 (3)1.09521 (2)0.01593 (11)
O10.83163 (10)0.75502 (10)1.08708 (8)0.0226 (2)
O21.01217 (9)0.62502 (10)1.07406 (8)0.0209 (2)
O30.62260 (9)0.57766 (10)1.07603 (8)0.0205 (2)
N10.80984 (11)0.54879 (12)1.01545 (9)0.0174 (3)
N20.63131 (12)0.47495 (13)0.93204 (9)0.0222 (3)
N30.69959 (11)0.44335 (12)0.85221 (9)0.0179 (3)
C11.01300 (15)0.40745 (16)1.19750 (12)0.0251 (3)
H1A0.96940.38821.13240.038*
H1B1.03290.33371.23450.038*
H1C1.08930.45031.18790.038*
C20.93199 (14)0.48450 (14)1.25551 (11)0.0190 (3)
C30.91819 (16)0.45650 (16)1.35526 (12)0.0250 (3)
H30.96120.38991.38500.030*
C40.84335 (16)0.52348 (17)1.41160 (12)0.0288 (4)
H40.83770.50351.47950.035*
C50.77680 (16)0.61910 (17)1.36998 (12)0.0266 (4)
H50.72380.66321.40830.032*
C60.78836 (15)0.64984 (15)1.27155 (11)0.0211 (3)
H60.74280.71501.24200.025*
C70.86715 (13)0.58463 (14)1.21606 (10)0.0165 (3)
C80.68259 (13)0.53668 (14)1.01056 (10)0.0169 (3)
C90.70155 (15)0.31371 (15)0.83580 (12)0.0235 (3)
H9A0.61840.27880.83820.028*
H9B0.75980.27390.88620.028*
C100.74462 (16)0.30259 (17)0.73176 (13)0.0289 (4)
H100.83640.29460.73540.035*
C110.68091 (18)0.20163 (19)0.66902 (16)0.0389 (5)
H11A0.73400.17260.61850.047*
H11B0.66070.13410.71180.047*
C120.56419 (18)0.25961 (19)0.61967 (14)0.0358 (4)
H12A0.53040.21380.56050.043*
H12B0.50030.26610.66690.043*
C130.6079 (2)0.3821 (2)0.58998 (13)0.0386 (5)
H13A0.53800.43860.58060.046*
H13B0.64840.37770.52740.046*
C140.70093 (17)0.42092 (17)0.67816 (12)0.0294 (4)
H140.77200.46520.65410.035*
C150.64125 (16)0.49198 (16)0.75762 (11)0.0238 (3)
H15A0.65860.57820.75200.029*
H15B0.55080.47970.75190.029*
H10.8539 (17)0.5085 (18)0.9741 (13)0.038 (6)*
H20.5498 (9)0.4609 (18)0.9291 (15)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01388 (18)0.0184 (2)0.01533 (18)0.00225 (13)0.00034 (13)0.00038 (12)
O10.0254 (6)0.0186 (6)0.0233 (5)0.0009 (5)0.0007 (4)0.0021 (4)
O20.0125 (5)0.0291 (6)0.0212 (5)0.0041 (4)0.0017 (4)0.0003 (4)
O30.0147 (5)0.0292 (6)0.0180 (5)0.0003 (4)0.0028 (4)0.0054 (4)
N10.0125 (6)0.0234 (7)0.0162 (6)0.0016 (5)0.0014 (4)0.0045 (5)
N20.0130 (6)0.0359 (8)0.0181 (6)0.0031 (5)0.0037 (5)0.0082 (5)
N30.0158 (6)0.0229 (7)0.0155 (6)0.0003 (5)0.0036 (5)0.0040 (5)
C10.0235 (8)0.0263 (9)0.0257 (8)0.0063 (7)0.0045 (6)0.0044 (6)
C20.0158 (7)0.0215 (8)0.0192 (7)0.0010 (6)0.0007 (5)0.0007 (6)
C30.0256 (8)0.0292 (9)0.0199 (7)0.0010 (7)0.0005 (6)0.0062 (6)
C40.0303 (9)0.0399 (11)0.0163 (7)0.0038 (8)0.0029 (6)0.0014 (7)
C50.0245 (8)0.0366 (10)0.0192 (7)0.0001 (7)0.0043 (6)0.0064 (7)
C60.0193 (7)0.0225 (8)0.0212 (7)0.0002 (6)0.0008 (6)0.0034 (6)
C70.0148 (6)0.0188 (7)0.0153 (6)0.0038 (6)0.0011 (5)0.0012 (5)
C80.0138 (6)0.0204 (8)0.0165 (6)0.0002 (6)0.0018 (5)0.0003 (5)
C90.0210 (7)0.0224 (8)0.0265 (8)0.0013 (6)0.0010 (6)0.0019 (6)
C100.0202 (7)0.0357 (10)0.0308 (9)0.0020 (7)0.0027 (6)0.0136 (7)
C110.0335 (10)0.0372 (11)0.0447 (11)0.0047 (8)0.0033 (8)0.0228 (9)
C120.0309 (9)0.0407 (11)0.0347 (9)0.0030 (8)0.0015 (7)0.0179 (8)
C130.0440 (11)0.0524 (13)0.0187 (8)0.0078 (10)0.0001 (7)0.0064 (8)
C140.0323 (9)0.0363 (10)0.0204 (7)0.0092 (8)0.0070 (7)0.0059 (7)
C150.0295 (8)0.0234 (9)0.0181 (7)0.0013 (7)0.0002 (6)0.0003 (6)
Geometric parameters (Å, º) top
S1—O11.4295 (14)C5—H50.9500
S1—O21.4413 (14)C6—C71.398 (2)
S1—N11.6413 (14)C6—H60.9500
S1—C71.7690 (18)C9—C101.526 (2)
O3—C81.2360 (18)C9—H9A0.9900
N1—C81.388 (2)C9—H9B0.9900
N1—H10.893 (7)C10—C111.539 (2)
N2—C81.341 (2)C10—C141.564 (3)
N2—N31.4107 (17)C10—H101.0000
N2—H20.898 (9)C11—C121.523 (3)
N3—C91.473 (2)C11—H11A0.9900
N3—C151.474 (2)C11—H11B0.9900
C1—C21.507 (2)C12—C131.521 (3)
C1—H1A0.9800C12—H12A0.9900
C1—H1B0.9800C12—H12B0.9900
C1—H1C0.9800C13—C141.548 (3)
C2—C31.403 (2)C13—H13A0.9900
C2—C71.405 (2)C13—H13B0.9900
C3—C41.388 (2)C14—C151.529 (2)
C3—H30.9500C14—H141.0000
C4—C51.384 (3)C15—H15A0.9900
C4—H40.9500C15—H15B0.9900
C5—C61.388 (2)
O1—S1—O2118.60 (7)N3—C9—C10103.24 (13)
O1—S1—N1109.51 (8)N3—C9—H9A111.1
O2—S1—N1103.53 (7)C10—C9—H9A111.1
O1—S1—C7107.59 (7)N3—C9—H9B111.1
O2—S1—C7109.91 (7)C10—C9—H9B111.1
N1—S1—C7107.17 (8)H9A—C9—H9B109.1
C8—N1—S1121.96 (10)C9—C10—C11113.77 (16)
C8—N1—H1121.0 (14)C9—C10—C14104.37 (13)
S1—N1—H1117.1 (14)C11—C10—C14105.70 (15)
C8—N2—N3121.44 (13)C9—C10—H10110.9
C8—N2—H2117.4 (13)C11—C10—H10110.9
N3—N2—H2120.9 (13)C14—C10—H10110.9
N2—N3—C9112.29 (12)C12—C11—C10103.80 (16)
N2—N3—C15110.58 (13)C12—C11—H11A111.0
C9—N3—C15104.33 (12)C10—C11—H11A111.0
C2—C1—H1A109.5C12—C11—H11B111.0
C2—C1—H1B109.5C10—C11—H11B111.0
H1A—C1—H1B109.5H11A—C11—H11B109.0
C2—C1—H1C109.5C13—C12—C11103.40 (17)
H1A—C1—H1C109.5C13—C12—H12A111.1
H1B—C1—H1C109.5C11—C12—H12A111.1
C3—C2—C7116.48 (14)C13—C12—H12B111.1
C3—C2—C1119.38 (15)C11—C12—H12B111.1
C7—C2—C1124.14 (14)H12A—C12—H12B109.0
C4—C3—C2121.70 (16)C12—C13—C14104.54 (16)
C4—C3—H3119.1C12—C13—H13A110.8
C2—C3—H3119.1C14—C13—H13A110.8
C5—C4—C3120.74 (15)C12—C13—H13B110.8
C5—C4—H4119.6C14—C13—H13B110.8
C3—C4—H4119.6H13A—C13—H13B108.9
C4—C5—C6119.22 (15)C15—C14—C13113.18 (16)
C4—C5—H5120.4C15—C14—C10104.51 (14)
C6—C5—H5120.4C13—C14—C10105.24 (16)
C5—C6—C7119.84 (16)C15—C14—H14111.2
C5—C6—H6120.1C13—C14—H14111.2
C7—C6—H6120.1C10—C14—H14111.2
C6—C7—C2121.92 (14)N3—C15—C14103.62 (14)
C6—C7—S1116.24 (12)N3—C15—H15A111.0
C2—C7—S1121.79 (11)C14—C15—H15A111.0
O3—C8—N2123.16 (14)N3—C15—H15B111.0
O3—C8—N1121.58 (14)C14—C15—H15B111.0
N2—C8—N1115.24 (13)H15A—C15—H15B109.0
O1—S1—N1—C851.88 (14)N3—N2—C8—O3171.41 (14)
O2—S1—N1—C8179.30 (12)N3—N2—C8—N110.5 (2)
C7—S1—N1—C864.54 (14)S1—N1—C8—O312.1 (2)
C8—N2—N3—C9122.19 (16)S1—N1—C8—N2169.83 (12)
C8—N2—N3—C15121.73 (16)N2—N3—C9—C10163.97 (12)
C7—C2—C3—C40.7 (2)C15—N3—C9—C1044.19 (15)
C1—C2—C3—C4179.07 (16)N3—C9—C10—C11142.41 (15)
C2—C3—C4—C51.7 (3)N3—C9—C10—C1427.70 (16)
C3—C4—C5—C61.9 (3)C9—C10—C11—C1287.0 (2)
C4—C5—C6—C70.3 (2)C14—C10—C11—C1226.96 (19)
C5—C6—C7—C22.8 (2)C10—C11—C12—C1341.04 (19)
C5—C6—C7—S1174.57 (12)C11—C12—C13—C1439.17 (19)
C3—C2—C7—C62.9 (2)C12—C13—C14—C1591.52 (19)
C1—C2—C7—C6176.81 (15)C12—C13—C14—C1022.00 (19)
C3—C2—C7—S1174.32 (12)C9—C10—C14—C152.29 (17)
C1—C2—C7—S15.9 (2)C11—C10—C14—C15122.56 (15)
O1—S1—C7—C610.97 (14)C9—C10—C14—C13117.18 (15)
O2—S1—C7—C6141.43 (12)C11—C10—C14—C133.09 (18)
N1—S1—C7—C6106.71 (13)N2—N3—C15—C14163.62 (13)
O1—S1—C7—C2166.44 (12)C9—N3—C15—C1442.68 (16)
O2—S1—C7—C235.98 (14)C13—C14—C15—N3137.91 (16)
N1—S1—C7—C275.88 (14)C10—C14—C15—N323.94 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.90 (1)1.92 (1)2.820 (2)177 (2)
N1—H1···O2ii0.89 (1)2.23 (1)3.077 (2)158 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H21N3O3S
Mr323.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.891 (7), 11.226 (7), 13.477 (9)
β (°) 95.509 (9)
V3)1640.2 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.959, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
16805, 3904, 3461
Rint0.070
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.04
No. of reflections3904
No. of parameters208
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.51

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.898 (9)1.922 (13)2.820 (2)177 (2)
N1—H1···O2ii0.893 (7)2.231 (11)3.077 (2)158 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2.
 

Acknowledgements

This study was supported by the Tianjin Natural Science Foundation (10JCZDJC23900).

References

First citationLebovitz, H. E. & Feinglos, M. N. (1983). Diabetes Mellitus: Theory and Practices, 3rd ed., edited by M. Ellenberg & H. Rifkin, pp. 591–610. New York: Medical Examination Publishing.  Google Scholar
First citationParvez, M., Arayne, M. S., Zaman, M. K. & Sultana, N. (1999). Acta Cryst. C55, 74–75.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinters, C., Shields, L., Timmins, P. & York, P. (1994). J. Pharm. Sci. 83, 300–304.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds