organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o537-o538

2-Oxo-2H-chromen-4-yl 4-tert-butyl­benzoate

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody, 22 BP 582, Abidjan 22, Cote d'Ivoire, and bLaboratoire de Chimie Bio-organique et Phytochimie, Université de Ouagadougou, 03 BP 7021, Ouagadougou 03, Burkina Faso
*Correspondence e-mail: abou_akoun@yahoo.fr

(Received 6 January 2012; accepted 24 January 2012; online 31 January 2012)

In the title mol­ecule, C20H18O4, the three methyl groups of the tert-butyl substituent show rotational disorder. Each methyl group is split over three positions, with refined site-occupation factors of 0.711 (4), 0.146 (3) and 0.144 (4). The benzene ring of the benzoate group is oriented at a dihedral angle of 60.70 (7)° with respect to the planar chromene ring [maximum deviation = 0.046 (2) Å]. The crystal structure features centrosymmetric R22(8) dimers formed via C—H⋯O inter­actions, and these dimeric aggregates are connected by C—H⋯π inter­actions.

Related literature

For the biological activities of coumarin derivatives, see: Ukhov et al. (2001[Ukhov, S. V., Kon'shin, M. E. & Odegova, T. F. (2001). Pharm. Chem. J. 35, 364-365.]); Abd Elhafez et al. (2003[Abd Elhafez, O. M., El Khrisy, A. M., Badria, F. & Fathy, A. M. (2003). Arch. Pharm. Res. 26, 686-696.]); Basanagouda et al. (2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]); Liu et al. (2008[Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X. & Zhou, J. (2008). Appl. Microbiol. Biotechnol. 78, 241-247.]); Trapkov et al. (1996[Trapkov, V. A., Parfenov, E. A. & Smirnov, L. D. (1996). Pharm. Chem. J. 30, 445-447.]); Vukovic et al. (2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5-15.]); Emmanuel-Giota et al. (2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717-722.]); Hamdi & Dixneuf (2007[Hamdi, N. & Dixneuf, P. H. (2007). In Topics in Heterocyclic Chemistry. Berlin, Heidelberg: Springer-Verlag.]); Wang et al. (2001[Wang, M., Wang, L., Li, Y. & Li, Q. (2001). Transition Met. Chem. 26, 307-310.]); Marchenko et al. (2006[Marchenko, M. M., Kopyl'chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). Pharm. Chem. J. 40, 296-297.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18O4

  • Mr = 322.34

  • Triclinic, [P \overline 1]

  • a = 6.4319 (2) Å

  • b = 9.3498 (3) Å

  • c = 14.5505 (5) Å

  • α = 98.481 (1)°

  • β = 93.655 (1)°

  • γ = 102.359 (2)°

  • V = 841.27 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.30 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 11164 measured reflections

  • 4198 independent reflections

  • 2926 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.157

  • S = 1.05

  • 4198 reflections

  • 247 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the chromene benzene and benzoate benzene rings.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.39 3.323 (2) 177
C18B—H18DCg3ii 0.96 2.83 3.54 (2) 133
C18C—H18ICg3ii 0.96 2.90 3.47 (2) 119
C19C—H19ICg2iii 0.96 2.95 3.75 (2) 141
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallograhy, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Coumarin constitutes one of the major classes of naturally occurring compounds, and interest in its chemistry continues unabated because of its usefulness as biologically active agents. It also represents the core structure of several molecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Ukhov et al., 2001; Abd Elhafez et al., 2003; Basanagouda et al., 2009; Liu et al., 2008), anti-oxidant (Trapkov et al., 1996; Vukovic et al., 2010), anti-inflammatory (Emmanuel-Giota et al., 2001; Hamdi & Dixneuf, 2007), anti-coagulant (Hamdi & Dixneuf, 2007) and anti-tumour (Wang et al., 2001; Marchenko, et al., 2006) agents. Therefore, the synthesis of new coumarin derivatives is of considerable interest. In order to study the influence of new substituents on the activity of the coumarin derivatives, the title compound has been synthesized and in this paper, we present its molecular and crystal structure.

In the title compound (Fig. 1), the three methyl groups of the tert-butyl substituent exhibit rotational disorder, with refined site occupation factors of 0.711 (4), 0.146 (3) and 0.144 (4). The planar chromene ring system resulting from the two fused rings (benzene and 3,6-dihydro-2H-pyran) is oriented with respect to the benzoate-benzene ring at a dihedral angle of 60.70 (7)°.

In the crystal structure, intermolecular C—H···O interactions (Table 1) link the molecules into centrosymmetric dimers through R22(8) ring motifs (Bernstein et al., 1995) and these dimeric aggregates are connected by C—H···π and weak CO···π interactions (Table 1, Fig. 2 and 3).

Related literature top

For the biological activities of coumarin derivatives, see: Ukhov et al. (2001); Abd Elhafez et al. (2003); Basanagouda et al. (2009); Liu et al. (2008); Trapkov et al. (1996); Vukovic et al. (2010); Emmanuel-Giota et al. (2001); Hamdi & Dixneuf (2007); Wang et al. (2001); Marchenko et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 4-tertiobutylbenzoyl chloride (4.10-2 mole) in dried tetrahydrofuran (150 ml), was added dried triethylamine (0.12 mole) and 4-hydroxycoumarin (4.10-2 mole) by small portions over 30 min. The mixture was then refluxed for 3 h and poured in 300 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water, dried over MgSO4 and the solvent removed. The crude product was recrystallized from chloroform. Colourless crystals of the title compound were obtained in good yield 73.8%; melting point: 381–383 K.

Refinement top

In the refinement, positional, site occupation factors and Uij parameters of the disordered C atoms were refined freely. However, EADP instruction (Sheldrick, 2008) was used to constrain the anisotropic displacement parameters (ADPs) of the disordered C atoms of the two minor components to be the same as their corresponding C atoms in the principal component. Also, SADI and SAME restrictions were applied to C(methyl)···C(methyl) separations in each component, in order to get a sensible geometry. H atoms were placed in calculated positions [C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (methyl) times Ueq of the respective parent atom. Four reflections were omitted from the refinement because of large disagreements: (0 0 1), (0 1 0), (0 - 1 1) and (-1 4 6).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compund, showing displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing, viewed down the a axis, showing centrosymmetric dimers linked by C—H···π interactions. The green dots are centroids of rings and the dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 3] Fig. 3. Crystal packing, showing parallel centrosymmetric dimers linked by CO···π interactions. The green dots are centroids of rings and the dashed lines indicate hydrogen bonds and O···π contacts. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-Oxo-2H-chromen-4-yl 4-tert-butylbenzoate top
Crystal data top
C20H18O4Z = 2
Mr = 322.34F(000) = 340
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Melting point = 381–383 K
a = 6.4319 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3498 (3) ÅCell parameters from 11164 reflections
c = 14.5505 (5) Åθ = 2.8–29.0°
α = 98.481 (1)°µ = 0.09 mm1
β = 93.655 (1)°T = 298 K
γ = 102.359 (2)°Parallelepiped, colourless
V = 841.27 (5) Å30.50 × 0.30 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
2926 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 29.0°, θmin = 2.8°
ϕ and ω scansh = 88
11164 measured reflectionsk = 1212
4198 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1855P]
where P = (Fo2 + 2Fc2)/3
4198 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.18 e Å3
10 restraintsΔρmin = 0.16 e Å3
108 constraints
Crystal data top
C20H18O4γ = 102.359 (2)°
Mr = 322.34V = 841.27 (5) Å3
Triclinic, P1Z = 2
a = 6.4319 (2) ÅMo Kα radiation
b = 9.3498 (3) ŵ = 0.09 mm1
c = 14.5505 (5) ÅT = 298 K
α = 98.481 (1)°0.50 × 0.30 × 0.14 mm
β = 93.655 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2926 reflections with I > 2σ(I)
11164 measured reflectionsRint = 0.033
4198 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05710 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
4198 reflectionsΔρmin = 0.16 e Å3
247 parameters
Special details top

Refinement. In the title coumpound, the tert-butyl group may rotate virtually freely at least at room temperature, and in the spatial average one sees this group as a rotational toroid. Since it is hard to describe this situation to the refinement program, we have reduced the problem to a refinement of only three sites per methyl group (see Refinement section). The low Ueq as compared to neighbors for atom C17 is caused by this disorder.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.44961 (18)1.29961 (11)0.47812 (8)0.0616 (3)
C140.3413 (2)0.39183 (15)0.12787 (10)0.0501 (3)
O30.41921 (18)0.87715 (12)0.33682 (9)0.0691 (4)
O20.1580 (2)1.22217 (14)0.54429 (9)0.0740 (4)
C40.6027 (2)1.13127 (16)0.37549 (10)0.0534 (4)
C120.4620 (3)0.60660 (18)0.24953 (12)0.0651 (5)
H120.56380.65920.29780.078*
O40.1052 (2)0.85839 (15)0.25363 (10)0.0838 (4)
C50.6076 (3)1.27317 (17)0.42286 (11)0.0545 (4)
C110.2870 (2)0.66128 (15)0.22615 (10)0.0497 (3)
C160.1363 (3)0.57977 (18)0.15545 (12)0.0623 (4)
H160.01490.61380.14020.075*
C130.4863 (3)0.47264 (18)0.20086 (12)0.0671 (5)
H130.60420.43620.21800.080*
C20.2658 (3)1.04280 (16)0.43723 (12)0.0590 (4)
H20.14860.96630.44030.071*
C100.2528 (3)0.80567 (16)0.27141 (11)0.0537 (4)
C170.3724 (3)0.24640 (16)0.07275 (11)0.0551 (4)
C150.1651 (3)0.44763 (18)0.10713 (12)0.0628 (4)
H150.06260.39480.05920.075*
C60.7699 (3)1.39340 (19)0.41635 (13)0.0679 (5)
H60.76911.48770.44730.081*
C30.4194 (2)1.01742 (16)0.38416 (11)0.0550 (4)
C90.7722 (3)1.1114 (2)0.32308 (12)0.0681 (5)
H90.77451.01760.29190.082*
C10.2803 (3)1.18853 (17)0.49010 (12)0.0575 (4)
C80.9354 (3)1.2308 (3)0.31767 (14)0.0803 (6)
H81.04851.21740.28310.096*
C70.9322 (3)1.3711 (2)0.36341 (15)0.0780 (5)
H71.04201.45130.35810.094*
C18A0.2652 (7)0.2152 (4)0.0279 (2)0.0881 (11)0.711 (4)
H18A0.32110.29650.05930.132*0.711 (4)
H18B0.11350.20420.02690.132*0.711 (4)
H18C0.29400.12560.06040.132*0.711 (4)
C19A0.6141 (5)0.2536 (4)0.0647 (3)0.0893 (11)0.711 (4)
H19A0.63060.16560.02550.134*0.711 (4)
H19B0.68570.26050.12570.134*0.711 (4)
H19C0.67520.33920.03810.134*0.711 (4)
C20A0.2862 (7)0.1213 (3)0.1233 (2)0.0839 (10)0.711 (4)
H20A0.13560.11280.12670.126*0.711 (4)
H20B0.35790.14060.18520.126*0.711 (4)
H20C0.30980.03030.09020.126*0.711 (4)
C18B0.392 (4)0.266 (2)0.0247 (12)0.0881 (11)0.144 (4)
H18D0.50840.34770.02750.132*0.144 (4)
H18E0.26150.28460.05080.132*0.144 (4)
H18F0.41800.17690.05970.132*0.144 (4)
C19B0.554 (3)0.190 (2)0.1180 (13)0.0893 (11)0.144 (4)
H19D0.55480.09260.08570.134*0.144 (4)
H19E0.53300.18490.18230.134*0.144 (4)
H19F0.68840.25630.11440.134*0.144 (4)
C20B0.154 (3)0.1210 (15)0.0767 (14)0.0839 (10)0.144 (4)
H20D0.03330.15250.05150.126*0.144 (4)
H20E0.13780.10830.14030.126*0.144 (4)
H20F0.16390.02840.04060.126*0.144 (4)
C18C0.512 (3)0.2889 (16)0.0029 (10)0.0881 (11)0.146 (3)
H18G0.64590.34940.03300.132*0.146 (3)
H18H0.44670.34410.03640.132*0.146 (3)
H18I0.53700.20160.03420.132*0.146 (3)
C19C0.465 (3)0.1613 (18)0.1414 (11)0.0893 (11)0.146 (3)
H19G0.47620.06640.10900.134*0.146 (3)
H19H0.37290.14700.19020.134*0.146 (3)
H19I0.60450.21700.16810.134*0.146 (3)
C20C0.151 (3)0.1494 (14)0.0290 (12)0.0839 (10)0.146 (3)
H20G0.09240.19710.01740.126*0.146 (3)
H20H0.05530.13770.07690.126*0.146 (3)
H20I0.16710.05370.00040.126*0.146 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0675 (7)0.0415 (5)0.0719 (7)0.0107 (5)0.0124 (5)0.0031 (5)
C140.0553 (8)0.0396 (7)0.0530 (8)0.0100 (6)0.0031 (6)0.0018 (6)
O30.0669 (7)0.0466 (6)0.0872 (8)0.0212 (5)0.0081 (6)0.0158 (5)
O20.0765 (8)0.0623 (7)0.0795 (8)0.0150 (6)0.0226 (6)0.0061 (6)
C40.0596 (9)0.0490 (8)0.0510 (8)0.0159 (6)0.0010 (6)0.0033 (6)
C120.0680 (10)0.0546 (9)0.0662 (10)0.0222 (7)0.0162 (8)0.0138 (7)
O40.0957 (10)0.0718 (8)0.0843 (9)0.0461 (7)0.0186 (7)0.0141 (7)
C50.0616 (9)0.0469 (8)0.0546 (8)0.0136 (6)0.0032 (7)0.0064 (6)
C110.0569 (8)0.0403 (7)0.0510 (8)0.0121 (6)0.0050 (6)0.0031 (6)
C160.0559 (9)0.0595 (9)0.0694 (10)0.0220 (7)0.0057 (7)0.0043 (8)
C130.0699 (10)0.0575 (9)0.0706 (11)0.0294 (8)0.0168 (8)0.0114 (8)
C20.0608 (9)0.0419 (7)0.0707 (10)0.0101 (6)0.0048 (7)0.0005 (7)
C100.0614 (9)0.0450 (7)0.0553 (8)0.0173 (6)0.0038 (7)0.0032 (6)
C170.0630 (9)0.0433 (7)0.0565 (9)0.0141 (6)0.0046 (7)0.0024 (6)
C150.0551 (9)0.0557 (9)0.0695 (10)0.0136 (7)0.0081 (7)0.0111 (7)
C60.0731 (11)0.0516 (9)0.0747 (11)0.0062 (8)0.0028 (9)0.0102 (8)
C30.0611 (9)0.0405 (7)0.0608 (9)0.0165 (6)0.0026 (7)0.0036 (6)
C90.0693 (10)0.0744 (11)0.0607 (10)0.0247 (9)0.0060 (8)0.0002 (8)
C10.0621 (9)0.0469 (8)0.0610 (9)0.0134 (7)0.0050 (7)0.0001 (7)
C80.0673 (11)0.1024 (16)0.0702 (12)0.0151 (10)0.0156 (9)0.0135 (11)
C70.0711 (11)0.0790 (13)0.0798 (12)0.0017 (9)0.0084 (9)0.0219 (10)
C18A0.122 (3)0.077 (2)0.0622 (15)0.044 (2)0.0175 (19)0.0209 (14)
C19A0.0668 (16)0.084 (2)0.106 (3)0.0231 (15)0.0170 (16)0.0296 (18)
C20A0.125 (3)0.0432 (11)0.086 (2)0.0221 (15)0.0319 (19)0.0047 (13)
C18B0.122 (3)0.077 (2)0.0622 (15)0.044 (2)0.0175 (19)0.0209 (14)
C19B0.0668 (16)0.084 (2)0.106 (3)0.0231 (15)0.0170 (16)0.0296 (18)
C20B0.125 (3)0.0432 (11)0.086 (2)0.0221 (15)0.0319 (19)0.0047 (13)
C18C0.122 (3)0.077 (2)0.0622 (15)0.044 (2)0.0175 (19)0.0209 (14)
C19C0.0668 (16)0.084 (2)0.106 (3)0.0231 (15)0.0170 (16)0.0296 (18)
C20C0.125 (3)0.0432 (11)0.086 (2)0.0221 (15)0.0319 (19)0.0047 (13)
Geometric parameters (Å, º) top
O1—C11.374 (2)C6—C71.369 (3)
O1—C51.3760 (19)C6—H60.9300
C14—C151.380 (2)C9—C81.375 (3)
C14—C131.380 (2)C9—H90.9300
C14—C171.5322 (19)C8—C71.385 (3)
O3—C101.3691 (19)C8—H80.9300
O3—C31.3883 (17)C7—H70.9300
O2—C11.2048 (19)C18A—H18A0.9600
C4—C51.395 (2)C18A—H18B0.9600
C4—C91.398 (2)C18A—H18C0.9600
C4—C31.435 (2)C19A—H19A0.9600
C12—C111.376 (2)C19A—H19B0.9600
C12—C131.390 (2)C19A—H19C0.9600
C12—H120.9300C20A—H20A0.9600
O4—C101.1906 (18)C20A—H20B0.9600
C5—C61.380 (2)C20A—H20C0.9600
C11—C161.380 (2)C18B—H18D0.9600
C11—C101.4792 (19)C18B—H18E0.9600
C16—C151.383 (2)C18B—H18F0.9600
C16—H160.9300C19B—H19D0.9600
C13—H130.9300C19B—H19E0.9600
C2—C31.331 (2)C19B—H19F0.9600
C2—C11.444 (2)C20B—H20D0.9600
C2—H20.9300C20B—H20E0.9600
C17—C18C1.442 (16)C20B—H20F0.9600
C17—C18B1.465 (17)C18C—H18G0.9600
C17—C20A1.498 (3)C18C—H18H0.9600
C17—C19C1.533 (17)C18C—H18I0.9600
C17—C19B1.533 (16)C19C—H19G0.9600
C17—C18A1.538 (3)C19C—H19H0.9600
C17—C19A1.554 (3)C19C—H19I0.9600
C17—C20C1.557 (16)C20C—H20G0.9600
C17—C20B1.634 (17)C20C—H20H0.9600
C15—H150.9300C20C—H20I0.9600
C1—O1—C5122.13 (12)C14—C17—C20B106.5 (5)
C15—C14—C13116.78 (13)C19C—C17—C20B82.4 (9)
C15—C14—C17121.34 (13)C19B—C17—C20B105.6 (8)
C13—C14—C17121.88 (13)C18A—C17—C20B76.5 (7)
C10—O3—C3119.42 (12)C19A—C17—C20B138.2 (6)
C5—C4—C9118.27 (15)C14—C15—C16121.97 (14)
C5—C4—C3116.26 (14)C14—C15—H15119.0
C9—C4—C3125.47 (15)C16—C15—H15119.0
C11—C12—C13119.84 (14)C7—C6—C5118.66 (17)
C11—C12—H12120.1C7—C6—H6120.7
C13—C12—H12120.1C5—C6—H6120.7
O1—C5—C6116.91 (14)C2—C3—O3122.37 (15)
O1—C5—C4121.30 (14)C2—C3—C4122.51 (14)
C6—C5—C4121.79 (16)O3—C3—C4115.05 (14)
C12—C11—C16118.93 (13)C8—C9—C4119.91 (18)
C12—C11—C10123.52 (14)C8—C9—H9120.0
C16—C11—C10117.54 (13)C4—C9—H9120.0
C11—C16—C15120.26 (14)O2—C1—O1116.63 (14)
C11—C16—H16119.9O2—C1—C2126.09 (16)
C15—C16—H16119.9O1—C1—C2117.28 (14)
C14—C13—C12122.17 (14)C9—C8—C7120.33 (18)
C14—C13—H13118.9C9—C8—H8119.8
C12—C13—H13118.9C7—C8—H8119.8
C3—C2—C1120.32 (15)C6—C7—C8121.00 (18)
C3—C2—H2119.8C6—C7—H7119.5
C1—C2—H2119.8C8—C7—H7119.5
O4—C10—O3122.60 (14)C17—C18A—H18A109.5
O4—C10—C11126.25 (15)C17—C18A—H18B109.5
O3—C10—C11111.12 (12)C17—C18A—H18C109.5
C18C—C17—C20A143.4 (6)C17—C19A—H19A109.5
C18B—C17—C20A136.4 (7)C17—C19A—H19B109.5
C18C—C17—C14105.8 (5)C17—C19A—H19C109.5
C18B—C17—C14108.4 (6)C17—C20A—H20A109.5
C20A—C17—C14109.06 (15)C17—C20A—H20B109.5
C18C—C17—C19C113.7 (8)C17—C20A—H20C109.5
C18B—C17—C19C136.7 (8)C17—C18B—H18D109.5
C14—C17—C19C108.2 (5)C17—C18B—H18E109.5
C18C—C17—C19B87.6 (9)H18D—C18B—H18E109.5
C18B—C17—C19B114.8 (8)C17—C18B—H18F109.5
C20A—C17—C19B69.0 (8)H18D—C18B—H18F109.5
C14—C17—C19B112.8 (5)H18E—C18B—H18F109.5
C18C—C17—C18A64.7 (7)C17—C19B—H19D109.5
C20A—C17—C18A110.4 (2)C17—C19B—H19E109.5
C14—C17—C18A112.45 (16)H19D—C19B—H19E109.5
C19C—C17—C18A138.0 (5)C17—C19B—H19F109.5
C19B—C17—C18A131.7 (6)H19D—C19B—H19F109.5
C18C—C17—C19A47.3 (7)H19E—C19B—H19F109.5
C18B—C17—C19A78.1 (9)C17—C20B—H20D109.5
C20A—C17—C19A108.4 (2)C17—C20B—H20E109.5
C14—C17—C19A110.35 (15)H20D—C20B—H20E109.5
C19C—C17—C19A67.9 (7)C17—C20B—H20F109.5
C18A—C17—C19A106.2 (2)H20D—C20B—H20F109.5
C18C—C17—C20C112.4 (7)H20E—C20B—H20F109.5
C18B—C17—C20C81.3 (9)C17—C18C—H18G109.5
C20A—C17—C20C65.9 (6)C17—C18C—H18H109.5
C14—C17—C20C109.1 (5)C17—C18C—H18I109.5
C19C—C17—C20C107.5 (7)C17—C19C—H19G109.5
C19B—C17—C20C125.8 (8)C17—C19C—H19H109.5
C18A—C17—C20C48.9 (7)C17—C19C—H19I109.5
C19A—C17—C20C139.5 (5)C17—C20C—H20G109.5
C18C—C17—C20B136.6 (8)C17—C20C—H20H109.5
C18B—C17—C20B108.4 (8)C17—C20C—H20I109.5
C1—O1—C5—C6179.82 (15)C13—C14—C17—C18A152.6 (2)
C1—O1—C5—C40.4 (2)C15—C14—C17—C19A146.2 (2)
C9—C4—C5—O1177.87 (14)C13—C14—C17—C19A34.3 (3)
C3—C4—C5—O12.9 (2)C15—C14—C17—C20C24.5 (7)
C9—C4—C5—C62.4 (2)C13—C14—C17—C20C155.0 (7)
C3—C4—C5—C6176.80 (15)C15—C14—C17—C20B54.0 (9)
C13—C12—C11—C161.2 (3)C13—C14—C17—C20B125.5 (9)
C13—C12—C11—C10177.33 (16)C13—C14—C15—C161.4 (3)
C12—C11—C16—C152.0 (3)C17—C14—C15—C16179.10 (16)
C10—C11—C16—C15176.59 (16)C11—C16—C15—C140.7 (3)
C15—C14—C13—C122.2 (3)O1—C5—C6—C7178.80 (16)
C17—C14—C13—C12178.25 (17)C4—C5—C6—C71.4 (3)
C11—C12—C13—C141.0 (3)C1—C2—C3—O3175.81 (15)
C3—O3—C10—O40.7 (3)C1—C2—C3—C40.9 (3)
C3—O3—C10—C11177.51 (14)C10—O3—C3—C260.6 (2)
C12—C11—C10—O4179.64 (18)C10—O3—C3—C4122.45 (16)
C16—C11—C10—O41.1 (3)C5—C4—C3—C22.7 (2)
C12—C11—C10—O31.5 (2)C9—C4—C3—C2178.21 (16)
C16—C11—C10—O3177.09 (14)C5—C4—C3—O3179.61 (13)
C15—C14—C17—C18C96.6 (8)C9—C4—C3—O31.3 (2)
C13—C14—C17—C18C83.9 (8)C5—C4—C9—C81.4 (3)
C15—C14—C17—C18B62.4 (10)C3—C4—C9—C8177.69 (17)
C13—C14—C17—C18B118.1 (10)C5—O1—C1—O2175.72 (14)
C15—C14—C17—C20A94.8 (2)C5—O1—C1—C24.0 (2)
C13—C14—C17—C20A84.7 (3)C3—C2—C1—O2175.46 (17)
C15—C14—C17—C19C141.2 (7)C3—C2—C1—O14.2 (2)
C13—C14—C17—C19C38.2 (8)C4—C9—C8—C70.4 (3)
C15—C14—C17—C19B169.4 (10)C5—C6—C7—C80.5 (3)
C13—C14—C17—C19B10.1 (10)C9—C8—C7—C61.4 (3)
C15—C14—C17—C18A27.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.393.323 (2)177
C18B—H18D···Cg3ii0.962.833.54 (2)133
C18C—H18I···Cg3ii0.962.903.47 (2)119
C19C—H19I···Cg2iii0.962.953.75 (2)141
C1—O2···Cg2iv1.21 (1)3.53 (1)3.802 (2)95 (1)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z; (iii) x1, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H18O4
Mr322.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.4319 (2), 9.3498 (3), 14.5505 (5)
α, β, γ (°)98.481 (1), 93.655 (1), 102.359 (2)
V3)841.27 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.30 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11164, 4198, 2926
Rint0.033
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.157, 1.05
No. of reflections4198
No. of parameters247
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.393.323 (2)177
C18B—H18D···Cg3ii0.962.833.54 (2)133
C18C—H18I···Cg3ii0.962.903.47 (2)119
C19C—H19I···Cg2iii0.962.953.75 (2)141
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z; (iii) x1, y+1, z.
 

Acknowledgements

We thank the Laboratoire de Physique des Inter­actions Ioniques et Moléculaires (Université de Provence), and Spectropôle (Université Paul Cézanne, Faculté des Sciences et Techniques de Saint Jérôme, Marseille, France), for the use of the diffractometer.

References

First citationAbd Elhafez, O. M., El Khrisy, A. M., Badria, F. & Fathy, A. M. (2003). Arch. Pharm. Res. 26, 686–696.  Web of Science PubMed CAS Google Scholar
First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717–722.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHamdi, N. & Dixneuf, P. H. (2007). In Topics in Heterocyclic Chemistry. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLiu, X., Dong, M., Chen, X., Jiang, M., Lv, X. & Zhou, J. (2008). Appl. Microbiol. Biotechnol. 78, 241–247.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarchenko, M. M., Kopyl'chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). Pharm. Chem. J. 40, 296–297.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallograhy, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrapkov, V. A., Parfenov, E. A. & Smirnov, L. D. (1996). Pharm. Chem. J. 30, 445–447.  CrossRef Google Scholar
First citationUkhov, S. V., Kon'shin, M. E. & Odegova, T. F. (2001). Pharm. Chem. J. 35, 364–365.  CrossRef CAS Google Scholar
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, M., Wang, L., Li, Y. & Li, Q. (2001). Transition Met. Chem. 26, 307–310.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o537-o538
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds