organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Meth­­oxy-1,3,4-thia­diazol-2(3H)-one

aDepartment of Obstetrics and Gynecology, The First Affiliated Hospital of Henan University of Traditional Chinese, Medicine, Zhengzhou 450008, People's Republic of China, bDepartment of Urology, Henan Provincial People's Hospital, Zhengzhou 450003, People's Republic of China, and cPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: liuyanju886@163.com

(Received 3 January 2012; accepted 15 January 2012; online 21 January 2012)

The three mol­ecules in the asymmetric unit of the title compound, C3H4N2O2S, are connected via N—H⋯O hydrogen bonds, forming layers normal to [001]. The rings of the mol­ecules are approximately planar, with r.m.s. deviations of 0.0051 (1), 0.0044 (1) and 0.0111 (1) Å.

Related literature

For background to the applications of the title compound, see: Collier (2004[Collier, S. J. (2004). Sci. Synth. 13, 349-414.]). For the synthesis, see: Zhu et al. (2011[Zhu, H. J., Xi, B. B., Feng, M. L., Wang, K., Li, Y. F., Shi, L. & Chen, C. (2011). CN Patent No. 102212076A.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C3H4N2O2S

  • Mr = 132.16

  • Hexagonal, P 61

  • a = 11.9240 (17) Å

  • c = 20.111 (4) Å

  • V = 2476.3 (7) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.867, Tmax = 0.909

  • 3492 measured reflections

  • 3040 independent reflections

  • 2206 reflections with I > 2σ(I)

  • Rint = 0.039

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.133

  • S = 1.04

  • 3040 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1468 Friedel pairs

  • Flack parameter: −0.05 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 1.97 2.796 (7) 160
N3—H3D⋯O5 0.86 1.96 2.788 (6) 161
N5—H5A⋯O1ii 0.86 1.99 2.813 (8) 161
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, 2-methoxythiazol-5(4H)-one is an important intermediate, which can be utilized to synthesize herbicide fluthiacet-ethyl (Collier, 2004). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. In the crystal structure, the asymmetric unit contains three molecules of 2-methoxythiazol-5(4H)-one and these molecules were connected together via N-H···O intermolecular hydrogen bonds forming stacking layers along c-axis (Fig. 2.). In the crystal structure, the rings are planar, with r.m.s. deviation of 0.06 (1) Å. The bond lengths and angles are within normal ranges (Allen et al., 1987).

Related literature top

For background to the applications of the title compound, see: Collier (2004). For the synthesis, see: Zhu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Zhu et al., 2011). The crystals were obtained by dissolving (I) (0.2 g) in methanol (50 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with 0.86 Å for N—H, 0.96 Å for methyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for N—H, and x = 1.5 for methyl H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intermolecular H-bonds are shown with dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I) showing the stacked layers along c-axis.
5-Methoxy-1,3,4-thiadiazol-2(3H)-one top
Crystal data top
C3H4N2O2SDx = 1.595 Mg m3
Mr = 132.16Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P61Cell parameters from 25 reflections
Hall symbol: P 61θ = 9–13°
a = 11.9240 (17) ŵ = 0.49 mm1
c = 20.111 (4) ÅT = 293 K
V = 2476.3 (7) Å3Block, colourless
Z = 180.30 × 0.20 × 0.20 mm
F(000) = 1224
Data collection top
Enraf–Nonius CAD-4
diffractometer
2206 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.867, Tmax = 0.909l = 2424
3492 measured reflections3 standard reflections every 200 reflections
3040 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.1426P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.133(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.27 e Å3
3040 reflectionsΔρmin = 0.38 e Å3
217 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0.0009 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1468 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (14)
Crystal data top
C3H4N2O2SZ = 18
Mr = 132.16Mo Kα radiation
Hexagonal, P61µ = 0.49 mm1
a = 11.9240 (17) ÅT = 293 K
c = 20.111 (4) Å0.30 × 0.20 × 0.20 mm
V = 2476.3 (7) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2206 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.039
Tmin = 0.867, Tmax = 0.9093 standard reflections every 200 reflections
3492 measured reflections intensity decay: 1%
3040 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.38 e Å3
3040 reflectionsAbsolute structure: Flack (1983), 1468 Friedel pairs
217 parametersAbsolute structure parameter: 0.05 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82079 (12)0.67453 (12)0.52166 (9)0.0559 (4)
N10.8459 (4)0.4789 (4)0.5285 (3)0.0500 (12)
H1A0.87830.42880.53170.060*
C10.9238 (5)0.6063 (5)0.5255 (3)0.0473 (14)
O11.0407 (3)0.6672 (4)0.5228 (3)0.0709 (14)
N20.7133 (4)0.4265 (4)0.5265 (3)0.0487 (12)
O20.5724 (3)0.5049 (3)0.5201 (2)0.0638 (12)
C20.6895 (5)0.5184 (5)0.5232 (3)0.0440 (13)
C30.4662 (5)0.3737 (6)0.5148 (4)0.071 (2)
H3A0.38600.37420.51300.107*
H3B0.46590.32480.55280.107*
H3C0.47590.33480.47510.107*
S20.10862 (12)0.04825 (12)0.51466 (7)0.0452 (4)
O30.1023 (4)0.2749 (4)0.5220 (3)0.0646 (12)
O40.0620 (3)0.0301 (3)0.5161 (2)0.0564 (11)
N30.0884 (4)0.2708 (4)0.5190 (3)0.0497 (12)
H3D0.13820.35350.51910.060*
N40.1407 (4)0.1911 (4)0.5184 (3)0.0443 (11)
C40.0410 (5)0.2188 (5)0.5194 (3)0.0431 (13)
C50.0477 (4)0.0735 (5)0.5165 (3)0.0429 (12)
C60.1950 (5)0.0021 (6)0.5226 (4)0.0588 (16)
H6A0.19680.08170.52160.088*
H6B0.23020.04160.56400.088*
H6C0.24560.05210.48640.088*
S30.52008 (12)0.74536 (12)0.53340 (7)0.0513 (4)
O50.2932 (4)0.5245 (3)0.5299 (3)0.0760 (14)
O60.5965 (3)0.9929 (3)0.5329 (2)0.0622 (12)
N50.2976 (4)0.7178 (4)0.5261 (3)0.0519 (12)
H5A0.21490.68390.52330.062*
N60.3771 (4)0.8501 (4)0.5268 (3)0.0500 (11)
C70.3507 (5)0.6438 (5)0.5296 (3)0.0486 (14)
C80.4939 (4)0.8748 (5)0.5309 (3)0.0447 (13)
C90.5707 (6)1.0982 (5)0.5339 (5)0.074 (2)
H9A0.65111.17870.53560.111*
H9B0.51981.09070.57250.111*
H9C0.52401.09550.49450.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0353 (7)0.0322 (7)0.1008 (12)0.0171 (6)0.0044 (9)0.0039 (8)
N10.038 (2)0.035 (2)0.082 (4)0.023 (2)0.001 (3)0.003 (3)
C10.034 (3)0.039 (3)0.069 (4)0.019 (3)0.003 (3)0.004 (3)
O10.033 (2)0.050 (2)0.125 (4)0.0174 (18)0.004 (3)0.004 (3)
N20.035 (2)0.035 (2)0.076 (4)0.0171 (19)0.001 (2)0.000 (3)
O20.0308 (18)0.043 (2)0.117 (4)0.0178 (16)0.004 (2)0.003 (3)
C20.031 (2)0.033 (3)0.066 (4)0.014 (2)0.008 (3)0.007 (3)
C30.036 (3)0.053 (4)0.115 (7)0.015 (3)0.006 (4)0.011 (4)
S20.0315 (6)0.0334 (6)0.0664 (9)0.0132 (5)0.0002 (6)0.0008 (6)
O30.059 (3)0.047 (2)0.101 (3)0.036 (2)0.005 (3)0.004 (2)
O40.045 (2)0.0305 (19)0.096 (3)0.0208 (16)0.003 (2)0.001 (2)
N30.042 (2)0.025 (2)0.079 (4)0.0145 (18)0.006 (3)0.001 (2)
N40.035 (2)0.029 (2)0.066 (3)0.0139 (17)0.000 (3)0.004 (2)
C40.043 (3)0.031 (2)0.057 (4)0.020 (2)0.002 (3)0.000 (3)
C50.038 (3)0.037 (3)0.052 (3)0.017 (2)0.002 (3)0.003 (3)
C60.044 (3)0.055 (3)0.088 (5)0.032 (3)0.001 (4)0.016 (4)
S30.0317 (7)0.0351 (7)0.0863 (12)0.0160 (6)0.0036 (7)0.0017 (7)
O50.045 (2)0.029 (2)0.139 (4)0.0071 (19)0.003 (3)0.001 (3)
O60.036 (2)0.0323 (19)0.110 (4)0.0112 (17)0.001 (2)0.001 (2)
N50.029 (2)0.041 (2)0.084 (4)0.016 (2)0.004 (3)0.001 (3)
N60.036 (2)0.034 (2)0.078 (3)0.0164 (19)0.003 (3)0.001 (2)
C70.036 (3)0.037 (3)0.067 (4)0.014 (2)0.003 (3)0.005 (3)
C80.033 (3)0.032 (3)0.064 (4)0.012 (2)0.003 (3)0.002 (3)
C90.059 (4)0.027 (3)0.127 (6)0.016 (3)0.009 (4)0.004 (4)
Geometric parameters (Å, º) top
S1—C21.733 (5)N3—N41.373 (5)
S1—C11.782 (5)N3—H3D0.8600
N1—C11.328 (6)N4—C51.282 (6)
N1—N21.380 (5)C6—H6A0.9600
N1—H1A0.8600C6—H6B0.9600
C1—O11.209 (6)C6—H6C0.9600
N2—C21.264 (6)S3—C81.721 (5)
O2—C21.324 (6)S3—C71.762 (6)
O2—C31.443 (7)O5—C71.232 (6)
C3—H3A0.9600O6—C81.326 (6)
C3—H3B0.9600O6—C91.434 (7)
C3—H3C0.9600N5—C71.321 (6)
S2—C51.734 (5)N5—N61.375 (6)
S2—C41.777 (5)N5—H5A0.8600
O3—C41.214 (5)N6—C81.274 (6)
O4—C51.328 (5)C9—H9A0.9600
O4—C61.454 (6)C9—H9B0.9600
N3—C41.345 (6)C9—H9C0.9600
C2—S1—C188.1 (2)N4—C5—O4125.1 (4)
C1—N1—N2120.3 (4)N4—C5—S2117.2 (4)
C1—N1—H1A119.9O4—C5—S2117.7 (3)
N2—N1—H1A119.9O4—C6—H6A109.5
O1—C1—N1128.8 (5)O4—C6—H6B109.5
O1—C1—S1125.1 (4)H6A—C6—H6B109.5
N1—C1—S1106.1 (4)O4—C6—H6C109.5
C2—N2—N1108.2 (4)H6A—C6—H6C109.5
C2—O2—C3115.9 (4)H6B—C6—H6C109.5
N2—C2—O2125.2 (4)C8—S3—C787.5 (2)
N2—C2—S1117.3 (4)C8—O6—C9116.3 (4)
O2—C2—S1117.5 (4)C7—N5—N6118.7 (5)
O2—C3—H3A109.5C7—N5—H5A120.7
O2—C3—H3B109.5N6—N5—H5A120.7
H3A—C3—H3B109.5C8—N6—N5108.2 (4)
O2—C3—H3C109.5O5—C7—N5126.5 (5)
H3A—C3—H3C109.5O5—C7—S3125.4 (4)
H3B—C3—H3C109.5N5—C7—S3108.1 (4)
C5—S2—C488.1 (2)N6—C8—O6124.6 (4)
C5—O4—C6114.7 (4)N6—C8—S3117.5 (4)
C4—N3—N4119.6 (4)O6—C8—S3117.8 (3)
C4—N3—H3D120.2O6—C9—H9A109.5
N4—N3—H3D120.2O6—C9—H9B109.5
C5—N4—N3108.3 (4)H9A—C9—H9B109.5
O3—C4—N3127.9 (5)O6—C9—H9C109.5
O3—C4—S2125.4 (4)H9A—C9—H9C109.5
N3—C4—S2106.7 (3)H9B—C9—H9C109.5
N2—N1—C1—O1175.3 (7)N3—N4—C5—S20.5 (7)
N2—N1—C1—S11.7 (7)C6—O4—C5—N44.0 (10)
C2—S1—C1—O1176.1 (6)C6—O4—C5—S2175.8 (5)
C2—S1—C1—N11.0 (5)C4—S2—C5—N41.8 (5)
C1—N1—N2—C21.5 (8)C4—S2—C5—O4178.0 (5)
N1—N2—C2—O2179.6 (6)C7—N5—N6—C80.2 (9)
N1—N2—C2—S10.5 (8)N6—N5—C7—O5179.6 (7)
C3—O2—C2—N25.2 (10)N6—N5—C7—S30.8 (7)
C3—O2—C2—S1174.0 (5)C8—S3—C7—O5179.5 (7)
C1—S1—C2—N20.3 (6)C8—S3—C7—N50.9 (5)
C1—S1—C2—O2178.9 (5)N5—N6—C8—O6179.9 (6)
C4—N3—N4—C51.7 (8)N5—N6—C8—S30.6 (8)
N4—N3—C4—O3177.5 (7)C9—O6—C8—N63.4 (11)
N4—N3—C4—S22.9 (7)C9—O6—C8—S3177.1 (6)
C5—S2—C4—O3178.0 (6)C7—S3—C8—N60.9 (6)
C5—S2—C4—N32.4 (5)C7—S3—C8—O6179.6 (6)
N3—N4—C5—O4179.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.861.972.796 (7)160
N3—H3D···O50.861.962.788 (6)161
N5—H5A···O1ii0.861.992.813 (8)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC3H4N2O2S
Mr132.16
Crystal system, space groupHexagonal, P61
Temperature (K)293
a, c (Å)11.9240 (17), 20.111 (4)
V3)2476.3 (7)
Z18
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.867, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
3492, 3040, 2206
Rint0.039
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.133, 1.04
No. of reflections3040
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.38
Absolute structureFlack (1983), 1468 Friedel pairs
Absolute structure parameter0.05 (14)

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.86001.97002.796 (7)160.00
N3—H3D···O50.86001.96002.788 (6)161.00
N5—H5A···O1ii0.86001.99002.813 (8)161.00
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–42). The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCollier, S. J. (2004). Sci. Synth. 13, 349–414.  CAS Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. J., Xi, B. B., Feng, M. L., Wang, K., Li, Y. F., Shi, L. & Chen, C. (2011). CN Patent No. 102212076A.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds