organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­methyl 5-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)benzene-1,3-di­carboxyl­ate

aDepartment of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, People's Republic of China, and bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: cyinyc@163.com

(Received 25 November 2011; accepted 19 December 2011; online 7 January 2012)

The title compound, C16H21BO6, has has approximate C2 symmetry, but no crystallographically imposed mol­ecular symmetry. In the crystal, mol­ecules are packed into parallel columns along the a axis. Short inter­molecular C—H⋯O contacts stabilize the crystal packing.

Related literature

For the synthesis of organoboronic esters, see: Kikuchi et al. (2008[Kikuchi, T., Takagi, J., Isou, H., Ishiyama, T. & Miyaura, N. (2008). Chem. Asian J. 3, 2082-2090.]). For the synthesis of the title compound, see: Coventry et al. (2005[Coventry, D. N., Batsanov, A. S., Goeta, A. E. H., Judith, A. K., Marder, T. B. & Perutz, R. N. (2005). Chem. Commun. 16, 2172-2174.]).

[Scheme 1]

Experimental

Crystal data
  • C16H21BO6

  • Mr = 320.14

  • Orthorhombic, P b c a

  • a = 7.2163 (2) Å

  • b = 20.9627 (4) Å

  • c = 22.4624 (4) Å

  • V = 3397.96 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 1.00 × 0.40 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.766, Tmax = 0.982

  • 22413 measured reflections

  • 3864 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.142

  • S = 1.01

  • 3864 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16C⋯O4i 0.96 2.53 3.381 (3) 148
Symmetry code: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Arylboronic acids and arylborates are the key reagents in Suzuki-Miyaura coupling reaction. Transition metal-catalyzed C—H borylation of arenes is a direct, economical and environmentally kind method to synthesize organoboronic esters and is widely studied (Kikuchi et al., 2008). Recently, we have synthesized the title compound by direct Ir-catalyzed borylation and determined its X-ray structure.

The two meta-position methoxycarbonyl are almost co-planar with the benzene ring. The C—B bond is 1.556 (2) Å. Because the borolane ring adopts a somewhat twist conformation and C2, C9 atoms displace to opposite sides of the BO2 plane, the title molecule has no crystallographic symmetry.

The molecules pack into columns along the a- axis uniformly and exhibit paralled patterns. Besides, there are some short intermolecular O···H (for example, O3···H8a, O4···H16c distances are 2.636 Å, 2.530 Å, respectively). We believe that these short intermolecular contacts are helpful for stabilization of the molecular packing in crystals.

Related literature top

For the synthesis of organoboronic esters, see: Kikuchi et al. (2008). For the synthesis of the title compound, see: Coventry et al. (2005).

Experimental top

The title compound was synthesized via Ir-catalyzed borylation (Coventry et al., 2005) of diethyl isophthalate. Catalyst precursor [Ir(COD)]Cl]2 (60 mg) and ligand dtbpy (4,4'-di-tert-bultyl-2,2'-dipyridyl) (120 mg) with a small amount of B2pin2 (pin=O2C2Me4) ((160 mg) were loaded in a Schlenk tube and dissolved in 2 ml THF under argon. The mixture was stirred vigorously till the bluish violet solution turned to amaranthine. Then diethyl isophthalate (1.94 g, 10.0 mmol) and B2pin2 (2.54 g, 10.0 mmol) in 15 ml THF was added into this tube. The mixture was heated in oil bath at 80°C for 24 h. After cooling to room temperature, the mixture then went through a short silica pad to remove the residual Ir catalyst and the final compound was purified by column chromatography using dichloromethane, giving 2.56 g (80% yield) white crystalline product. Crystals were grown by slow evaporation of a hexane solution.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement elliposoid is drawn at 50% probability level.
[Figure 2] Fig. 2. The packing pattern of the title molecules in crystal viewed down the a- axis. O···H and B···H intermolecular short contacts are also showed.
1,3-Dimethyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene-1,3-dicarboxylate top
Crystal data top
C16H21BO6F(000) = 1360
Mr = 320.14Dx = 1.252 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3703 reflections
a = 7.2163 (2) Åθ = 2.7–20.6°
b = 20.9627 (4) ŵ = 0.09 mm1
c = 22.4624 (4) ÅT = 296 K
V = 3397.96 (13) Å3Pod, colourless
Z = 81.00 × 0.40 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3864 independent reflections
Radiation source: fine-focus sealed tube2177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.766, Tmax = 0.982k = 2726
22413 measured reflectionsl = 2729
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.3179P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3864 reflectionsΔρmax = 0.18 e Å3
215 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (5)
Crystal data top
C16H21BO6V = 3397.96 (13) Å3
Mr = 320.14Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2163 (2) ŵ = 0.09 mm1
b = 20.9627 (4) ÅT = 296 K
c = 22.4624 (4) Å1.00 × 0.40 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3864 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2177 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.982Rint = 0.043
22413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
3864 reflectionsΔρmin = 0.14 e Å3
215 parameters
Special details top

Experimental. SADABS (Bruker, 2005) was used for absorption correction. R(int) was 0.0776 before and 0.0475 after correction. The Ratio of minimum to maximum transmission is 0.9190. The λ/2 correction factor is Not present.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67152 (17)0.13558 (5)0.42187 (5)0.0525 (4)
O20.6570 (2)0.16197 (6)0.20099 (6)0.0739 (5)
O30.74902 (17)0.03889 (5)0.46030 (5)0.0484 (3)
O40.6855 (2)0.08265 (7)0.13639 (6)0.0817 (5)
O50.8187 (2)0.14641 (6)0.32004 (7)0.0785 (5)
O60.8121 (3)0.13786 (7)0.22123 (7)0.0903 (6)
C10.4427 (3)0.13373 (9)0.49842 (10)0.0679 (6)
H1A0.37500.16420.47510.102*
H1B0.41920.14110.53990.102*
H1C0.40370.09140.48800.102*
C20.6479 (2)0.14086 (7)0.48620 (8)0.0439 (4)
C30.7180 (2)0.04498 (8)0.34685 (7)0.0452 (4)
C40.6938 (2)0.08372 (9)0.29731 (8)0.0474 (4)
H40.66980.12690.30280.057*
C50.7043 (2)0.05958 (8)0.23990 (8)0.0462 (4)
C60.6823 (3)0.10082 (9)0.18671 (9)0.0546 (5)
C70.6358 (4)0.20504 (11)0.15139 (9)0.0952 (9)
H7A0.74360.20270.12640.143*
H7B0.62160.24780.16590.143*
H7C0.52820.19330.12880.143*
C80.9702 (3)0.10025 (10)0.51525 (9)0.0702 (6)
H8A1.03910.06190.52250.105*
H8B0.98800.12930.54780.105*
H8C1.01280.11970.47900.105*
C90.7647 (3)0.08423 (8)0.50955 (7)0.0461 (4)
C100.7157 (3)0.20608 (8)0.50516 (9)0.0651 (6)
H10A0.84130.21180.49220.098*
H10B0.71020.20940.54770.098*
H10C0.63860.23830.48760.098*
C110.7376 (3)0.00497 (9)0.23160 (8)0.0515 (5)
H110.74370.02160.19330.062*
C120.7619 (2)0.04497 (8)0.28033 (8)0.0481 (5)
C130.7995 (3)0.11372 (10)0.26942 (10)0.0621 (6)
C140.8615 (5)0.21352 (10)0.31398 (12)0.1040 (9)
H14A0.76050.23480.29450.156*
H14B0.88030.23180.35270.156*
H14C0.97210.21840.29070.156*
C150.7531 (2)0.01959 (8)0.33725 (8)0.0488 (5)
H150.77090.04630.36980.059*
C160.6931 (4)0.05342 (10)0.56561 (9)0.0764 (7)
H16A0.56920.03830.55910.115*
H16B0.69280.08410.59730.115*
H16C0.77170.01820.57610.115*
B10.7131 (3)0.07327 (9)0.41089 (9)0.0421 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0751 (9)0.0423 (7)0.0400 (7)0.0040 (6)0.0016 (6)0.0003 (5)
O20.1243 (13)0.0555 (9)0.0418 (8)0.0010 (8)0.0037 (8)0.0037 (6)
O30.0700 (9)0.0377 (6)0.0375 (7)0.0065 (5)0.0026 (6)0.0054 (5)
O40.1359 (14)0.0728 (10)0.0364 (8)0.0053 (9)0.0016 (8)0.0029 (7)
O50.1204 (13)0.0542 (9)0.0610 (10)0.0147 (8)0.0004 (9)0.0028 (7)
O60.1523 (17)0.0612 (9)0.0573 (10)0.0077 (9)0.0085 (10)0.0174 (7)
C10.0513 (12)0.0673 (13)0.0853 (16)0.0041 (10)0.0048 (11)0.0188 (11)
C20.0520 (11)0.0382 (9)0.0417 (10)0.0004 (7)0.0012 (8)0.0070 (7)
C30.0483 (10)0.0526 (10)0.0349 (10)0.0010 (8)0.0002 (8)0.0016 (8)
C40.0514 (11)0.0490 (10)0.0419 (10)0.0024 (8)0.0019 (8)0.0032 (8)
C50.0492 (11)0.0538 (11)0.0357 (10)0.0045 (8)0.0019 (8)0.0023 (8)
C60.0643 (13)0.0580 (12)0.0415 (12)0.0046 (9)0.0020 (9)0.0024 (9)
C70.165 (3)0.0633 (14)0.0578 (15)0.0008 (15)0.0084 (15)0.0172 (12)
C80.0604 (14)0.0768 (14)0.0736 (15)0.0113 (10)0.0213 (11)0.0182 (11)
C90.0623 (12)0.0421 (9)0.0337 (10)0.0029 (8)0.0058 (8)0.0074 (7)
C100.0740 (14)0.0416 (10)0.0797 (16)0.0033 (9)0.0017 (11)0.0137 (10)
C110.0601 (12)0.0596 (11)0.0349 (10)0.0051 (9)0.0023 (8)0.0088 (9)
C120.0517 (11)0.0502 (10)0.0424 (11)0.0024 (8)0.0007 (8)0.0064 (8)
C130.0777 (15)0.0574 (12)0.0514 (13)0.0001 (10)0.0035 (11)0.0059 (10)
C140.163 (3)0.0530 (14)0.096 (2)0.0214 (15)0.0036 (18)0.0028 (13)
C150.0546 (11)0.0509 (11)0.0410 (10)0.0012 (8)0.0001 (8)0.0019 (8)
C160.128 (2)0.0618 (13)0.0393 (12)0.0006 (12)0.0063 (12)0.0024 (10)
B10.0470 (11)0.0404 (10)0.0390 (12)0.0019 (8)0.0001 (9)0.0004 (9)
Geometric parameters (Å, º) top
O1—B11.363 (2)C7—H7A0.9600
O1—C21.459 (2)C7—H7B0.9600
O2—C61.334 (2)C7—H7C0.9600
O2—C71.442 (2)C8—C91.526 (3)
O3—B11.349 (2)C8—H8A0.9600
O3—C91.4629 (19)C8—H8B0.9600
O4—C61.193 (2)C8—H8C0.9600
O5—C131.335 (2)C9—C161.506 (3)
O5—C141.447 (2)C10—H10A0.9600
O6—C131.198 (2)C10—H10B0.9600
C1—C21.514 (3)C10—H10C0.9600
C1—H1A0.9600C11—C121.390 (2)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C151.386 (2)
C2—C101.513 (2)C12—C131.487 (3)
C2—C91.547 (2)C14—H14A0.9600
C3—C41.389 (2)C14—H14B0.9600
C3—C151.394 (2)C14—H14C0.9600
C3—B11.556 (2)C15—H150.9300
C4—C51.387 (2)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C111.387 (3)C16—H16C0.9600
C5—C61.483 (3)
B1—O1—C2106.12 (12)O3—C9—C16109.10 (14)
C6—O2—C7115.49 (16)O3—C9—C8106.34 (14)
B1—O3—C9106.86 (13)C16—C9—C8110.94 (17)
C13—O5—C14116.17 (17)O3—C9—C2101.54 (12)
C2—C1—H1A109.5C16—C9—C2115.20 (16)
C2—C1—H1B109.5C8—C9—C2112.88 (15)
H1A—C1—H1B109.5C2—C10—H10A109.5
C2—C1—H1C109.5C2—C10—H10B109.5
H1A—C1—H1C109.5H10A—C10—H10B109.5
H1B—C1—H1C109.5C2—C10—H10C109.5
O1—C2—C10108.03 (14)H10A—C10—H10C109.5
O1—C2—C1106.63 (14)H10B—C10—H10C109.5
C10—C2—C1110.76 (15)C5—C11—C12120.31 (16)
O1—C2—C9102.36 (12)C5—C11—H11119.8
C10—C2—C9114.95 (15)C12—C11—H11119.8
C1—C2—C9113.30 (15)C15—C12—C11119.27 (17)
C4—C3—C15117.82 (16)C15—C12—C13122.17 (17)
C4—C3—B1121.00 (16)C11—C12—C13118.56 (17)
C15—C3—B1121.15 (16)O6—C13—O5123.02 (19)
C5—C4—C3121.65 (17)O6—C13—C12124.89 (19)
C5—C4—H4119.2O5—C13—C12112.09 (17)
C3—C4—H4119.2O5—C14—H14A109.5
C11—C5—C4119.35 (16)O5—C14—H14B109.5
C11—C5—C6118.62 (16)H14A—C14—H14B109.5
C4—C5—C6122.02 (16)O5—C14—H14C109.5
O4—C6—O2122.50 (18)H14A—C14—H14C109.5
O4—C6—C5125.10 (18)H14B—C14—H14C109.5
O2—C6—C5112.40 (16)C12—C15—C3121.59 (17)
O2—C7—H7A109.5C12—C15—H15119.2
O2—C7—H7B109.5C3—C15—H15119.2
H7A—C7—H7B109.5C9—C16—H16A109.5
O2—C7—H7C109.5C9—C16—H16B109.5
H7A—C7—H7C109.5H16A—C16—H16B109.5
H7B—C7—H7C109.5C9—C16—H16C109.5
C9—C8—H8A109.5H16A—C16—H16C109.5
C9—C8—H8B109.5H16B—C16—H16C109.5
H8A—C8—H8B109.5O3—B1—O1113.93 (15)
C9—C8—H8C109.5O3—B1—C3123.55 (16)
H8A—C8—H8C109.5O1—B1—C3122.52 (16)
H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16C···O4i0.962.533.381 (3)148
Symmetry code: (i) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H21BO6
Mr320.14
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.2163 (2), 20.9627 (4), 22.4624 (4)
V3)3397.96 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)1.00 × 0.40 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.766, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
22413, 3864, 2177
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.142, 1.01
No. of reflections3864
No. of parameters215
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16C···O4i0.962.533.381 (3)148
Symmetry code: (i) x+3/2, y, z+1/2.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoventry, D. N., Batsanov, A. S., Goeta, A. E. H., Judith, A. K., Marder, T. B. & Perutz, R. N. (2005). Chem. Commun. 16, 2172–2174.  Web of Science CSD CrossRef Google Scholar
First citationKikuchi, T., Takagi, J., Isou, H., Ishiyama, T. & Miyaura, N. (2008). Chem. Asian J. 3, 2082–2090.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds