metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m121-m122

Bis(2-{[2-(2-hy­dr­oxy­benzyl­amino)­eth­yl]amino­meth­yl}phenolato-κ3N,N′,O1)cobalt(III) nitrate monohydrate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICSN-CNRS, Laboratoire de Cristallochimie, 1 Avenue la Terasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 7 December 2011; accepted 27 December 2011; online 7 January 2012)

In the title compound, [Co(C16H19N2O2)2]NO3·H2O, the CoIII ion is located on an inversion center and is six-coordinated by two phenolate O atoms and four amino N atoms from two diamine ligands, forming an octa­hedral geometry. The water mol­ecule and the nitrate anion are located close to an inversion center, and are thus equally disordered by symmetry. The crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds involving the uncoordinated water mol­ecule and the free phenol hydroxyl group with the nitrate anion. N—H⋯O hydrogen bonds involving the amino groups and the nitrate anions connect the complex mol­ecules along the c axis.

Related literature

For related structures, see: Zhou (2009[Zhou, L.-W. (2009). Acta Cryst. E65, m226.]); Zhang (2010[Zhang, D. (2010). Acta Cryst. E66, m1633.]); Khalaji et al. (2010[Khalaji, A. D., Hadadzadeh, H., Fejfarova, K. & Dusek, M. (2010). Polyhedron, 29, 807-812.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C16H19N2O2)2]NO3·H2O

  • Mr = 681.62

  • Triclinic, [P \overline 1]

  • a = 8.989 (3) Å

  • b = 9.032 (3) Å

  • c = 10.621 (4) Å

  • α = 106.680 (2)°

  • β = 99.950 (3)°

  • γ = 109.720 (2)°

  • V = 742.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 K

  • 0.42 × 0.14 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.640, Tmax = 0.930

  • 16124 measured reflections

  • 2694 independent reflections

  • 2303 reflections with I > 2σigma(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.10

  • 2689 reflections

  • 234 parameters

  • 29 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 1.896 (2)
Co1—N1 1.950 (2)
Co1—N2 1.997 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21O⋯O12ii 0.95 2.27 3.025 (12) 136
O21—H22O⋯O13ii 0.95 2.18 2.922 (13) 134
O2—H2O⋯O21iii 0.82 1.99 2.787 (9) 165
O2—H2O⋯O11iii 0.82 2.01 2.823 (9) 169
N1—H1N⋯O12iv 0.86 2.35 3.185 (10) 165
N1—H1N⋯O13i 0.86 2.31 3.145 (11) 163
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z; (iii) x-1, y-1, z; (iv) x, y, z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CRYSTALBUILDER (Welter, 2006[Welter, R. (2006). Acta Cryst. A62, s252.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases with N2O2 inners have been used to synthesize complexes, due to their chelating ability for metal atoms. In this paper, the title new cobalt(III) complex with the diamine ligand [2-((2-hydroxybenzylamino)ethylamino)methyl]phenol, is reported. The CoIII ion is six-coordinated by four amino N atoms and two phenolate O atoms from two ligands, forming an octahedral geometry (Fig. 1). The ligands present one of the hydroxyl groups protonated while the coordinated one is deprotonated. The equatorial sites are occupied by two amino N atoms and two phenolate O atoms from the same arm of the ligand and the two axial sites are occupied by the amino N atoms owned by the arm bearing the non deprotonated phenol group. The Co—O and Co—N equatorial bond lengths are 1.896 (2) and 1.950 (2) Å, while Co—N axial bond lengths is 1.997 (2) Å (Table 1). They are comparable to the bond lengths in similar octahedral cobalt complexes (Zhou, 2009; Zhang, 2010; Khalaji et al., 2010). The NO3- ion and the lattice water molecule are disordered over two sets of sites, with relative occupancies of 0.5 for each group. In the crystal structure, the molecules of the compound are linked into a three-dimensional framework by a combination of O—H···O, N—H···O, and C—H···π(arene) hydrogen bonds and also ππ stacking interactions. The first hydrogen bond type utilizes hydroxyl atoms O2 as donors to link the Co complexes through either a water molecule or a nitrate ion (the water molecule being H-bonded to the nitrate ion over a crystallographic inversion center) into an infinite chain along the [221] direction. Benzyl ring at general position form ππ interactions with its neighbor at (1 - x, 1 - y, 1 - z), with distance between ring centroids of 3.534 (3) Å. This pair is further sandwiched by C—H···π(arene) hydrogen bond developed by atom C9 with H9B···Cg distance of 2.76 Å, and X—H ··· Cg angle of 145°, and even more weakly by the edge of the phenolic group. These aromatic interactions interspersed by the solvent molecules but propagating along the [231] direction combine with the previous linear H-bond chain to form a molecular sheet lying parallel to (-102) (Fig. 2). Orthogonally to the sheet, the third dimensionality is developed by an hydrogen bond between the amine atom N1 and the nitrate ion, along the c axis.

Related literature top

For related structures, see: Zhou (2009); Zhang (2010); Khalaji et al. (2010).

Experimental top

Diethylenetriamine (1.0311 g, 10 mmol) and salicylaldehyde (2.4408 g, 20 mmol) were dissolved in 20 ml of ethanol with few drops of glacial acetic acid. The mixture was refluxed for 3 h. On cooling, a yellow oil was isolated. To 20 ml of anhydrous methanol was added the yellow oil (1.5 g, 5.59 mmol). The mixture was cooled to 273 K before NaBH4 (0.63 g, 16.7 mmol) was added in small portions. A white precipitate was isolated after 30 mn of stirring by filtration. In a round-bottom flask, 15 ml of methanol and the prepared ligand (0.2 g, 0.735 mmol) were mixed. Cobalt nitrate hexahydrate (0.21, 0.735 mmol) dissolved in 5 ml of methanol was introduced. Immediate color change was observed, indicating instant occurrence of the formation of the complex. The mixture was stirred at room temperature for 2 h. The brown solution was filtered off and the filtrate was left at room temperature. After two weeks, brown crystals suitable for X-ray analyses were obtained. Yield: 75%. Anal. Calc. for [C32H40N5O8Co]: C 56.39, H 5.91, N 10.27%. Found: C 56.38, H 5.93, N 10.28%. Selected IR data (cm-1, KBr pellet): 400, 3216, 1600, 1582, 1458, 764.

Refinement top

Five low-resolution reflections affected by the backstop were omitted from the refinement. The refinement indicated that a water molecule and a nitrate ion reside alternatively on the same inversion site with half-occupancy. These form with the hydroxyl group a molecular H-bonded chain running in the [221] direction. Similarity restraints on 1–2 and 1–3 distances (s.u. = 0.01 and 0.04 Å, respectively) were applied to keep the nitrate ion geometry reasonable. In addition, similarity restraints on displacement parameters for the nitrate ion and water molecule (s.u. = 0.05 Å2), and rigid-bond restraints for anisotropic displacement parameters (s.u. = 0.01 Å2) in the nitrate ion were applied. Except for the water molecule, all H atoms were initially located in difference maps, then their positions were geometrically optimized and refined as riding on their parent atoms with C—H = 0.93 or 0.97 Å (aromatic CH and methylene CH2), N—H = 0.847–0.860 Å, and with Uiso(H) = 1.2Ueq(C or N), while the hydroxyl H atom was allowed to rotate about the parent C—O bond [AFIX 147 instruction in SHELXL97 (Sheldrick, 2008)], with O2—H2O = 0.807 Å and Uiso(H2O) = 1.5Ueq(O2). H atoms of the water molecule were placed in calculated idealized positions using DFIX and DANG instructions, until being constrained with AFIX 3 instructions for the last run of refinement, in order to optimize H-bond interactions with oxygen atoms of the nitrate ion.

Computing details top

Data collection: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry operator a: -x + 1, -y, -z + 1]. A single position for nitrate and water groups has been retained.
[Figure 2] Fig. 2. Molecular representation of the compound showing hydrogen bonds. Broken lines stand for hydrogen bonds.
Bis(2-{[2-(2-hydroxybenzylamino)ethyl]aminomethyl}phenolato- κ3N,N',O1)cobalt(III) nitrate monohydrate top
Crystal data top
[Co(C16H19N2O2)2]NO3·H2OZ = 1
Mr = 681.62F(000) = 358
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.989 (3) ÅCell parameters from 2525 reflections
b = 9.032 (3) Åθ = 0.4–25.4°
c = 10.621 (4) ŵ = 0.64 mm1
α = 106.680 (2)°T = 293 K
β = 99.950 (3)°Parallelepipedic stick, brown
γ = 109.720 (2)°0.42 × 0.14 × 0.12 mm
V = 742.0 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
2694 independent reflections
Radiation source: fine-focus sealed tube2303 reflections with I > 2σigma(I)
Horizontally mounted graphite crystal monochromatorRint = 0.019
Detector resolution: 9 pixels mm-1θmax = 25.7°, θmin = 2.8°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1010
Tmin = 0.640, Tmax = 0.930l = 1212
16124 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.3846P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2689 reflectionsΔρmax = 0.25 e Å3
234 parametersΔρmin = 0.48 e Å3
29 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.058 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Co(C16H19N2O2)2]NO3·H2Oγ = 109.720 (2)°
Mr = 681.62V = 742.0 (4) Å3
Triclinic, P1Z = 1
a = 8.989 (3) ÅMo Kα radiation
b = 9.032 (3) ŵ = 0.64 mm1
c = 10.621 (4) ÅT = 293 K
α = 106.680 (2)°0.42 × 0.14 × 0.12 mm
β = 99.950 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2694 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2303 reflections with I > 2σigma(I)
Tmin = 0.640, Tmax = 0.930Rint = 0.019
16124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04729 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.10Δρmax = 0.25 e Å3
2689 reflectionsΔρmin = 0.48 e Å3
234 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.00000.50000.0525 (2)
O10.5163 (2)0.1737 (3)0.4297 (2)0.0576 (5)
O20.0155 (3)0.4955 (3)0.1901 (3)0.0811 (7)
H2O0.09380.58120.18140.122*
N10.4113 (3)0.0896 (3)0.6449 (2)0.0568 (6)
H1N0.45680.08620.72150.068*
N20.2647 (3)0.1449 (3)0.3863 (2)0.0568 (6)
H2N0.25430.23860.39350.068*
C10.4130 (3)0.2510 (4)0.4369 (3)0.0572 (7)
C20.3471 (4)0.2816 (4)0.3232 (3)0.0631 (7)
H20.37740.25030.24350.076*
C30.2380 (4)0.3575 (4)0.3273 (4)0.0705 (8)
H30.19450.37620.25020.085*
C40.1928 (4)0.4059 (4)0.4441 (4)0.0735 (9)
H40.11790.45610.44610.088*
C50.2590 (4)0.3796 (4)0.5582 (4)0.0700 (8)
H50.23020.41490.63810.084*
C60.3679 (4)0.3016 (4)0.5563 (3)0.0602 (7)
C70.4394 (4)0.2700 (4)0.6785 (3)0.0649 (8)
H7A0.55750.34000.71420.078*
H7B0.38980.30290.75010.078*
C80.2337 (3)0.0254 (4)0.6089 (3)0.0646 (8)
H8A0.17700.03460.65800.077*
H8B0.22450.12130.63580.077*
C90.1554 (3)0.0863 (4)0.4564 (3)0.0632 (8)
H9A0.04710.17850.42860.076*
H9B0.14190.00500.43200.076*
C100.2197 (3)0.1723 (4)0.2372 (3)0.0650 (8)
H10A0.26010.25270.19040.078*
H10B0.27790.06590.22770.078*
C110.0387 (3)0.2355 (4)0.1642 (3)0.0593 (7)
C120.0188 (4)0.1310 (4)0.1179 (3)0.0673 (8)
H120.05390.02020.13760.081*
C130.1816 (4)0.1876 (5)0.0434 (3)0.0698 (8)
H130.21870.11530.01380.084*
C140.2878 (4)0.3500 (4)0.0135 (3)0.0670 (8)
H140.39730.38930.03880.080*
C150.2359 (4)0.4569 (4)0.0591 (3)0.0644 (8)
H150.30950.56790.03800.077*
C160.0727 (4)0.3981 (4)0.1370 (3)0.0602 (7)
O110.7320 (11)0.1846 (10)0.1338 (9)0.123 (3)0.50
N110.5877 (7)0.0882 (8)0.0550 (6)0.0742 (14)0.50
O120.5389 (14)0.1116 (12)0.0485 (10)0.104 (3)0.50
O130.5023 (13)0.0330 (11)0.0776 (11)0.097 (3)0.50
O210.7119 (11)0.2509 (10)0.2025 (9)0.111 (3)0.50
H21O0.64900.14430.20540.167*0.50
H22O0.66280.24290.11270.167*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0430 (3)0.0580 (4)0.0498 (3)0.0179 (2)0.0079 (2)0.0177 (2)
O10.0520 (11)0.0630 (12)0.0589 (11)0.0241 (9)0.0139 (8)0.0252 (9)
O20.0661 (14)0.0758 (16)0.0986 (18)0.0311 (12)0.0078 (13)0.0361 (14)
N10.0479 (12)0.0637 (15)0.0515 (13)0.0188 (11)0.0079 (10)0.0201 (11)
N20.0479 (12)0.0655 (15)0.0518 (13)0.0213 (11)0.0100 (10)0.0201 (11)
C10.0450 (14)0.0562 (16)0.0628 (17)0.0167 (12)0.0093 (12)0.0204 (13)
C20.0539 (16)0.0654 (19)0.0664 (18)0.0210 (14)0.0105 (13)0.0281 (15)
C30.0584 (18)0.073 (2)0.080 (2)0.0257 (16)0.0103 (15)0.0351 (17)
C40.0567 (18)0.072 (2)0.095 (3)0.0299 (16)0.0163 (17)0.0352 (18)
C50.0600 (18)0.0657 (19)0.078 (2)0.0246 (15)0.0203 (15)0.0201 (16)
C60.0527 (15)0.0572 (17)0.0623 (17)0.0197 (13)0.0107 (13)0.0179 (13)
C70.0602 (17)0.069 (2)0.0585 (17)0.0270 (15)0.0133 (13)0.0152 (14)
C80.0470 (15)0.081 (2)0.0590 (17)0.0194 (14)0.0154 (12)0.0248 (15)
C90.0418 (14)0.076 (2)0.0610 (17)0.0170 (13)0.0119 (12)0.0208 (15)
C100.0478 (15)0.080 (2)0.0512 (16)0.0180 (14)0.0062 (12)0.0179 (14)
C110.0480 (15)0.0691 (19)0.0486 (15)0.0186 (14)0.0071 (11)0.0158 (13)
C120.0589 (17)0.070 (2)0.0611 (18)0.0168 (15)0.0104 (14)0.0232 (15)
C130.0622 (18)0.080 (2)0.0670 (19)0.0297 (17)0.0109 (15)0.0320 (17)
C140.0483 (15)0.087 (2)0.0565 (17)0.0240 (16)0.0074 (13)0.0230 (16)
C150.0514 (16)0.0666 (19)0.0599 (17)0.0169 (14)0.0086 (13)0.0155 (14)
C160.0531 (16)0.0650 (18)0.0565 (16)0.0243 (14)0.0101 (12)0.0178 (14)
O110.129 (6)0.083 (5)0.122 (7)0.026 (4)0.011 (5)0.041 (5)
N110.070 (3)0.073 (4)0.079 (4)0.027 (3)0.021 (3)0.032 (3)
O120.113 (7)0.107 (7)0.078 (5)0.028 (6)0.011 (4)0.044 (5)
O130.094 (5)0.089 (6)0.090 (5)0.012 (4)0.018 (4)0.042 (5)
O210.100 (5)0.081 (5)0.134 (7)0.017 (4)0.016 (5)0.050 (5)
Geometric parameters (Å, º) top
Co1—O1i1.896 (2)N11—O131.222 (9)
Co1—O11.896 (2)N11—O13ii1.348 (12)
Co1—N1i1.950 (2)N11—N11ii1.728 (12)
Co1—N11.950 (2)N11—O12ii1.753 (10)
Co1—N2i1.997 (2)O12—O13ii0.627 (11)
Co1—N21.997 (2)O12—N11ii1.753 (10)
O1—C11.337 (3)O13—O12ii0.627 (11)
O2—C161.358 (4)O13—N11ii1.348 (12)
N1—C71.484 (4)O2—H2O0.8200
N1—C81.488 (4)N1—H1N0.8595
N2—C91.475 (4)N2—H2N0.8468
N2—C101.490 (4)C2—H20.9300
C1—C21.393 (4)C3—H30.9300
C1—C61.397 (4)C4—H40.9300
C2—C31.373 (4)C5—H50.9300
C3—C41.370 (5)C7—H7A0.9700
C4—C51.375 (5)C7—H7B0.9700
C5—C61.385 (4)C8—H8A0.9700
C6—C71.493 (4)C8—H8B0.9700
C8—C91.502 (4)C9—H9A0.9700
C10—C111.502 (4)C9—H9B0.9700
C11—C121.381 (4)C10—H10A0.9700
C11—C161.381 (4)C10—H10B0.9700
C12—C131.375 (4)C12—H120.9300
C13—C141.359 (5)C13—H130.9300
C14—C151.371 (5)C14—H140.9300
C15—C161.386 (4)C15—H150.9300
O11—N111.259 (9)O21—H21O0.9503
N11—O121.214 (11)O21—H22O0.9504
O1i—Co1—O1180O12—N11—O11118.7 (8)
O1i—Co1—N1i94.28 (10)O13—N11—O11120.6 (8)
O1—Co1—N1i85.72 (10)C16—O2—H2O109.5
O1i—Co1—N185.72 (9)C7—N1—H1N104.3
O1—Co1—N194.28 (10)C8—N1—H1N104.2
N1i—Co1—N1180Co1—N1—H1N111.3
O1i—Co1—N2i93.87 (9)C9—N2—H2N107.1
O1—Co1—N2i86.13 (9)C10—N2—H2N108.3
N1i—Co1—N2i86.32 (10)Co1—N2—H2N100.6
N1—Co1—N2i93.68 (9)C3—C2—H2119.6
O1i—Co1—N286.13 (9)C1—C2—H2119.6
O1—Co1—N293.87 (9)C4—C3—H3119.8
N1i—Co1—N293.68 (9)C2—C3—H3119.8
N1—Co1—N286.32 (10)C3—C4—H4120.3
N2i—Co1—N2180C5—C4—H4120.3
C1—O1—Co1122.22 (18)C4—C5—H5119.4
C7—N1—C8113.1 (2)C6—C5—H5119.4
C7—N1—Co1114.85 (19)N1—C7—H7A109.1
C8—N1—Co1108.49 (18)C6—C7—H7A109.1
C9—N2—C10112.6 (2)N1—C7—H7B109.1
C9—N2—Co1109.04 (17)C6—C7—H7B109.1
C10—N2—Co1117.92 (18)H7A—C7—H7B107.9
O1—C1—C2119.8 (3)N1—C8—H8A109.8
O1—C1—C6121.5 (3)C9—C8—H8A109.8
C2—C1—C6118.6 (3)N1—C8—H8B109.8
C3—C2—C1120.8 (3)C9—C8—H8B109.8
C4—C3—C2120.5 (3)H8A—C8—H8B108.3
C3—C4—C5119.5 (3)N2—C9—H9A110.1
C4—C5—C6121.2 (3)C8—C9—H9A110.1
C5—C6—C1119.4 (3)N2—C9—H9B110.1
C5—C6—C7122.0 (3)C8—C9—H9B110.1
C1—C6—C7118.7 (3)H9A—C9—H9B108.4
N1—C7—C6112.3 (2)N2—C10—H10A108.2
N1—C8—C9109.2 (2)C11—C10—H10A108.2
N2—C9—C8108.0 (2)N2—C10—H10B108.2
N2—C10—C11116.5 (2)C11—C10—H10B108.2
C12—C11—C16118.2 (3)H10A—C10—H10B107.3
C12—C11—C10119.6 (3)C13—C12—H12119.3
C16—C11—C10122.1 (3)C11—C12—H12119.3
C13—C12—C11121.3 (3)C14—C13—H13120.3
C14—C13—C12119.4 (3)C12—C13—H13120.3
C13—C14—C15121.0 (3)C13—C14—H14119.5
C14—C15—C16119.4 (3)C15—C14—H14119.5
O2—C16—C11117.3 (3)C14—C15—H15120.3
O2—C16—C15122.2 (3)C16—C15—H15120.3
C11—C16—C15120.6 (3)H21O—O21—H22O104.1
O12—N11—O13120.6 (8)
N1i—Co1—O1—C1149.8 (2)C7—N1—C8—C990.2 (3)
N1—Co1—O1—C130.2 (2)Co1—N1—C8—C938.5 (3)
N2i—Co1—O1—C1123.6 (2)C10—N2—C9—C8167.3 (3)
N2—Co1—O1—C156.4 (2)Co1—N2—C9—C834.4 (3)
O1i—Co1—N1—C7161.25 (19)N1—C8—C9—N248.1 (3)
O1—Co1—N1—C718.75 (19)C9—N2—C10—C1133.9 (4)
N2i—Co1—N1—C767.64 (19)Co1—N2—C10—C11162.3 (2)
N2—Co1—N1—C7112.36 (19)N2—C10—C11—C12112.2 (3)
O1i—Co1—N1—C871.16 (19)N2—C10—C11—C1670.1 (4)
O1—Co1—N1—C8108.84 (19)C16—C11—C12—C131.8 (5)
N2i—Co1—N1—C8164.77 (19)C10—C11—C12—C13176.0 (3)
N2—Co1—N1—C815.23 (19)C11—C12—C13—C140.7 (5)
O1i—Co1—N2—C996.9 (2)C12—C13—C14—C151.5 (5)
O1—Co1—N2—C983.1 (2)C13—C14—C15—C160.0 (5)
N1i—Co1—N2—C9169.1 (2)C12—C11—C16—O2176.4 (3)
N1—Co1—N2—C910.9 (2)C10—C11—C16—O25.8 (4)
O1i—Co1—N2—C10133.0 (2)C12—C11—C16—C153.4 (4)
O1—Co1—N2—C1047.0 (2)C10—C11—C16—C15174.4 (3)
N1i—Co1—N2—C1039.0 (2)C14—C15—C16—O2177.2 (3)
N1—Co1—N2—C10141.0 (2)C14—C15—C16—C112.5 (5)
Co1—O1—C1—C2136.5 (2)O13—N11—O12—O13ii29 (3)
Co1—O1—C1—C643.1 (3)O11—N11—O12—O13ii147 (2)
O1—C1—C2—C3178.6 (3)N11ii—N11—O12—O13ii18 (2)
C6—C1—C2—C31.0 (5)O12ii—N11—O12—O13ii18 (2)
C1—C2—C3—C40.5 (5)O13—N11—O12—N11ii10.6 (13)
C2—C3—C4—C50.7 (5)O11—N11—O12—N11ii164.8 (9)
C3—C4—C5—C61.5 (5)O13ii—N11—O12—N11ii18 (2)
C4—C5—C6—C10.9 (5)O12ii—N11—O12—N11ii0.0
C4—C5—C6—C7179.2 (3)O12—N11—O13—O12ii49 (5)
O1—C1—C6—C5179.3 (3)O11—N11—O13—O12ii127 (4)
C2—C1—C6—C50.3 (4)O13ii—N11—O13—O12ii36 (4)
O1—C1—C6—C70.8 (4)N11ii—N11—O13—O12ii36 (4)
C2—C1—C6—C7179.6 (3)O12—N11—O13—N11ii12.9 (16)
C8—N1—C7—C667.3 (3)O11—N11—O13—N11ii162.4 (9)
Co1—N1—C7—C657.9 (3)O13ii—N11—O13—N11ii0.0
C5—C6—C7—N1126.1 (3)O12ii—N11—O13—N11ii36 (4)
C1—C6—C7—N154.0 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21O···O12ii0.952.273.025 (12)136
O21—H22O···O13ii0.952.182.922 (13)134
O2—H2O···O21iii0.821.992.787 (9)165
O2—H2O···O11iii0.822.012.823 (9)169
N1—H1N···O12iv0.862.353.185 (10)165
N1—H1N···O13i0.862.313.145 (11)163
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x1, y1, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C16H19N2O2)2]NO3·H2O
Mr681.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.989 (3), 9.032 (3), 10.621 (4)
α, β, γ (°)106.680 (2), 99.950 (3), 109.720 (2)
V3)742.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.42 × 0.14 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.640, 0.930
No. of measured, independent and
observed [I > 2σigma(I)] reflections
16124, 2694, 2303
Rint0.019
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.10
No. of reflections2689
No. of parameters234
No. of restraints29
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.48

Computer programs: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O11.896 (2)Co1—N21.997 (2)
Co1—N11.950 (2)
O1i—Co1—O1180O1—Co1—N293.87 (9)
O1—Co1—N1i85.72 (10)N1i—Co1—N293.68 (9)
O1—Co1—N194.28 (10)N1—Co1—N286.32 (10)
N1i—Co1—N1180N2i—Co1—N2180
O1i—Co1—N286.13 (9)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21O···O12ii0.952.273.025 (12)135.8
O21—H22O···O13ii0.952.182.922 (13)134.2
O2—H2O···O21iii0.821.992.787 (9)165.4
O2—H2O···O11iii0.822.012.823 (9)168.7
N1—H1N···O12iv0.862.353.185 (10)165.3
N1—H1N···O13i0.862.313.145 (11)162.9
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x1, y1, z; (iv) x, y, z+1.
 

Acknowledgements

The authors thank Professor Amadou Tidiane, BA Minister of Higher Education of Senegal, for his financial support.

References

First citationKhalaji, A. D., Hadadzadeh, H., Fejfarova, K. & Dusek, M. (2010). Polyhedron, 29, 807–812.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelter, R. (2006). Acta Cryst. A62, s252.  CrossRef IUCr Journals Google Scholar
First citationZhang, D. (2010). Acta Cryst. E66, m1633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, L.-W. (2009). Acta Cryst. E65, m226.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m121-m122
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds