organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(4-meth­­oxy­phen­yl)-1,3-di­methyl­piperidin-4-one O-benzyl­oxime

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 12 January 2012; accepted 18 January 2012; online 25 January 2012)

The central ring of the title compound, C28H32N2O3, exists in a chair conformation with an equatorial disposition of all the alkyl and aryl groups on the heterocycle. The para-anisyl groups on both sides of the secondary amino group are oriented at an angle of 54.75 (4)° with respect to each other. The oxime derivative exists as an E isomer with the methyl substitution on one of the active methyl­ene centers of the mol­ecule. The crystal packing features weak C—H⋯O inter­actions.

Related literature

For the synthesis and biological activity of piperidin-4-ones, see: Parthiban et al. (2005[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523-538.], 2008[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2008). Spectrochim. Acta Part A, 70, 11-24.], 2009a[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 2981-2985.], 2011[Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678-6686.]). For related structures, see: Parthiban et al. (2009a[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 2981-2985.],b[Parthiban, P., Rani, M. & Kabilan, S. (2009b). Monatsh. Chem. 140, 287-301.]); For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32N2O3

  • Mr = 444.56

  • Monoclinic, P 21 /n

  • a = 16.674 (5) Å

  • b = 19.819 (8) Å

  • c = 7.549 (1) Å

  • β = 90.080 (5)°

  • V = 2494.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.985

  • 58357 measured reflections

  • 6743 independent reflections

  • 4156 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.160

  • S = 1.02

  • 6743 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.51 3.340 (2) 149 (6)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Piperidone molecule is an important class of pharmacophore due to its broad-spectrum of biological actions ranging from antibacterial to anticancer (Parthiban et al., 2005, 2009a, 2011). Because of its broad-spectrum of biological actions, isolation from the natural products as well as synthesis of new molecules, and their stereochemical analysis are continuously interested and important in the field of medicinal chemistry.

Hence, we synthesized the title compound by a successive double Mannich condensation to obtain the piperidin-4-one, which was further condensed with O-benzylhydroxylamine hydrochloride to make the oxime ether derivative of the piperidone. Thus the obtained crystal of the unsymmetrical molecule was undertaken for this study to explore its stereochemistry in the solid-state, since the E/Z isomerization plays a major role during oximation.

The XRD data of the title compound witnessed that the piperidone ring N1—C1—C2—C3—C4—C5 adopts a chair conformation with the deviation of ring atoms N1 and C3 from the best plane C1—C2—C4—C5 by -0.593 and 0.683 Å, respectively. According to Nardelli (Nardelli, 1983), the smallest displacement asymmetry parameters q2 and q3 are 0.084 (16) and 0.545 (16) Å, respectively. According to Cremer and Pople (Cremer & Pople, 1975), the ring puckering parameters such as total puckering amplitude QT and phase angle θ are 0.552 (16) Å and 171.18 (17)°. Thus, all parameters strongly support the chair conformation of the piperidone ring.

The torsion angles of C3—C2—C1—C6 and C3—C4—C5—C14 of the anisyl rings are 171.52 (3)° and 177.97 (3)°, and they are orientated at an angle of 57.41 (2)° with respect to each other. The crystal packing is stabilized by weak C—H···O interactions (Table 1).

Related literature top

For the synthesis and biological activity of piperidones, see: Parthiban et al. (2005, 2008, 2009a, 2011). For related structures, see: Parthiban et al. (2009a,b); For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The 2,6-bis(4-methoxyphenyl)-1,3-dimethylpiperidin-4-one O-benzyloxime was synthesized by one-pot using para anisaldehyde (0.1 mol, 13.61 g, 12.12 ml), 2-butanone (0.05 mol, 3.61 g, 4.48 ml) and ammonium acetate (0.05 mol, 3.85 g) in a 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude piperidin-4-one was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. Then the pure product was N-methylated by methyl iodide using anhydrous potassium carbonate in dry acetone. Thus the obtained N-methylpiperidin-4-one (0.005 mol, 2.218 g) was condensed with O-benzylhydroxylamine hydrochloride (0.005 mol, 0.798 g) using sodium acetate trihydrate (0.015 mol, 2.04 g) as a base in methanol (Parthiban et al., 2008, 2009). X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å, methine C—H = 0.98 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms atUiso(H) = 1.5Ueq(C)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Molecular packing of the title compound. Hydrogen bonds are shown as dashed lines.
2,6-Bis(4-methoxyphenyl)-1,3-dimethylpiperidin-4-one O-benzyloxime top
Crystal data top
C28H32N2O3F(000) = 952
Mr = 444.56Dx = 1.184 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 6328 reflections
a = 16.674 (5) Åθ = 2.5–26.2°
b = 19.819 (8) ŵ = 0.08 mm1
c = 7.549 (1) ÅT = 298 K
β = 90.080 (5)°Needle, colourless
V = 2494.7 (13) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6743 independent reflections
Radiation source: fine-focus sealed tube4156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scanθmax = 29.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2222
Tmin = 0.970, Tmax = 0.985k = 2727
58357 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.4684P]
where P = (Fo2 + 2Fc2)/3
6743 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C28H32N2O3V = 2494.7 (13) Å3
Mr = 444.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.674 (5) ŵ = 0.08 mm1
b = 19.819 (8) ÅT = 298 K
c = 7.549 (1) Å0.40 × 0.20 × 0.20 mm
β = 90.080 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6743 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4156 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.985Rint = 0.037
58357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
6743 reflectionsΔρmin = 0.19 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44194 (8)0.16166 (7)0.11676 (18)0.0417 (3)
H10.49450.15890.05920.050*
C20.44660 (10)0.12323 (7)0.29407 (19)0.0470 (3)
H20.39200.12140.34190.056*
C30.49689 (9)0.16058 (7)0.42603 (19)0.0466 (3)
C40.47747 (11)0.23373 (8)0.4419 (2)0.0571 (4)
H4A0.51600.25540.51950.068*
H4B0.42460.23910.49330.068*
C50.47965 (9)0.26701 (7)0.2596 (2)0.0457 (3)
H50.53350.26110.21010.055*
C60.38096 (8)0.12780 (7)0.00204 (18)0.0397 (3)
C70.30053 (9)0.12442 (8)0.0456 (2)0.0487 (4)
H70.28370.14510.14960.058*
C80.24547 (9)0.09114 (9)0.0577 (2)0.0566 (4)
H80.19210.08910.02280.068*
C90.26938 (10)0.06092 (8)0.2127 (2)0.0549 (4)
C100.34798 (10)0.06385 (9)0.2638 (2)0.0575 (4)
H100.36430.04350.36870.069*
C110.40321 (9)0.09731 (9)0.1580 (2)0.0513 (4)
H110.45660.09920.19340.062*
C120.23105 (18)0.00445 (16)0.4616 (4)0.1228 (11)
H12A0.24810.02760.54910.184*
H12B0.18560.02910.50540.184*
H12C0.27400.03530.43670.184*
C130.42251 (12)0.26663 (9)0.0327 (2)0.0646 (5)
H13A0.40640.31290.01990.097*
H13B0.38600.24380.11090.097*
H13C0.47570.26480.08100.097*
C140.46296 (9)0.34154 (7)0.27568 (19)0.0444 (3)
C150.38889 (9)0.36556 (8)0.3302 (2)0.0550 (4)
H150.34860.33510.35940.066*
C160.37405 (10)0.43351 (8)0.3418 (2)0.0574 (4)
H160.32380.44860.37740.069*
C170.43340 (10)0.47954 (7)0.3007 (2)0.0488 (4)
C180.50806 (10)0.45703 (8)0.2520 (2)0.0517 (4)
H180.54880.48760.22730.062*
C190.52203 (9)0.38844 (8)0.2399 (2)0.0492 (4)
H190.57270.37340.20670.059*
C200.46999 (14)0.59501 (9)0.2670 (3)0.0741 (6)
H20A0.51440.59140.34740.111*
H20B0.44680.63920.27620.111*
H20C0.48830.58770.14800.111*
C210.64597 (11)0.13411 (9)0.7318 (3)0.0648 (5)
H21A0.69080.12530.65350.078*
H21B0.62470.09120.77190.078*
C220.67301 (9)0.17495 (8)0.8864 (2)0.0495 (4)
C230.68344 (12)0.14580 (12)1.0497 (3)0.0741 (5)
H230.67300.10011.06650.089*
C240.71023 (16)0.18628 (18)1.1919 (3)0.1016 (9)
H240.71750.16731.30340.122*
C250.72539 (15)0.25289 (17)1.1660 (4)0.1004 (8)
H250.74370.27921.25970.120*
C260.71426 (14)0.28085 (13)1.0079 (4)0.0919 (7)
H260.72390.32670.99210.110*
C270.68888 (12)0.24268 (10)0.8690 (3)0.0692 (5)
H270.68210.26300.75890.083*
C280.47333 (13)0.05063 (8)0.2641 (2)0.0679 (5)
H28A0.52630.05030.21420.102*
H28B0.43680.02880.18410.102*
H28C0.47380.02700.37510.102*
N10.42166 (7)0.23357 (6)0.14133 (16)0.0428 (3)
N20.54935 (8)0.12812 (7)0.51302 (17)0.0507 (3)
O10.20983 (8)0.02954 (9)0.3066 (2)0.0900 (5)
O20.41151 (8)0.54589 (6)0.31036 (17)0.0671 (3)
O30.58612 (7)0.17071 (6)0.64134 (15)0.0599 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0424 (7)0.0405 (8)0.0424 (7)0.0023 (6)0.0045 (6)0.0015 (6)
C20.0558 (9)0.0408 (8)0.0443 (8)0.0030 (6)0.0102 (7)0.0040 (6)
C30.0579 (9)0.0426 (8)0.0394 (7)0.0024 (7)0.0089 (7)0.0033 (6)
C40.0757 (11)0.0461 (9)0.0492 (9)0.0079 (8)0.0209 (8)0.0037 (7)
C50.0457 (8)0.0398 (8)0.0518 (9)0.0000 (6)0.0103 (6)0.0004 (6)
C60.0435 (7)0.0367 (7)0.0390 (7)0.0007 (6)0.0033 (6)0.0022 (6)
C70.0471 (8)0.0544 (9)0.0447 (8)0.0018 (7)0.0003 (6)0.0085 (7)
C80.0413 (8)0.0672 (11)0.0614 (10)0.0037 (7)0.0005 (7)0.0080 (8)
C90.0520 (9)0.0528 (9)0.0597 (10)0.0005 (7)0.0154 (7)0.0117 (8)
C100.0621 (10)0.0671 (11)0.0432 (8)0.0105 (8)0.0061 (7)0.0150 (8)
C110.0451 (8)0.0657 (10)0.0432 (8)0.0030 (7)0.0032 (6)0.0023 (7)
C120.122 (2)0.135 (2)0.111 (2)0.0023 (18)0.0431 (17)0.0718 (19)
C130.0899 (13)0.0499 (9)0.0539 (10)0.0123 (9)0.0201 (9)0.0115 (8)
C140.0456 (8)0.0405 (7)0.0470 (8)0.0018 (6)0.0100 (6)0.0002 (6)
C150.0465 (8)0.0436 (8)0.0748 (11)0.0044 (7)0.0034 (8)0.0069 (8)
C160.0486 (9)0.0492 (9)0.0745 (11)0.0054 (7)0.0019 (8)0.0050 (8)
C170.0603 (9)0.0385 (8)0.0477 (8)0.0005 (7)0.0052 (7)0.0018 (6)
C180.0556 (9)0.0449 (8)0.0546 (9)0.0098 (7)0.0001 (7)0.0005 (7)
C190.0459 (8)0.0456 (8)0.0560 (9)0.0020 (6)0.0014 (7)0.0014 (7)
C200.1086 (16)0.0404 (9)0.0735 (12)0.0087 (10)0.0008 (11)0.0028 (8)
C210.0665 (11)0.0592 (10)0.0687 (11)0.0128 (8)0.0259 (9)0.0051 (9)
C220.0391 (7)0.0592 (10)0.0503 (9)0.0025 (6)0.0074 (6)0.0014 (7)
C230.0703 (12)0.0867 (14)0.0652 (12)0.0025 (10)0.0093 (9)0.0164 (11)
C240.1032 (18)0.153 (3)0.0488 (12)0.0167 (18)0.0201 (12)0.0042 (14)
C250.0884 (17)0.118 (2)0.0948 (19)0.0112 (15)0.0279 (14)0.0426 (17)
C260.0855 (15)0.0815 (15)0.109 (2)0.0083 (12)0.0196 (14)0.0250 (14)
C270.0736 (12)0.0656 (12)0.0685 (12)0.0081 (9)0.0072 (9)0.0015 (9)
C280.0986 (14)0.0398 (9)0.0652 (11)0.0002 (9)0.0293 (10)0.0032 (8)
N10.0487 (7)0.0369 (6)0.0429 (6)0.0036 (5)0.0111 (5)0.0052 (5)
N20.0596 (8)0.0475 (7)0.0449 (7)0.0007 (6)0.0140 (6)0.0013 (6)
O10.0690 (8)0.1054 (12)0.0954 (11)0.0067 (8)0.0256 (8)0.0440 (9)
O20.0817 (9)0.0394 (6)0.0804 (9)0.0047 (6)0.0045 (7)0.0024 (6)
O30.0722 (8)0.0498 (6)0.0576 (7)0.0071 (5)0.0286 (6)0.0039 (5)
Geometric parameters (Å, º) top
C1—N11.4765 (19)C14—C191.381 (2)
C1—C61.5119 (19)C14—C151.387 (2)
C1—C21.542 (2)C15—C161.372 (2)
C1—H10.9800C15—H150.9300
C2—C31.497 (2)C16—C171.381 (2)
C2—C281.523 (2)C16—H160.9300
C2—H20.9800C17—O21.3667 (19)
C3—N21.2684 (19)C17—C181.373 (2)
C3—C41.490 (2)C18—C191.382 (2)
C4—C51.526 (2)C18—H180.9300
C4—H4A0.9700C19—H190.9300
C4—H4B0.9700C20—O21.417 (2)
C5—N11.4729 (18)C20—H20A0.9600
C5—C141.508 (2)C20—H20B0.9600
C5—H50.9800C20—H20C0.9600
C6—C111.375 (2)C21—O31.4095 (19)
C6—C71.391 (2)C21—C221.490 (2)
C7—C81.372 (2)C21—H21A0.9700
C7—H70.9300C21—H21B0.9700
C8—C91.374 (2)C22—C231.372 (2)
C8—H80.9300C22—C271.374 (3)
C9—C101.368 (2)C23—C241.412 (3)
C9—O11.369 (2)C23—H230.9300
C10—C111.387 (2)C24—C251.358 (4)
C10—H100.9300C24—H240.9300
C11—H110.9300C25—C261.329 (4)
C12—O11.396 (3)C25—H250.9300
C12—H12A0.9600C26—C271.360 (3)
C12—H12B0.9600C26—H260.9300
C12—H12C0.9600C27—H270.9300
C13—N11.468 (2)C28—H28A0.9600
C13—H13A0.9600C28—H28B0.9600
C13—H13B0.9600C28—H28C0.9600
C13—H13C0.9600N2—O31.4231 (16)
N1—C1—C6110.43 (11)C15—C14—C5121.64 (13)
N1—C1—C2112.27 (12)C16—C15—C14121.10 (15)
C6—C1—C2109.19 (11)C16—C15—H15119.4
N1—C1—H1108.3C14—C15—H15119.4
C6—C1—H1108.3C15—C16—C17120.31 (15)
C2—C1—H1108.3C15—C16—H16119.8
C3—C2—C28113.71 (13)C17—C16—H16119.8
C3—C2—C1111.16 (12)O2—C17—C18124.69 (14)
C28—C2—C1110.61 (13)O2—C17—C16115.60 (15)
C3—C2—H2107.0C18—C17—C16119.70 (15)
C28—C2—H2107.0C17—C18—C19119.34 (14)
C1—C2—H2107.0C17—C18—H18120.3
N2—C3—C4126.98 (14)C19—C18—H18120.3
N2—C3—C2118.62 (13)C14—C19—C18121.92 (15)
C4—C3—C2114.38 (13)C14—C19—H19119.0
C3—C4—C5110.03 (13)C18—C19—H19119.0
C3—C4—H4A109.7O2—C20—H20A109.5
C5—C4—H4A109.7O2—C20—H20B109.5
C3—C4—H4B109.7H20A—C20—H20B109.5
C5—C4—H4B109.7O2—C20—H20C109.5
H4A—C4—H4B108.2H20A—C20—H20C109.5
N1—C5—C14111.62 (12)H20B—C20—H20C109.5
N1—C5—C4109.62 (12)O3—C21—C22108.26 (14)
C14—C5—C4110.26 (13)O3—C21—H21A110.0
N1—C5—H5108.4C22—C21—H21A110.0
C14—C5—H5108.4O3—C21—H21B110.0
C4—C5—H5108.4C22—C21—H21B110.0
C11—C6—C7117.50 (13)H21A—C21—H21B108.4
C11—C6—C1121.40 (13)C23—C22—C27118.24 (17)
C7—C6—C1121.07 (13)C23—C22—C21120.85 (17)
C8—C7—C6121.40 (14)C27—C22—C21120.91 (16)
C8—C7—H7119.3C22—C23—C24118.9 (2)
C6—C7—H7119.3C22—C23—H23120.6
C7—C8—C9119.90 (15)C24—C23—H23120.6
C7—C8—H8120.1C25—C24—C23120.1 (2)
C9—C8—H8120.1C25—C24—H24120.0
C10—C9—O1124.59 (15)C23—C24—H24120.0
C10—C9—C8120.06 (14)C26—C25—C24120.6 (2)
O1—C9—C8115.35 (15)C26—C25—H25119.7
C9—C10—C11119.57 (15)C24—C25—H25119.7
C9—C10—H10120.2C25—C26—C27120.2 (2)
C11—C10—H10120.2C25—C26—H26119.9
C6—C11—C10121.57 (14)C27—C26—H26119.9
C6—C11—H11119.2C26—C27—C22121.9 (2)
C10—C11—H11119.2C26—C27—H27119.0
O1—C12—H12A109.5C22—C27—H27119.0
O1—C12—H12B109.5C2—C28—H28A109.5
H12A—C12—H12B109.5C2—C28—H28B109.5
O1—C12—H12C109.5H28A—C28—H28B109.5
H12A—C12—H12C109.5C2—C28—H28C109.5
H12B—C12—H12C109.5H28A—C28—H28C109.5
N1—C13—H13A109.5H28B—C28—H28C109.5
N1—C13—H13B109.5C13—N1—C5109.55 (12)
H13A—C13—H13B109.5C13—N1—C1108.42 (12)
N1—C13—H13C109.5C5—N1—C1111.11 (11)
H13A—C13—H13C109.5C3—N2—O3110.35 (12)
H13B—C13—H13C109.5C9—O1—C12117.96 (18)
C19—C14—C15117.56 (14)C17—O2—C20117.71 (14)
C19—C14—C5120.78 (14)C21—O3—N2109.19 (12)
N1—C1—C2—C348.71 (17)C15—C16—C17—O2177.69 (16)
C6—C1—C2—C3171.52 (12)C15—C16—C17—C181.4 (3)
N1—C1—C2—C28176.03 (13)O2—C17—C18—C19177.25 (15)
C6—C1—C2—C2861.16 (17)C16—C17—C18—C191.8 (2)
C28—C2—C3—N27.6 (2)C15—C14—C19—C182.0 (2)
C1—C2—C3—N2133.25 (15)C5—C14—C19—C18179.39 (14)
C28—C2—C3—C4173.41 (15)C17—C18—C19—C140.1 (2)
C1—C2—C3—C447.80 (19)O3—C21—C22—C23135.37 (17)
N2—C3—C4—C5128.05 (17)O3—C21—C22—C2745.2 (2)
C2—C3—C4—C553.11 (19)C27—C22—C23—C240.3 (3)
C3—C4—C5—N158.77 (18)C21—C22—C23—C24179.12 (19)
C3—C4—C5—C14177.97 (13)C22—C23—C24—C250.1 (4)
N1—C1—C6—C11121.01 (15)C23—C24—C25—C260.9 (4)
C2—C1—C6—C11115.08 (16)C24—C25—C26—C271.2 (4)
N1—C1—C6—C761.16 (17)C25—C26—C27—C220.8 (4)
C2—C1—C6—C762.75 (18)C23—C22—C27—C260.0 (3)
C11—C6—C7—C80.9 (2)C21—C22—C27—C26179.44 (19)
C1—C6—C7—C8177.04 (15)C14—C5—N1—C1356.26 (18)
C6—C7—C8—C90.7 (3)C4—C5—N1—C13178.72 (13)
C7—C8—C9—C100.2 (3)C14—C5—N1—C1176.03 (12)
C7—C8—C9—O1179.49 (16)C4—C5—N1—C161.51 (16)
O1—C9—C10—C11179.78 (17)C6—C1—N1—C1360.66 (15)
C8—C9—C10—C110.2 (3)C2—C1—N1—C13177.22 (13)
C7—C6—C11—C100.5 (2)C6—C1—N1—C5178.89 (12)
C1—C6—C11—C10177.36 (15)C2—C1—N1—C556.78 (16)
C9—C10—C11—C60.0 (3)C4—C3—N2—O33.6 (2)
N1—C5—C14—C19125.45 (15)C2—C3—N2—O3175.15 (13)
C4—C5—C14—C19112.46 (16)C10—C9—O1—C123.0 (3)
N1—C5—C14—C1556.0 (2)C8—C9—O1—C12177.4 (2)
C4—C5—C14—C1566.13 (19)C18—C17—O2—C200.0 (2)
C19—C14—C15—C162.3 (2)C16—C17—O2—C20179.11 (16)
C5—C14—C15—C16179.03 (15)C22—C21—O3—N2169.64 (13)
C14—C15—C16—C170.7 (3)C3—N2—O3—C21178.00 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.513.340 (2)149 (6)
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H32N2O3
Mr444.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)16.674 (5), 19.819 (8), 7.549 (1)
β (°) 90.080 (5)
V3)2494.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.970, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
58357, 6743, 4156
Rint0.037
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.160, 1.02
No. of reflections6743
No. of parameters302
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.513.340 (2)149 (6)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This research was supported by the BK21.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523–538.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2008). Spectrochim. Acta Part A, 70, 11–24.  CrossRef CAS Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Rani, M. & Kabilan, S. (2009b). Monatsh. Chem. 140, 287–301.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds