organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{(E)-[(2Z)-(3-Chloro-1-methyl-2,2-di­oxo-3,4-di­hydro-1H-2,1-benzo­thia­zin-4-yl­­idene)hydrazinyl­­idene]meth­yl}phenol

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan, cDepartment of Chemistry, University of Gujrat, Gujrat 50781, Pakistan, and dThe Center of Excellence for Advanced Materials Research and Department of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 15 December 2011; accepted 28 December 2011; online 7 January 2012)

In the title compound, C16H14ClN3O3S, the thia­zine ring adopts a sofa (half-chair) conformation, with an r.m.s. deviation from the mean plane of 0.23 Å. The S atom and S-bonded C atom exhibit the maximum deviations from the thia­zine mean plane [−0.3976 (12) and 0.3179 (14) Å, respectively]. The conformations around the double bonds in the R2C=N—N=CHR unit are Z and E. An intra­molecular O—H⋯N hydrogen bond with the hy­droxy group as donor generates an S(6) ring motif. In the crystal, pairs of weak C—H⋯O inter­actions connect the mol­ecules, forming inversion dimers.

Related literature

For benzothia­zine compounds, see: Shafiq, Khan et al. (2011[Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101-2105.]); Shafiq, Zia-ur-Rehman et al. (2011[Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527-531.]). For related structures, see: Shafiq et al. (2011a[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011a). Acta Cryst. E67, o2038.],b[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011b). Acta Cryst. E67, o2092.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClN3O3S

  • Mr = 363.81

  • Monoclinic, P 21 /c

  • a = 7.0973 (5) Å

  • b = 12.0957 (7) Å

  • c = 18.7396 (13) Å

  • β = 96.058 (4)°

  • V = 1599.75 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.19 × 0.08 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.973

  • 15526 measured reflections

  • 3977 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.211

  • S = 1.03

  • 3977 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N3 0.82 (7) 1.98 (7) 2.682 (5) 143 (7)
C9—H9⋯O1i 0.95 2.55 3.394 (5) 148
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have recently explored the synthesis of different halogenated benzothiazines (Shafiq, Khan, Arshad et al., 2011), and their Schiff bases (Shafiq, Zia-ur-Rehman et al., 2011). The crystal structure of title compound is being reported in order to study the geometry and different interactions in this class of compounds.

The present structure relates with the already published crystal structures of 4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq, Khan, Zia-ur-Rehman et al., 2011a) and 6-bromo-1-methyl-4-[2-(4-methylbenzylidene)hydrazinylidene]-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq, Khan, Zia-ur-Rehman et al., 2011b). The two fused rings in the title compound (Fig. 1) are oriented at dihedral angle of 7.49 (5)° and the thiazine ring adopts the sofa shape with r.m.s. deviation of about 0.23 Å, and with the maximum deviations arising from S1 [-0.3721 (21) Å] and C8 [0.3118 (26) Å] atoms. The intramolecular hydrogen bonding interaction of O—H···N type generates a six membered ring S11(6) (Bernstein et al., 1995). A weak C—H···O type interaction connects the molecules to form centrosymmetric dimers and generates R22(16) ring motifs (Bernstein et al., 1995; Table 1 and Fig. 2).

The phenol ring is oriented at dihedral angle of 8.17 (4) and 15.58 (5)° with respect to the aromatic ring and thiazine ring, and is twisted by 2.07 (3)° with respect to six membered S(6) ring motif generated through the intramolecular O—H···N hydrogen bond.

Related literature top

For benzothiazine compounds, see: Shafiq, Khan et al. (2011); Shafiq, Zia-ur-Rehman et al. (2011). For related structures, see: Shafiq et al. (2011a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

For the synthesis of title compound, 4-hydrazinylidene-1- methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq, Khan, Zia-ur-Rehman et al., 2011a) was subjected to react with salicylaldehyde according to literature procedure (Shafiq, Zia-ur-Rehman et al., 2011). The product obtained was then halogenated following another method (Shafiq, Khan, Arshad et al., 2011). Suitable crystals were produced by slow evaporation of a dry ethylacetate solution.

Refinement top

All C-bonded H-atoms were positioned in idealized geometry, with C—H = 0.95 Å for aromatic CH, C—H = 0.98 Å for the methyl group, and C—H = 1 Å for methine C8, and were refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic groups and C8, and Uiso(H) = 1.5Ueq(C16) for the methyl group. Hydroxyl H atom H3O was found in a difference map and refined freely, restraining the O—H bond length to 0.82 (7) Å, with Uiso(H3O) = 2Ueq(O3).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. Perspective view which shows the dimers formed through C—H···O hydrogen bonds (dashed lines).
2-{(E)-[(2Z)-(3-Chloro-1-methyl-2,2-dioxo-3,4-dihydro- 1H-2,1-benzothiazin-4-ylidene)hydrazinylidene]methyl}phenol top
Crystal data top
C16H14ClN3O3SF(000) = 752
Mr = 363.81Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2110 reflections
a = 7.0973 (5) Åθ = 2.8–23.7°
b = 12.0957 (7) ŵ = 0.39 mm1
c = 18.7396 (13) ÅT = 296 K
β = 96.058 (4)°Needle, colourless
V = 1599.75 (18) Å30.19 × 0.08 × 0.07 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3977 independent reflections
Radiation source: fine-focus sealed tube2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 89
Tmin = 0.930, Tmax = 0.973k = 1616
15526 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0873P)2 + 1.6824P]
where P = (Fo2 + 2Fc2)/3
3977 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.38 e Å3
0 constraints
Crystal data top
C16H14ClN3O3SV = 1599.75 (18) Å3
Mr = 363.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0973 (5) ŵ = 0.39 mm1
b = 12.0957 (7) ÅT = 296 K
c = 18.7396 (13) Å0.19 × 0.08 × 0.07 mm
β = 96.058 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3977 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2200 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.973Rint = 0.061
15526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.211H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.13 e Å3
3977 reflectionsΔρmin = 0.38 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51356 (17)0.73641 (10)0.42510 (7)0.0613 (4)
S10.16021 (16)0.83188 (8)0.46237 (6)0.0466 (3)
O10.0316 (4)0.7950 (3)0.46762 (18)0.0589 (9)
O20.1931 (5)0.9186 (2)0.41328 (19)0.0646 (10)
O30.2121 (6)0.4788 (3)0.27384 (18)0.0632 (10)
N10.2779 (5)0.8598 (3)0.5392 (2)0.0486 (9)
N20.2405 (5)0.5211 (3)0.48831 (18)0.0410 (8)
N30.2244 (5)0.4863 (2)0.41731 (18)0.0409 (8)
C10.2935 (6)0.7761 (3)0.5927 (2)0.0393 (9)
C20.3168 (7)0.8064 (4)0.6654 (2)0.0546 (12)
H20.31850.88230.67840.066*
C30.3368 (7)0.7278 (5)0.7172 (3)0.0625 (14)
H30.35410.74960.76620.075*
C40.3327 (7)0.6172 (4)0.7003 (2)0.0576 (12)
H40.34620.56290.73710.069*
C50.3090 (6)0.5861 (4)0.6295 (2)0.0466 (10)
H50.30590.50970.61780.056*
C60.2894 (5)0.6638 (3)0.5745 (2)0.0349 (8)
C70.2647 (5)0.6248 (3)0.4995 (2)0.0340 (8)
C80.2740 (6)0.7083 (3)0.4402 (2)0.0402 (9)
H80.20590.67760.39500.048*
C90.2063 (6)0.3806 (3)0.4143 (2)0.0399 (9)
H90.20410.34080.45790.048*
C100.1889 (5)0.3193 (3)0.3476 (2)0.0383 (9)
C110.1917 (6)0.3688 (3)0.2807 (2)0.0448 (10)
C120.1740 (7)0.3036 (4)0.2194 (3)0.0570 (12)
H120.17640.33680.17360.068*
C130.1532 (7)0.1921 (4)0.2249 (3)0.0628 (14)
H130.13880.14870.18240.075*
C140.1526 (7)0.1407 (4)0.2903 (3)0.0568 (12)
H140.13930.06280.29320.068*
C150.1715 (6)0.2043 (3)0.3513 (3)0.0464 (10)
H150.17280.16950.39680.056*
C160.3125 (10)0.9768 (4)0.5597 (3)0.0839 (18)
H16A0.21081.00300.58690.126*
H16B0.31531.02170.51630.126*
H16C0.43430.98310.58930.126*
H3O0.235 (11)0.509 (6)0.313 (4)0.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0542 (7)0.0619 (7)0.0709 (9)0.0012 (6)0.0213 (6)0.0147 (6)
S10.0503 (7)0.0366 (5)0.0514 (7)0.0043 (5)0.0005 (5)0.0050 (5)
O10.0359 (17)0.073 (2)0.066 (2)0.0084 (15)0.0010 (14)0.0259 (17)
O20.086 (3)0.0398 (17)0.066 (2)0.0017 (16)0.0010 (18)0.0182 (15)
O30.094 (3)0.0417 (18)0.054 (2)0.0080 (17)0.0063 (19)0.0097 (15)
N10.060 (2)0.0312 (17)0.052 (2)0.0033 (16)0.0057 (17)0.0064 (15)
N20.049 (2)0.0353 (17)0.038 (2)0.0009 (15)0.0044 (15)0.0005 (14)
N30.052 (2)0.0315 (16)0.040 (2)0.0002 (14)0.0060 (15)0.0033 (14)
C10.035 (2)0.041 (2)0.041 (2)0.0017 (17)0.0009 (17)0.0064 (18)
C20.055 (3)0.062 (3)0.045 (3)0.001 (2)0.001 (2)0.016 (2)
C30.058 (3)0.095 (4)0.034 (3)0.005 (3)0.004 (2)0.015 (3)
C40.061 (3)0.075 (3)0.037 (3)0.004 (2)0.004 (2)0.011 (2)
C50.051 (3)0.046 (2)0.042 (3)0.0043 (19)0.0007 (19)0.0059 (19)
C60.032 (2)0.040 (2)0.033 (2)0.0003 (16)0.0024 (15)0.0014 (17)
C70.036 (2)0.0306 (18)0.035 (2)0.0025 (15)0.0018 (16)0.0031 (16)
C80.051 (2)0.0322 (19)0.037 (2)0.0031 (17)0.0035 (18)0.0001 (17)
C90.042 (2)0.035 (2)0.043 (2)0.0007 (17)0.0047 (18)0.0022 (17)
C100.037 (2)0.0342 (19)0.043 (2)0.0021 (16)0.0013 (17)0.0020 (17)
C110.042 (2)0.042 (2)0.050 (3)0.0069 (18)0.0001 (19)0.0010 (19)
C120.061 (3)0.069 (3)0.040 (3)0.007 (2)0.000 (2)0.006 (2)
C130.059 (3)0.063 (3)0.066 (3)0.003 (2)0.004 (2)0.026 (3)
C140.056 (3)0.043 (2)0.072 (3)0.005 (2)0.011 (2)0.015 (2)
C150.046 (3)0.035 (2)0.059 (3)0.0032 (18)0.007 (2)0.007 (2)
C160.123 (5)0.040 (3)0.086 (4)0.004 (3)0.005 (4)0.016 (3)
Geometric parameters (Å, º) top
Cl1—C81.786 (4)C5—C61.391 (5)
S1—O21.430 (3)C5—H50.9500
S1—O11.445 (3)C6—C71.475 (5)
S1—N11.623 (4)C7—C81.509 (5)
S1—C81.770 (4)C8—H81.0000
O3—C111.346 (5)C9—C101.447 (5)
O3—H3O0.82 (7)C9—H90.9500
N1—C11.420 (5)C10—C111.391 (6)
N1—C161.479 (6)C10—C151.399 (5)
N2—C71.280 (5)C11—C121.388 (6)
N2—N31.389 (5)C12—C131.362 (7)
N3—C91.286 (5)C12—H120.9500
C1—C61.399 (5)C13—C141.374 (7)
C1—C21.405 (6)C13—H130.9500
C2—C31.355 (7)C14—C151.372 (6)
C2—H20.9500C14—H140.9500
C3—C41.375 (7)C15—H150.9500
C3—H30.9500C16—H16A0.9800
C4—C51.371 (6)C16—H16B0.9800
C4—H40.9500C16—H16C0.9800
O2—S1—O1119.2 (2)C7—C8—S1109.6 (3)
O2—S1—N1108.3 (2)C7—C8—Cl1111.1 (3)
O1—S1—N1113.8 (2)S1—C8—Cl1110.0 (2)
O2—S1—C8111.0 (2)C7—C8—H8108.7
O1—S1—C8102.2 (2)S1—C8—H8108.7
N1—S1—C8100.35 (19)Cl1—C8—H8108.7
C11—O3—H3O111 (5)N3—C9—C10123.1 (4)
C1—N1—C16120.1 (4)N3—C9—H9118.4
C1—N1—S1118.1 (3)C10—C9—H9118.4
C16—N1—S1119.0 (3)C11—C10—C15118.8 (4)
C7—N2—N3116.8 (3)C11—C10—C9123.3 (4)
C9—N3—N2110.0 (3)C15—C10—C9117.9 (4)
C6—C1—C2119.1 (4)O3—C11—C12118.9 (4)
C6—C1—N1121.5 (3)O3—C11—C10121.6 (4)
C2—C1—N1119.4 (4)C12—C11—C10119.5 (4)
C3—C2—C1120.3 (4)C13—C12—C11120.1 (5)
C3—C2—H2119.8C13—C12—H12119.9
C1—C2—H2119.8C11—C12—H12119.9
C2—C3—C4121.3 (4)C12—C13—C14121.7 (5)
C2—C3—H3119.4C12—C13—H13119.2
C4—C3—H3119.4C14—C13—H13119.2
C5—C4—C3119.1 (4)C15—C14—C13118.7 (4)
C5—C4—H4120.4C15—C14—H14120.6
C3—C4—H4120.4C13—C14—H14120.6
C4—C5—C6121.6 (4)C14—C15—C10121.2 (4)
C4—C5—H5119.2C14—C15—H15119.4
C6—C5—H5119.2C10—C15—H15119.4
C5—C6—C1118.5 (4)N1—C16—H16A109.5
C5—C6—C7118.8 (3)N1—C16—H16B109.5
C1—C6—C7122.7 (3)H16A—C16—H16B109.5
N2—C7—C6118.1 (3)N1—C16—H16C109.5
N2—C7—C8123.4 (3)H16A—C16—H16C109.5
C6—C7—C8118.5 (3)H16B—C16—H16C109.5
O2—S1—N1—C1169.2 (3)C5—C6—C7—C8170.6 (4)
O1—S1—N1—C155.7 (4)C1—C6—C7—C89.6 (6)
C8—S1—N1—C152.7 (3)N2—C7—C8—S1142.6 (3)
O2—S1—N1—C1629.7 (5)C6—C7—C8—S139.0 (4)
O1—S1—N1—C16105.4 (4)N2—C7—C8—Cl195.6 (4)
C8—S1—N1—C16146.1 (4)C6—C7—C8—Cl182.8 (4)
C7—N2—N3—C9178.1 (4)O2—S1—C8—C7170.5 (3)
C16—N1—C1—C6170.4 (4)O1—S1—C8—C761.3 (3)
S1—N1—C1—C628.6 (5)N1—S1—C8—C756.1 (3)
C16—N1—C1—C28.4 (6)O2—S1—C8—Cl148.0 (3)
S1—N1—C1—C2152.5 (3)O1—S1—C8—Cl1176.2 (2)
C6—C1—C2—C30.6 (7)N1—S1—C8—Cl166.4 (2)
N1—C1—C2—C3178.3 (4)N2—N3—C9—C10179.2 (3)
C1—C2—C3—C40.8 (8)N3—C9—C10—C110.5 (6)
C2—C3—C4—C50.4 (8)N3—C9—C10—C15179.5 (4)
C3—C4—C5—C60.1 (7)C15—C10—C11—O3178.6 (4)
C4—C5—C6—C10.3 (6)C9—C10—C11—O30.4 (6)
C4—C5—C6—C7179.9 (4)C15—C10—C11—C121.0 (6)
C2—C1—C6—C50.1 (6)C9—C10—C11—C12180.0 (4)
N1—C1—C6—C5178.8 (4)O3—C11—C12—C13180.0 (4)
C2—C1—C6—C7179.7 (4)C10—C11—C12—C130.3 (7)
N1—C1—C6—C71.4 (6)C11—C12—C13—C141.2 (8)
N3—N2—C7—C6177.7 (3)C12—C13—C14—C150.7 (8)
N3—N2—C7—C80.7 (6)C13—C14—C15—C100.8 (7)
C5—C6—C7—N27.9 (5)C11—C10—C15—C141.6 (6)
C1—C6—C7—N2171.9 (4)C9—C10—C15—C14179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N30.82 (7)1.98 (7)2.682 (5)143 (7)
C9—H9···O1i0.952.553.394 (5)148
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14ClN3O3S
Mr363.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.0973 (5), 12.0957 (7), 18.7396 (13)
β (°) 96.058 (4)
V3)1599.75 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.19 × 0.08 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.930, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
15526, 3977, 2200
Rint0.061
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.211, 1.03
No. of reflections3977
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.13, 0.38

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N30.82 (7)1.98 (7)2.682 (5)143 (7)
C9—H9···O1i0.952.553.394 (5)148.1
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101-2105.  CAS Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011a). Acta Cryst. E67, o2038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011b). Acta Cryst. E67, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds