organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 102, India
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 December 2011; accepted 27 December 2011; online 11 January 2012)

In the title compound, C13H10N2O5S, the N—C bond in the C—SO2—NH—C segment has gauche torsion angles with respect to the S=O bonds. The conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring is syn. The mol­ecule is twisted at the S—N bond with a torsion angle of −63.4 (2)°. The sulfonyl benzene ring is tilted by 77.1 (1)° relative to the —SO2—NH—C—O segment. The dihedral angle between the sulfonyl and the benzoyl benzene rings is 88.6 (1)°. In the crystal, pairs of N—H⋯O(S) hydrogen bonds link the mol­ecules into inversion dimers, which are linked by weak C—H⋯O and C—H⋯π inter­actions along the b axis.

Related literature

For studies, including those by our group, on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2006[Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588-594.]), on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004[Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500.]), on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.]), on N-(substitutedbenzo­yl)-aryl­sulfonamides, see: Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1024.]) and on N-chloro­aryl­amides, see: Gowda & Maha­de­vappa (1983[Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O5S

  • Mr = 306.29

  • Orthorhombic, P b c a

  • a = 12.1127 (8) Å

  • b = 11.7625 (8) Å

  • c = 18.730 (1) Å

  • V = 2668.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.48 × 0.44 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.883, Tmax = 0.901

  • 6396 measured reflections

  • 2711 independent reflections

  • 2010 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.04

  • 2711 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.21 (2) 3.003 (3) 158 (2)
C11—H11⋯O3ii 0.93 2.51 3.267 (3) 139
C13—H13⋯O2i 0.93 2.53 3.313 (3) 142
C6—H6⋯Cg1iii 0.93 2.82 3.678 (13) 153
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2006), N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), N-(aryl)-arylsulfonamides (Gowda et al., 2003); N-(substitutedbenzoyl)-arylsulfonamides (Suchetan et al., 2010) and N-chloro-arylsulfonamides (Gowda & Mahadevappa, 1983), in the present work, the crystal structure of N-(benzoyl)- 2-nitrobenzenesulfonamide (I) has been determined (Fig.1).

In (I), the conformation between the N—H and C=O bonds in the C—SO2—NH—C(O) segment is anti (Fig.1), similar to that observed in N-(benzoyl)-2-methylbenzenesulfonamide (II) (Suchetan et al., 2010). Furthermore, the N—C bond in the segment has gauche torsion with respect to the SO bonds, while, the conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring is syn.

The molecule is twisted at the S—N bond with the torsional angle of -63.39 (22)°, compared to the value of 68.8 (4)° in (II).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 77.1 (1)°, compared to the value of 84.8 (1)° in (II). Further, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 88.6 (1)°, compared to the value of 73.9 (1)° in (II).

In the crystal, intermolecular N1–H1N···O2 and C13—H13···O2 hydrogen bonds link the molecules as dimers and these dimers are also linked by C11—H11···O3 hydrogen bonds and C—H···π interactions along b-axis (Table 1). [C6—H6···Cg1, cg1 is the centroid of C8—C13 ring] Parts of the crystal structure are shown in Fig. 2., Fig. 3. and Fig. 4.

Related literature top

For studies, including those by our group, on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2006), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004), on N-(aryl)-arylsulfonamides, see: Gowda et al. (2003), on N-(substitutedbenzoyl)-arylsulfonamides, see: Suchetan et al. (2010) and on N-chloroarylamides, see: Gowda & Mahadevappa (1983).

Experimental top

The title compound was prepared by refluxing a mixture of benzoic acid (0.02 mole), 2-nitrobenzenesulfonamide (0.02 mole) and excess phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, N-(benzoyl)-2-nitrobenzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the dimers formed by N-H···O and C-H..O hydrogen bonds. [Symmetry code: (i) 2-x, -y, 1-z]
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the linking of the dimers by C-H···O hydrogen bonds along to the [010] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. [Symmetry code: (ii) = 5/2-x, y-1/2, z]
[Figure 4] Fig. 4. Part of the crystal structure of the title compound, showing the formation of a chain along [010] generated by the C-H···π interactions. [Symmetry code: (iii) = 2-x, y+1/2, -z+1/2]
N-Benzoyl-2-nitrobenzenesulfonamide top
Crystal data top
C13H10N2O5SF(000) = 1264
Mr = 306.29Dx = 1.525 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2597 reflections
a = 12.1127 (8) Åθ = 2.6–27.8°
b = 11.7625 (8) ŵ = 0.27 mm1
c = 18.730 (1) ÅT = 293 K
V = 2668.6 (3) Å3Prism, colorless
Z = 80.48 × 0.44 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2711 independent reflections
Radiation source: fine-focus sealed tube2010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1315
Tmin = 0.883, Tmax = 0.901k = 1414
6396 measured reflectionsl = 1423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0388P)2 + 2.8009P]
where P = (Fo2 + 2Fc2)/3
2711 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C13H10N2O5SV = 2668.6 (3) Å3
Mr = 306.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1127 (8) ŵ = 0.27 mm1
b = 11.7625 (8) ÅT = 293 K
c = 18.730 (1) Å0.48 × 0.44 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2711 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2010 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.901Rint = 0.020
6396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
2711 reflectionsΔρmin = 0.36 e Å3
193 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.01092 (19)0.2867 (2)0.42850 (12)0.0320 (5)
C21.08964 (19)0.3142 (2)0.47986 (13)0.0352 (5)
C31.1400 (2)0.4186 (2)0.48146 (15)0.0458 (6)
H31.19120.43600.51680.055*
C41.1134 (2)0.4975 (2)0.42959 (15)0.0503 (7)
H41.14730.56840.42980.060*
C51.0369 (2)0.4717 (2)0.37750 (15)0.0496 (7)
H51.02010.52490.34240.060*
C60.9851 (2)0.3670 (2)0.37733 (14)0.0413 (6)
H60.93260.35050.34260.050*
C71.0522 (2)0.0708 (2)0.31993 (13)0.0344 (5)
C81.13311 (19)0.01632 (19)0.29607 (12)0.0332 (5)
C91.2011 (2)0.0112 (2)0.23910 (13)0.0400 (6)
H91.19420.08160.21700.048*
C101.2786 (2)0.0652 (2)0.21516 (14)0.0436 (6)
H101.32470.04580.17730.052*
C111.2882 (2)0.1697 (2)0.24688 (14)0.0482 (7)
H111.34120.22090.23090.058*
C121.2194 (3)0.1986 (2)0.30227 (16)0.0589 (8)
H121.22520.27010.32310.071*
C131.1419 (2)0.1227 (2)0.32734 (14)0.0482 (7)
H131.09590.14280.36500.058*
N11.01881 (17)0.06273 (17)0.39120 (11)0.0355 (5)
H1N1.051 (2)0.021 (2)0.4206 (12)0.043*
N21.12183 (18)0.2319 (2)0.53570 (13)0.0467 (6)
O10.84056 (14)0.17061 (15)0.38774 (10)0.0455 (5)
O20.92831 (15)0.11935 (15)0.50171 (9)0.0418 (4)
O31.01759 (16)0.14595 (15)0.28213 (9)0.0468 (5)
O41.09678 (19)0.2545 (2)0.59685 (11)0.0660 (6)
O51.1726 (2)0.14835 (19)0.51681 (13)0.0695 (6)
S10.93749 (5)0.15669 (5)0.42926 (3)0.03293 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (11)0.0317 (12)0.0323 (12)0.0037 (10)0.0015 (10)0.0001 (10)
C20.0327 (12)0.0375 (13)0.0355 (12)0.0042 (10)0.0013 (10)0.0035 (10)
C30.0393 (14)0.0489 (16)0.0492 (15)0.0016 (13)0.0060 (12)0.0019 (13)
C40.0541 (16)0.0358 (14)0.0612 (17)0.0060 (13)0.0042 (15)0.0024 (13)
C50.0635 (18)0.0386 (15)0.0468 (15)0.0050 (14)0.0012 (14)0.0098 (12)
C60.0469 (14)0.0410 (14)0.0360 (13)0.0046 (12)0.0051 (12)0.0010 (11)
C70.0372 (13)0.0313 (12)0.0347 (12)0.0031 (11)0.0015 (11)0.0029 (10)
C80.0365 (12)0.0312 (12)0.0317 (12)0.0033 (11)0.0017 (10)0.0058 (10)
C90.0483 (14)0.0309 (12)0.0408 (14)0.0057 (11)0.0069 (12)0.0018 (11)
C100.0445 (15)0.0418 (14)0.0444 (14)0.0036 (12)0.0145 (12)0.0040 (12)
C110.0536 (16)0.0444 (15)0.0465 (15)0.0130 (13)0.0086 (13)0.0081 (13)
C120.087 (2)0.0385 (15)0.0512 (16)0.0179 (16)0.0180 (16)0.0066 (13)
C130.0654 (18)0.0397 (14)0.0395 (14)0.0059 (14)0.0193 (13)0.0026 (12)
N10.0412 (12)0.0330 (11)0.0324 (11)0.0076 (9)0.0019 (9)0.0004 (9)
N20.0417 (12)0.0494 (14)0.0490 (14)0.0001 (11)0.0116 (11)0.0062 (11)
O10.0335 (9)0.0494 (11)0.0535 (11)0.0024 (8)0.0053 (8)0.0030 (9)
O20.0489 (10)0.0402 (10)0.0361 (9)0.0012 (8)0.0105 (8)0.0004 (8)
O30.0561 (11)0.0424 (10)0.0420 (10)0.0097 (9)0.0068 (9)0.0063 (9)
O40.0764 (15)0.0815 (16)0.0400 (12)0.0017 (13)0.0101 (11)0.0097 (11)
O50.0756 (15)0.0536 (13)0.0794 (15)0.0219 (12)0.0179 (13)0.0069 (12)
S10.0321 (3)0.0332 (3)0.0335 (3)0.0027 (3)0.0028 (3)0.0015 (2)
Geometric parameters (Å, º) top
C1—C61.381 (3)C8—C131.386 (3)
C1—C21.392 (3)C9—C101.375 (3)
C1—S11.769 (2)C9—H90.9300
C2—C31.372 (4)C10—C111.370 (4)
C2—N21.477 (3)C10—H100.9300
C3—C41.382 (4)C11—C121.374 (4)
C3—H30.9300C11—H110.9300
C4—C51.379 (4)C12—C131.377 (4)
C4—H40.9300C12—H120.9300
C5—C61.382 (4)C13—H130.9300
C5—H50.9300N1—S11.643 (2)
C6—H60.9300N1—H1N0.835 (17)
C7—O31.207 (3)N2—O51.211 (3)
C7—N11.398 (3)N2—O41.214 (3)
C7—C81.487 (3)O1—S11.4177 (18)
C8—C91.386 (3)O2—S11.4308 (17)
C6—C1—C2118.4 (2)C8—C9—H9119.8
C6—C1—S1118.86 (19)C11—C10—C9120.2 (2)
C2—C1—S1122.61 (18)C11—C10—H10119.9
C3—C2—C1121.8 (2)C9—C10—H10119.9
C3—C2—N2117.0 (2)C10—C11—C12119.9 (2)
C1—C2—N2121.2 (2)C10—C11—H11120.1
C2—C3—C4118.8 (3)C12—C11—H11120.1
C2—C3—H3120.6C11—C12—C13120.7 (3)
C4—C3—H3120.6C11—C12—H12119.7
C5—C4—C3120.4 (3)C13—C12—H12119.7
C5—C4—H4119.8C12—C13—C8119.6 (2)
C3—C4—H4119.8C12—C13—H13120.2
C4—C5—C6120.2 (3)C8—C13—H13120.2
C4—C5—H5119.9C7—N1—S1122.79 (17)
C6—C5—H5119.9C7—N1—H1N122.4 (18)
C1—C6—C5120.3 (2)S1—N1—H1N112.9 (18)
C1—C6—H6119.8O5—N2—O4125.5 (2)
C5—C6—H6119.8O5—N2—C2117.3 (2)
O3—C7—N1120.7 (2)O4—N2—C2117.3 (2)
O3—C7—C8123.8 (2)O1—S1—O2119.43 (11)
N1—C7—C8115.5 (2)O1—S1—N1109.64 (11)
C9—C8—C13119.4 (2)O2—S1—N1104.57 (10)
C9—C8—C7117.5 (2)O1—S1—C1108.18 (11)
C13—C8—C7123.1 (2)O2—S1—C1108.18 (11)
C10—C9—C8120.3 (2)N1—S1—C1106.06 (11)
C10—C9—H9119.8
C6—C1—C2—C31.2 (4)C10—C11—C12—C131.2 (5)
S1—C1—C2—C3175.2 (2)C11—C12—C13—C80.3 (5)
C6—C1—C2—N2179.4 (2)C9—C8—C13—C121.2 (4)
S1—C1—C2—N24.2 (3)C7—C8—C13—C12179.8 (3)
C1—C2—C3—C41.5 (4)O3—C7—N1—S13.5 (3)
N2—C2—C3—C4179.1 (2)C8—C7—N1—S1175.16 (16)
C2—C3—C4—C50.4 (4)C3—C2—N2—O5112.1 (3)
C3—C4—C5—C60.8 (4)C1—C2—N2—O568.4 (3)
C2—C1—C6—C50.1 (4)C3—C2—N2—O466.7 (3)
S1—C1—C6—C5176.7 (2)C1—C2—N2—O4112.7 (3)
C4—C5—C6—C11.1 (4)C7—N1—S1—O153.2 (2)
O3—C7—C8—C923.9 (4)C7—N1—S1—O2177.62 (19)
N1—C7—C8—C9154.7 (2)C7—N1—S1—C163.4 (2)
O3—C7—C8—C13155.1 (3)C6—C1—S1—O116.5 (2)
N1—C7—C8—C1326.2 (3)C2—C1—S1—O1159.83 (19)
C13—C8—C9—C101.8 (4)C6—C1—S1—O2147.3 (2)
C7—C8—C9—C10179.1 (2)C2—C1—S1—O229.1 (2)
C8—C9—C10—C110.9 (4)C6—C1—S1—N1101.0 (2)
C9—C10—C11—C120.7 (4)C2—C1—S1—N182.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.21 (2)3.003 (3)158 (2)
C11—H11···O3ii0.932.513.267 (3)139
C13—H13···O2i0.932.533.313 (3)142
C6—H6···Cg1iii0.932.823.678 (13)153
Symmetry codes: (i) x+2, y, z+1; (ii) x+5/2, y1/2, z; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10N2O5S
Mr306.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.1127 (8), 11.7625 (8), 18.730 (1)
V3)2668.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.48 × 0.44 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.883, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
6396, 2711, 2010
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.04
No. of reflections2711
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.835 (17)2.214 (19)3.003 (3)158 (2)
C11—H11···O3ii0.932.513.267 (3)138.8
C13—H13···O2i0.932.533.313 (3)142.3
C6—H6···Cg1iii0.932.823.678 (13)153.3
Symmetry codes: (i) x+2, y, z+1; (ii) x+5/2, y1/2, z; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.  CAS Google Scholar
First citationGowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594.  CAS Google Scholar
First citationGowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds