organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Hy­dr­oxy­phen­yl)-3-(3-meth­­oxy­phenyl)thio­urea

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 6 January 2012; accepted 20 January 2012; online 31 January 2012)

In the title compound, C14H14N2O2S, the dihedral angles between the thio­urea group and the methoxyphenyl and hydroxyphenyl rings are 61.91 (4) and 76.90 (4)°, respectively. The benzene rings are twisted with respect to each other, making a dihedral angle of 71.03 (4)°. The H atoms of the thio­urea NH groups are positioned anti to each other. In the crystal, inter­molecular N—H⋯S, N—H⋯O and O—H⋯S hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background to tyrosinase, see: Kubo et al. (2000[Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Kubo, Y., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749-1755.]). For the development of tyrosinase inhibitors, see: Son et al. (2000[Son, S. M., Moon, K. D. & Lee, C. Y. (2000). J. Agric. Food Chem. 48, 2071-2074.]); Iida et al. (1995[Iida, K., Hase, K., Shimomura, K., Sudo, S., Kadota, S. & Namba, T. (1995). Planta Med. 61, 425—428.]); Kojima et al. (1995[Kojima, S., Yamaguchi, H., Morita, K. & Ueno, Y. (1995). Biol. Pharm. Bull. 18, 1076-1080.]); Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O2S

  • Mr = 274.33

  • Triclinic, [P \overline 1]

  • a = 6.9925 (4) Å

  • b = 9.8666 (6) Å

  • c = 10.4238 (6) Å

  • α = 103.055 (2)°

  • β = 100.033 (1)°

  • γ = 90.508 (1)°

  • V = 688.99 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.2 × 0.17 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.975

  • 26807 measured reflections

  • 3419 independent reflections

  • 2503 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.01

  • 3419 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯S9i 0.832 (16) 2.588 (16) 3.3683 (12) 156.8 (14)
N10—H10⋯O17ii 0.807 (16) 2.239 (16) 2.9547 (16) 148.0 (15)
O19—H19⋯S9iii 0.90 (2) 2.35 (3) 3.2424 (12) 170 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tyrosinase, a multifunctional copper-containing enzyme, is widely distributed in nature. It is the key enzyme in the undesirable browning of fruits and vegetables, and coloring of skin, hair, and eyes in animals (Kubo et al., 2000). Its inhibition is one of the major strategies in developing new whitening agents. Numerous potential tyrosinase inhibitors have been discovered from natural and synthetic sources, such as ascorbic acid (Kojima et al., 1995), kojic acid (Cabanes et al., 1994), and tropolone (Son et al., 2000; Iida et al., 1995). But some of their individual activities are either not potent enough to be considered of practical use or not compatible with safety regulations for food and cosmetic additives. In our continuing search for tyrosinase inhibitors, we have synthesized the title compound from the reaction of 3-methoxyphenyl-isothiocyanate and 3-aminophenol under ambient conditions. Here, its structure is described (Fig. 1).

The 3-methoxyphenyl and 3-hydroxyphenyl moieties are almost planar with r.m.s. deviations of 0.008 and 0.016 Å, respectively, from the corresponding least-squares planes defined by the eight constituent atoms. The dihedral angles between thiourea moiety (N7···N10) and two benzene groups, C1···N7 and N10···C16, are 61.91 (4) and 76.90 (4)°, respectively. And two benzene groups are twisted to each other with the dihedral angle of 71.03 (4)°. The H7 and H10 atoms of the thiourea NH groups are positioned anti to each other (Fig. 1). The presence of intermolecular N7—H7···S9i, N10—H10···O17ii and O19—H19···S9iii [symmetry codes: (i) -x+1, -y+1, -z+1, (ii) -x, -y+1, -z, (iii) -x, -y, -z+1] hydrogen bonds link the molecules into a three-dimensional network (Fig. 2 and Table 1). The thiourea-S9 accepts two hydrogen bonds, each from NH and OH groups.

Related literature top

For general background to tyrosinase, see: Kubo et al. (2000). For the development of tyrosinase inhibitors, see: Son et al. (2000); Iida et al. (1995); Kojima et al. (1995); Cabanes et al. (1994).

Experimental top

3-Methoxyphenyl isothiocyanate and 3-aminophenol were purchased from Sigma Chemical Co. Solvents used for organic synthesis were distilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound was prepared from the reaction of 3-methoxyphenyl isothiocyanate (0.2 g, 1.0 mmol) with 3-aminophenol (0.2 g, 1.2 mmol) in acetonitrile (6 ml) under stirring. The reaction was completed within 1 h at room temperature. The solvent was removed under reduced pressure and the product washed with dichloromethane. Removal of the solvent gave a white solid (91%; m.p. 401 K). Colourless crystals were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

H atoms of the NH and OH groups were located in a difference Fourier map and refined freely [refined distances; N—H = 0.81 (2)-0.83 (2) Å, O—H = 0.90 (2) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2Ueq(carrier C) for aromatic or 1.5Ueq(carrier C) for methyl H atoms

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the packing diagram of the title compound, showing a three-dimensional network of molecules linked by intermolecular N—H···O, N—H···S and O—H···S hydrogen bonds (dashed lines).
1-(3-Hydroxyphenyl)-3-(3-methoxyphenyl)thiourea top
Crystal data top
C14H14N2O2SZ = 2
Mr = 274.33F(000) = 288
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Melting point: 401 K
a = 6.9925 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8666 (6) ÅCell parameters from 5768 reflections
c = 10.4238 (6) Åθ = 2.6–27.4°
α = 103.055 (2)°µ = 0.23 mm1
β = 100.033 (1)°T = 296 K
γ = 90.508 (1)°Block, colourless
V = 688.99 (7) Å30.2 × 0.17 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.956, Tmax = 0.975k = 1313
26807 measured reflectionsl = 1313
3419 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0503P)2]
where P = (Fo2 + 2Fc2)/3
3419 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
0 constraints
Crystal data top
C14H14N2O2Sγ = 90.508 (1)°
Mr = 274.33V = 688.99 (7) Å3
Triclinic, P1Z = 2
a = 6.9925 (4) ÅMo Kα radiation
b = 9.8666 (6) ŵ = 0.23 mm1
c = 10.4238 (6) ÅT = 296 K
α = 103.055 (2)°0.2 × 0.17 × 0.08 mm
β = 100.033 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3419 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2503 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.975Rint = 0.046
26807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.18 e Å3
3419 reflectionsΔρmin = 0.20 e Å3
184 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24836 (18)0.58574 (16)0.14956 (13)0.0403 (3)
H10.23570.66710.21230.048*
C20.23577 (19)0.58682 (17)0.01519 (14)0.0438 (4)
C30.2516 (2)0.46570 (19)0.07750 (15)0.0501 (4)
H30.24050.46660.16750.06*
C40.2838 (2)0.34340 (19)0.03709 (16)0.0544 (4)
H40.29450.26170.10010.065*
C50.3005 (2)0.34057 (17)0.09647 (16)0.0491 (4)
H50.32530.2580.12390.059*
C60.28010 (19)0.46141 (16)0.18824 (13)0.0395 (3)
N70.29788 (18)0.46161 (13)0.32718 (12)0.0439 (3)
H70.387 (2)0.5124 (16)0.3796 (16)0.053 (5)*
C80.19730 (19)0.37739 (14)0.37909 (13)0.0359 (3)
S90.26879 (6)0.36711 (4)0.53992 (4)0.04690 (14)
N100.04156 (17)0.30682 (13)0.29859 (12)0.0412 (3)
H100.007 (2)0.3295 (17)0.2288 (16)0.050 (5)*
C110.07082 (19)0.19821 (14)0.32679 (13)0.0376 (3)
C120.0066 (2)0.07050 (14)0.32391 (13)0.0397 (3)
H120.13240.05640.30770.048*
C130.1033 (2)0.03815 (15)0.34530 (13)0.0407 (3)
C140.2904 (2)0.01681 (17)0.36628 (16)0.0530 (4)
H140.3660.08940.37830.064*
C150.3659 (2)0.11175 (19)0.3695 (2)0.0643 (5)
H150.49170.12570.38580.077*
C160.2575 (2)0.22180 (17)0.34868 (17)0.0542 (4)
H160.30970.30830.34960.065*
O170.20472 (17)0.70305 (13)0.03543 (11)0.0593 (3)
C180.2042 (3)0.8340 (2)0.0567 (2)0.0800 (6)
H18A0.18150.90610.00820.12*
H18B0.32770.85280.1160.12*
H18C0.10310.83130.10780.12*
O190.01696 (17)0.16246 (11)0.34188 (11)0.0543 (3)
H190.080 (3)0.213 (3)0.385 (2)0.110 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0375 (7)0.0498 (9)0.0336 (7)0.0083 (6)0.0027 (6)0.0126 (6)
C20.0341 (7)0.0620 (10)0.0381 (8)0.0061 (6)0.0013 (6)0.0216 (7)
C30.0393 (8)0.0787 (12)0.0317 (8)0.0072 (7)0.0041 (6)0.0136 (8)
C40.0491 (9)0.0648 (11)0.0425 (9)0.0062 (8)0.0096 (7)0.0022 (8)
C50.0487 (8)0.0509 (9)0.0470 (9)0.0063 (7)0.0066 (7)0.0121 (8)
C60.0344 (7)0.0515 (9)0.0319 (7)0.0131 (6)0.0010 (5)0.0127 (6)
N70.0487 (7)0.0492 (8)0.0318 (6)0.0212 (6)0.0042 (5)0.0148 (6)
C80.0411 (7)0.0333 (7)0.0328 (7)0.0049 (6)0.0015 (6)0.0108 (6)
S90.0577 (2)0.0490 (2)0.0323 (2)0.02053 (17)0.00393 (16)0.01601 (16)
N100.0430 (6)0.0451 (7)0.0356 (7)0.0136 (5)0.0051 (5)0.0197 (6)
C110.0402 (7)0.0392 (8)0.0317 (7)0.0112 (6)0.0015 (6)0.0116 (6)
C120.0420 (7)0.0418 (8)0.0348 (7)0.0067 (6)0.0060 (6)0.0092 (6)
C130.0525 (8)0.0371 (8)0.0303 (7)0.0087 (6)0.0023 (6)0.0077 (6)
C140.0492 (9)0.0516 (10)0.0594 (10)0.0168 (7)0.0060 (7)0.0193 (8)
C150.0391 (8)0.0711 (12)0.0908 (14)0.0043 (8)0.0140 (8)0.0339 (11)
C160.0448 (8)0.0510 (10)0.0710 (11)0.0011 (7)0.0076 (8)0.0249 (8)
O170.0678 (7)0.0717 (8)0.0435 (6)0.0008 (6)0.0024 (5)0.0301 (6)
C180.1086 (16)0.0616 (13)0.0721 (14)0.0002 (11)0.0033 (12)0.0304 (11)
O190.0752 (8)0.0382 (6)0.0528 (7)0.0032 (5)0.0191 (6)0.0121 (5)
Geometric parameters (Å, º) top
C1—C61.3834 (19)N10—H100.807 (16)
C1—C21.3904 (18)C11—C121.3721 (19)
C1—H10.93C11—C161.376 (2)
C2—O171.3706 (18)C12—C131.3938 (18)
C2—C31.376 (2)C12—H120.93
C3—C41.373 (2)C13—O191.3677 (17)
C3—H30.93C13—C141.374 (2)
C4—C51.383 (2)C14—C151.374 (2)
C4—H40.93C14—H140.93
C5—C61.376 (2)C15—C161.397 (2)
C5—H50.93C15—H150.93
C6—N71.4314 (17)C16—H160.93
N7—C81.3429 (17)O17—C181.425 (2)
N7—H70.832 (16)C18—H18A0.96
C8—N101.3338 (16)C18—H18B0.96
C8—S91.6900 (13)C18—H18C0.96
N10—C111.4353 (16)O19—H190.90 (2)
C6—C1—C2118.81 (14)C12—C11—C16121.41 (13)
C6—C1—H1120.6C12—C11—N10119.07 (12)
C2—C1—H1120.6C16—C11—N10119.42 (13)
O17—C2—C3115.33 (13)C11—C12—C13119.98 (13)
O17—C2—C1124.32 (15)C11—C12—H12120
C3—C2—C1120.35 (14)C13—C12—H12120
C4—C3—C2119.98 (14)O19—C13—C14123.60 (13)
C4—C3—H3120O19—C13—C12117.00 (13)
C2—C3—H3120C14—C13—C12119.40 (14)
C3—C4—C5120.59 (15)C15—C14—C13120.02 (14)
C3—C4—H4119.7C15—C14—H14120
C5—C4—H4119.7C13—C14—H14120
C6—C5—C4119.14 (15)C14—C15—C16121.26 (15)
C6—C5—H5120.4C14—C15—H15119.4
C4—C5—H5120.4C16—C15—H15119.4
C5—C6—C1121.10 (13)C11—C16—C15117.91 (15)
C5—C6—N7120.30 (14)C11—C16—H16121
C1—C6—N7118.56 (13)C15—C16—H16121
C8—N7—C6126.11 (12)C2—O17—C18118.09 (13)
C8—N7—H7116.8 (11)O17—C18—H18A109.5
C6—N7—H7116.7 (11)O17—C18—H18B109.5
N10—C8—N7116.72 (12)H18A—C18—H18B109.5
N10—C8—S9123.46 (10)O17—C18—H18C109.5
N7—C8—S9119.81 (10)H18A—C18—H18C109.5
C8—N10—C11125.96 (12)H18B—C18—H18C109.5
C8—N10—H10116.2 (11)C13—O19—H19108.9 (15)
C11—N10—H10117.9 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···S9i0.832 (16)2.588 (16)3.3683 (12)156.8 (14)
N10—H10···O17ii0.807 (16)2.239 (16)2.9547 (16)148.0 (15)
O19—H19···S9iii0.90 (2)2.35 (3)3.2424 (12)170 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N2O2S
Mr274.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.9925 (4), 9.8666 (6), 10.4238 (6)
α, β, γ (°)103.055 (2), 100.033 (1), 90.508 (1)
V3)688.99 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.2 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.956, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
26807, 3419, 2503
Rint0.046
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.01
No. of reflections3419
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···S9i0.832 (16)2.588 (16)3.3683 (12)156.8 (14)
N10—H10···O17ii0.807 (16)2.239 (16)2.9547 (16)148.0 (15)
O19—H19···S9iii0.90 (2)2.35 (3)3.2424 (12)170 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y, z+1.
 

Acknowledgements

We wish to thank the DBIO Company for partial support of this work.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIida, K., Hase, K., Shimomura, K., Sudo, S., Kadota, S. & Namba, T. (1995). Planta Med. 61, 425—428.  CrossRef Google Scholar
First citationKojima, S., Yamaguchi, H., Morita, K. & Ueno, Y. (1995). Biol. Pharm. Bull. 18, 1076–1080.  CrossRef CAS PubMed Google Scholar
First citationKubo, I., Kinst-Hori, I., Chaudhuri, S. K., Kubo, Y., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749–1755.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, S. M., Moon, K. D. & Lee, C. Y. (2000). J. Agric. Food Chem. 48, 2071–2074.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds