organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-Hy­dr­oxy­methyl-1′-(4-methyl­phen­yl)-2′-nitro-1′,2′,5′,6′,7′,7a′-hexa­hydro­spiro­[indoline-3,3′-pyrrolizin]-2-one

aDepartment of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-25, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 6 December 2011; accepted 23 December 2011; online 7 January 2012)

In the title compound, C22H23N3O4, the tolyl ring is almost perpendicular [83.86 (7)°] to the best plane through the eight atoms of the pyrrolizidine ring system. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond. The crystal packing features inversion dimers with R22(8) motifs linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For indole derivatives, see: Ali et al. (1989[Ali, R., Bharati, M. & Nizamuddin (1989). Indian J. Chem. Sect. B, 28, 526-528.]); Nigović et al. (2000[Nigović, B., Antolić, S., Kojić-Prodić, B., Kiralj, R., Magnus, V. & Salopek-Sondi, B. (2000). Acta Cryst. B56, 94-111.]); Okabe & Adachi (1998[Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.]); Oxford (1995[Oxford, A. W. (1995). Contemp. Org. Synth. 2, 35-41.]); Schollmeyer et al. (1995[Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572-2575.]); Taylor et al. (1999[Taylor, D. L., Ahmed, P. S., Chambers, P., Tyms, A. S., Bedard, J., Duchaine, J., Falardeau, G., Lavallee, J. F., Brown, W., Rando, R. F. & Browlin, T. (1999). Antivir. Chem. Chemother. 10, 79-86.]). For a related structure, see: Usha et al. (2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. & Srinivasan, P. C. (2005). Acta Cryst. E61, o2227-o2229.]). For ring conformations, see Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23N3O4

  • Mr = 393.43

  • Triclinic, [P \overline 1]

  • a = 8.9172 (4) Å

  • b = 9.9953 (4) Å

  • c = 11.5931 (6) Å

  • α = 81.257 (3)°

  • β = 76.638 (3)°

  • γ = 83.805 (2)°

  • V = 990.79 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 18094 measured reflections

  • 4912 independent reflections

  • 3737 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.175

  • S = 1.25

  • 4912 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.00 2.8401 (15) 167
O3—H3A⋯O4 0.82 2.23 2.8686 (15) 135
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The indole unit is observed in plants (Nigović et al., 2000). Some of the indole derivatives exhibit anti-tumour (Schollmeyer et al., 1995) and anti-bacterial (Okabe & Adachi,1998) activities. Sumatriptan, an indole derivative has been introduced into medicine as a drug for the treatment of migraine (Oxford, 1995). Pyrido [1, 2 - a]indole derivatives have been observed as potent inhibitors of HIV-typeI (Taylor et al., 1999). Spiro-indoles have been reported to exhibit fungicidal activity(Ali et al., 1989). In view of the wide spectrum of biological activity of indole and pyrrolizidine derivatives, the X-ray analysis of the title compound has been undertaken and the crystallographic details are reported in this communication. Bond lengths and bond angles of the pyrrolizidine group and the indole unit are in the same range as observed in reported structures (Usha et al., 2005) The C7 = O4 double bond is slightly elongated [1.225 (2) Å] and this may be due to the active involvement of O4 both in intra and intermolecular hydrogen bonding. The pyrrolizidine ring is perpendicular to the methyl benzyl ring [89.8 (1)°]. The pyrrolizidine and methyl benzyl ring make angles of 81.7 (1) and 68.9 (1)°, respectively, with the oxindole system. The sum of the angles around N2 and N3 [360 and 341.7°], indicates sp2 and sp3 hybridization, respectively. The N3/C11—C14 ring adopts a half chair conformation with the smallest asymmetry parameter (Nardelli, 1983) of D2 (N3) = 0.018 (1)°. The asymmetry parameter DS (C9)= 0.024 (1)° indicates the half chair conformation of the N3/C8/C9/C15/C14 ring. The overall conformation of the pyrrolizidine ring is folded about the bridging bond N3—C14. In the title compound, each molecule is linked to two of its adjacent centro-symmetrically related molecules through N—H···O and C—H···O hydrogen bonds, forming dimers described by R22(8) and R22(18) rings. The atom O3 acts as a donor for an intrammolecular hydrogen bond.

Related literature top

For indole derivatives, see: Ali et al. (1989); Nigović et al. (2000); Okabe & Adachi (1998); Oxford (1995); Schollmeyer et al. (1995); Taylor et al. (1999). For a related structure, see: Usha et al. (2005). For ring conformations, see Nardelli (1983).

Experimental top

A mixture of (E)-2- nitro-3-p-tolylprop-2-en-1-ol(2 mmol, 0.39 g),isatin(2 mmol, 0.29 g)and l-proline (2 mmol, 0.23 g) in acetonitrile(8 ml) was refluxed for 2 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3x10ml) and dried over anhydrous NaSO4 The organic layer was concentrated and purified by column chromatography on silica gel (Acme 100–200 mesh), usingethyl acetate: hexanes (3:7) to provide as a colorless solid in 59% (0.46 g)yield.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 - 0.97 Å, N– H = 0.86 Å, and O—H = 0.82Å and Uiso(H) = 1.2Ueq(N,O,C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.
2'-Hydroxymethyl-1'-(4-methylphenyl)-2'-nitro-1',2',5',6',7',7a'- hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one top
Crystal data top
C22H23N3O4Z = 2
Mr = 393.43F(000) = 416
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9172 (4) ÅCell parameters from 4951 reflections
b = 9.9953 (4) Åθ = 1.8–28.3°
c = 11.5931 (6) ŵ = 0.09 mm1
α = 81.257 (3)°T = 293 K
β = 76.638 (3)°Block, colorless
γ = 83.805 (2)°0.20 × 0.18 × 0.18 mm
V = 990.79 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3737 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 28.4°, θmin = 1.8°
ω and ϕ scanh = 1111
18094 measured reflectionsk = 1313
4912 independent reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4912 reflections(Δ/σ)max = 0.007
264 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C22H23N3O4γ = 83.805 (2)°
Mr = 393.43V = 990.79 (8) Å3
Triclinic, P1Z = 2
a = 8.9172 (4) ÅMo Kα radiation
b = 9.9953 (4) ŵ = 0.09 mm1
c = 11.5931 (6) ÅT = 293 K
α = 81.257 (3)°0.20 × 0.18 × 0.18 mm
β = 76.638 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3737 reflections with I > 2σ(I)
18094 measured reflectionsRint = 0.028
4912 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.25Δρmax = 0.50 e Å3
4912 reflectionsΔρmin = 0.34 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21898 (19)0.62617 (16)0.42758 (14)0.0478 (4)
H10.19480.70870.45790.057*
C20.1894 (2)0.50533 (18)0.50230 (16)0.0597 (5)
H20.14680.50680.58330.072*
C30.2229 (2)0.38237 (18)0.45695 (18)0.0665 (5)
H30.20100.30230.50800.080*
C40.2878 (2)0.37652 (16)0.33808 (17)0.0606 (5)
H40.31030.29400.30760.073*
C50.31830 (18)0.49813 (14)0.26526 (14)0.0431 (3)
C60.28473 (16)0.62292 (13)0.30774 (13)0.0371 (3)
C70.40581 (16)0.64665 (13)0.10119 (13)0.0378 (3)
C80.33024 (15)0.73416 (12)0.20230 (12)0.0329 (3)
C90.19143 (14)0.83335 (12)0.17272 (12)0.0323 (3)
C100.20643 (18)0.88938 (15)0.03935 (13)0.0426 (3)
H10A0.21250.81420.00590.051*
H10B0.11430.94720.02990.051*
C110.56071 (19)0.78765 (17)0.27409 (19)0.0574 (5)
H11A0.65830.77130.21860.069*
H11B0.53770.70540.32900.069*
C120.5667 (2)0.9037 (2)0.3407 (2)0.0771 (7)
H12A0.64050.96620.29350.093*
H12B0.59660.87090.41590.093*
C130.40563 (19)0.97253 (16)0.36233 (15)0.0511 (4)
H13A0.40661.06720.37180.061*
H13B0.33920.92720.43250.061*
C140.35435 (15)0.95803 (13)0.24826 (13)0.0360 (3)
H140.38821.03410.18700.043*
C150.18254 (15)0.94197 (12)0.25671 (12)0.0328 (3)
H150.14070.89950.33820.039*
C160.08246 (15)1.07192 (13)0.23587 (12)0.0365 (3)
C170.06238 (17)1.08928 (15)0.31073 (15)0.0471 (4)
H170.09471.02210.37390.056*
C180.15936 (19)1.20451 (16)0.29307 (16)0.0521 (4)
H180.25601.21280.34420.063*
C190.11602 (18)1.30755 (15)0.20124 (15)0.0473 (4)
C200.0293 (2)1.29239 (15)0.12843 (15)0.0497 (4)
H200.06241.36140.06720.060*
C210.12749 (18)1.17662 (14)0.14433 (14)0.0443 (3)
H210.22431.16900.09330.053*
C220.2232 (2)1.42970 (17)0.17871 (19)0.0633 (5)
H22A0.31571.42620.24060.095*
H22B0.24901.43100.10260.095*
H22C0.17351.51040.17850.095*
N10.38738 (15)0.51498 (12)0.14359 (12)0.0456 (3)
H1A0.41480.44950.10100.055*
N20.04800 (14)0.75474 (12)0.20397 (12)0.0422 (3)
N30.43621 (12)0.83081 (11)0.20981 (11)0.0381 (3)
O10.06118 (13)0.78766 (13)0.28004 (13)0.0675 (4)
O20.05119 (15)0.65971 (13)0.14818 (13)0.0665 (4)
O30.33650 (13)0.96383 (11)0.00794 (10)0.0511 (3)
H3A0.41520.91350.00650.077*
O40.47420 (14)0.69055 (10)0.00021 (10)0.0502 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0539 (9)0.0497 (8)0.0399 (9)0.0035 (7)0.0110 (7)0.0100 (6)
C20.0661 (11)0.0658 (11)0.0403 (9)0.0023 (9)0.0074 (8)0.0034 (8)
C30.0788 (13)0.0494 (9)0.0619 (12)0.0034 (8)0.0128 (10)0.0120 (8)
C40.0760 (13)0.0385 (8)0.0622 (12)0.0062 (8)0.0124 (10)0.0019 (7)
C50.0454 (8)0.0383 (7)0.0451 (9)0.0042 (6)0.0102 (7)0.0086 (6)
C60.0384 (7)0.0374 (6)0.0366 (7)0.0021 (5)0.0115 (6)0.0066 (5)
C70.0365 (7)0.0376 (7)0.0417 (8)0.0003 (5)0.0070 (6)0.0164 (6)
C80.0322 (7)0.0335 (6)0.0348 (7)0.0006 (5)0.0067 (5)0.0127 (5)
C90.0279 (6)0.0335 (6)0.0367 (7)0.0031 (5)0.0075 (5)0.0077 (5)
C100.0473 (8)0.0464 (8)0.0363 (8)0.0036 (6)0.0115 (6)0.0086 (6)
C110.0405 (8)0.0548 (9)0.0891 (13)0.0092 (7)0.0314 (9)0.0296 (9)
C120.0755 (13)0.0767 (12)0.1030 (17)0.0189 (10)0.0583 (13)0.0437 (12)
C130.0588 (10)0.0488 (8)0.0568 (10)0.0035 (7)0.0270 (8)0.0244 (7)
C140.0352 (7)0.0335 (6)0.0431 (8)0.0002 (5)0.0114 (6)0.0143 (5)
C150.0317 (7)0.0334 (6)0.0328 (7)0.0009 (5)0.0051 (5)0.0083 (5)
C160.0352 (7)0.0366 (6)0.0387 (8)0.0021 (5)0.0083 (6)0.0114 (5)
C170.0423 (8)0.0444 (8)0.0492 (9)0.0032 (6)0.0003 (7)0.0094 (6)
C180.0387 (8)0.0524 (9)0.0638 (11)0.0091 (7)0.0055 (7)0.0207 (8)
C190.0476 (9)0.0398 (7)0.0627 (10)0.0066 (6)0.0251 (8)0.0186 (7)
C200.0558 (10)0.0395 (7)0.0556 (10)0.0003 (7)0.0198 (8)0.0029 (7)
C210.0405 (8)0.0410 (7)0.0489 (9)0.0015 (6)0.0066 (7)0.0062 (6)
C220.0604 (11)0.0472 (9)0.0901 (14)0.0132 (8)0.0346 (10)0.0176 (9)
N10.0561 (8)0.0340 (6)0.0454 (7)0.0031 (5)0.0045 (6)0.0154 (5)
N20.0355 (6)0.0417 (6)0.0514 (8)0.0069 (5)0.0139 (6)0.0031 (5)
N30.0280 (6)0.0383 (6)0.0525 (7)0.0012 (4)0.0111 (5)0.0192 (5)
O10.0370 (6)0.0687 (8)0.0894 (10)0.0126 (6)0.0076 (6)0.0141 (7)
O20.0668 (8)0.0596 (7)0.0847 (10)0.0225 (6)0.0224 (7)0.0237 (7)
O30.0543 (7)0.0523 (6)0.0417 (6)0.0083 (5)0.0003 (5)0.0035 (5)
O40.0595 (7)0.0436 (6)0.0429 (6)0.0035 (5)0.0053 (5)0.0169 (5)
Geometric parameters (Å, º) top
C1—C61.381 (2)C12—H12A0.9700
C1—C21.387 (2)C12—H12B0.9700
C1—H10.9300C13—C141.527 (2)
C2—C31.386 (3)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—C41.373 (3)C14—N31.4732 (16)
C3—H30.9300C14—C151.5367 (18)
C4—C51.385 (2)C14—H140.9800
C4—H40.9300C15—C161.5153 (17)
C5—C61.3878 (19)C15—H150.9800
C5—N11.3950 (19)C16—C171.390 (2)
C6—C81.5331 (19)C16—C211.392 (2)
C7—O41.2274 (18)C17—C181.383 (2)
C7—N11.3465 (18)C17—H170.9300
C7—C81.5532 (18)C18—C191.381 (2)
C8—N31.4472 (16)C18—H180.9300
C8—C91.5686 (18)C19—C201.381 (2)
C9—N21.5167 (16)C19—C221.496 (2)
C9—C101.543 (2)C20—C211.389 (2)
C9—C151.5493 (17)C20—H200.9300
C10—O31.4028 (18)C21—H210.9300
C10—H10A0.9700C22—H22A0.9600
C10—H10B0.9700C22—H22B0.9600
C11—N31.4680 (19)C22—H22C0.9600
C11—C121.499 (2)N1—H1A0.8600
C11—H11A0.9700N2—O11.2067 (18)
C11—H11B0.9700N2—O21.2223 (17)
C12—C131.507 (2)O3—H3A0.8200
C6—C1—C2119.44 (15)C12—C13—H13A111.4
C6—C1—H1120.3C14—C13—H13A111.4
C2—C1—H1120.3C12—C13—H13B111.4
C1—C2—C3120.40 (17)C14—C13—H13B111.4
C1—C2—H2119.8H13A—C13—H13B109.2
C3—C2—H2119.8N3—C14—C13104.96 (11)
C4—C3—C2121.25 (16)N3—C14—C15105.21 (10)
C4—C3—H3119.4C13—C14—C15118.35 (12)
C2—C3—H3119.4N3—C14—H14109.3
C3—C4—C5117.47 (16)C13—C14—H14109.3
C3—C4—H4121.3C15—C14—H14109.3
C5—C4—H4121.3C16—C15—C14116.15 (11)
C4—C5—C6122.65 (15)C16—C15—C9117.55 (11)
C4—C5—N1126.82 (14)C14—C15—C9101.87 (10)
C6—C5—N1110.52 (12)C16—C15—H15106.8
C1—C6—C5118.79 (14)C14—C15—H15106.8
C1—C6—C8133.01 (12)C9—C15—H15106.8
C5—C6—C8108.19 (12)C17—C16—C21117.36 (13)
O4—C7—N1125.80 (13)C17—C16—C15119.24 (13)
O4—C7—C8125.37 (12)C21—C16—C15123.40 (12)
N1—C7—C8108.81 (12)C18—C17—C16121.25 (15)
N3—C8—C6119.23 (11)C18—C17—H17119.4
N3—C8—C7109.64 (10)C16—C17—H17119.4
C6—C8—C7100.66 (10)C17—C18—C19121.52 (15)
N3—C8—C9100.32 (9)C17—C18—H18119.2
C6—C8—C9114.29 (11)C19—C18—H18119.2
C7—C8—C9113.20 (10)C18—C19—C20117.47 (13)
N2—C9—C10104.26 (11)C18—C19—C22121.66 (15)
N2—C9—C15112.33 (11)C20—C19—C22120.85 (16)
C10—C9—C15115.03 (11)C19—C20—C21121.66 (15)
N2—C9—C8108.15 (10)C19—C20—H20119.2
C10—C9—C8115.16 (11)C21—C20—H20119.2
C15—C9—C8101.99 (10)C20—C21—C16120.71 (14)
O3—C10—C9113.06 (12)C20—C21—H21119.6
O3—C10—H10A109.0C16—C21—H21119.6
C9—C10—H10A109.0C19—C22—H22A109.5
O3—C10—H10B109.0C19—C22—H22B109.5
C9—C10—H10B109.0H22A—C22—H22B109.5
H10A—C10—H10B107.8C19—C22—H22C109.5
N3—C11—C12104.69 (13)H22A—C22—H22C109.5
N3—C11—H11A110.8H22B—C22—H22C109.5
C12—C11—H11A110.8C7—N1—C5111.50 (12)
N3—C11—H11B110.8C7—N1—H1A124.3
C12—C11—H11B110.8C5—N1—H1A124.2
H11A—C11—H11B108.9O1—N2—O2123.69 (13)
C11—C12—C13105.71 (14)O1—N2—C9119.96 (12)
C11—C12—H12A110.6O2—N2—C9116.35 (12)
C13—C12—H12A110.6C8—N3—C11119.86 (12)
C11—C12—H12B110.6C8—N3—C14111.92 (10)
C13—C12—H12B110.6C11—N3—C14109.93 (11)
H12A—C12—H12B108.7C10—O3—H3A109.5
C12—C13—C14102.09 (13)
C6—C1—C2—C31.1 (3)N2—C9—C15—C1676.79 (15)
C1—C2—C3—C40.9 (3)C10—C9—C15—C1642.26 (16)
C2—C3—C4—C50.1 (3)C8—C9—C15—C16167.64 (11)
C3—C4—C5—C60.6 (3)N2—C9—C15—C14155.06 (11)
C3—C4—C5—N1178.06 (17)C10—C9—C15—C1485.88 (13)
C2—C1—C6—C50.5 (2)C8—C9—C15—C1439.49 (13)
C2—C1—C6—C8179.21 (15)C14—C15—C16—C17136.58 (14)
C4—C5—C6—C10.4 (2)C9—C15—C16—C17102.44 (15)
N1—C5—C6—C1178.47 (13)C14—C15—C16—C2143.66 (18)
C4—C5—C6—C8178.65 (15)C9—C15—C16—C2177.31 (17)
N1—C5—C6—C82.51 (17)C21—C16—C17—C181.6 (2)
C1—C6—C8—N356.6 (2)C15—C16—C17—C18178.20 (13)
C5—C6—C8—N3124.58 (13)C16—C17—C18—C190.6 (2)
C1—C6—C8—C7176.41 (15)C17—C18—C19—C201.0 (2)
C5—C6—C8—C74.77 (14)C17—C18—C19—C22177.39 (15)
C1—C6—C8—C961.95 (19)C18—C19—C20—C211.7 (2)
C5—C6—C8—C9116.88 (12)C22—C19—C20—C21176.77 (14)
O4—C7—C8—N346.30 (18)C19—C20—C21—C160.7 (2)
N1—C7—C8—N3132.12 (12)C17—C16—C21—C200.9 (2)
O4—C7—C8—C6172.79 (14)C15—C16—C21—C20178.82 (13)
N1—C7—C8—C65.63 (14)O4—C7—N1—C5173.80 (14)
O4—C7—C8—C964.80 (18)C8—C7—N1—C54.61 (17)
N1—C7—C8—C9116.79 (13)C4—C5—N1—C7177.40 (16)
N3—C8—C9—N2160.20 (10)C6—C5—N1—C71.38 (19)
C6—C8—C9—N231.39 (14)C10—C9—N2—O1119.17 (15)
C7—C8—C9—N283.07 (13)C15—C9—N2—O16.03 (18)
N3—C8—C9—C1083.67 (12)C8—C9—N2—O1117.81 (14)
C6—C8—C9—C10147.53 (11)C10—C9—N2—O260.59 (15)
C7—C8—C9—C1033.06 (15)C15—C9—N2—O2174.22 (12)
N3—C8—C9—C1541.62 (12)C8—C9—N2—O262.43 (16)
C6—C8—C9—C1587.19 (12)C6—C8—N3—C1134.10 (18)
C7—C8—C9—C15158.34 (10)C7—C8—N3—C1181.02 (16)
N2—C9—C10—O3178.62 (11)C9—C8—N3—C11159.63 (13)
C15—C9—C10—O357.92 (16)C6—C8—N3—C1496.79 (14)
C8—C9—C10—O360.29 (15)C7—C8—N3—C14148.08 (11)
N3—C11—C12—C1327.5 (2)C9—C8—N3—C1428.74 (14)
C11—C12—C13—C1435.8 (2)C12—C11—N3—C8139.59 (16)
C12—C13—C14—N330.41 (17)C12—C11—N3—C147.8 (2)
C12—C13—C14—C15147.33 (15)C13—C14—N3—C8121.37 (13)
N3—C14—C15—C16151.72 (11)C15—C14—N3—C84.22 (15)
C13—C14—C15—C1691.49 (15)C13—C14—N3—C1114.42 (16)
N3—C14—C15—C922.68 (13)C15—C14—N3—C11140.01 (13)
C13—C14—C15—C9139.47 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.002.8401 (15)167
O3—H3A···O40.822.232.8686 (15)135
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H23N3O4
Mr393.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9172 (4), 9.9953 (4), 11.5931 (6)
α, β, γ (°)81.257 (3), 76.638 (3), 83.805 (2)
V3)990.79 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18094, 4912, 3737
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.175, 1.25
No. of reflections4912
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.002.8401 (15)167.2
O3—H3A···O40.822.232.8686 (15)135.2
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data collection and computer facilities.

References

First citationAli, R., Bharati, M. & Nizamuddin (1989). Indian J. Chem. Sect. B, 28, 526–528.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNigović, B., Antolić, S., Kojić-Prodić, B., Kiralj, R., Magnus, V. & Salopek-Sondi, B. (2000). Acta Cryst. B56, 94–111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford, A. W. (1995). Contemp. Org. Synth. 2, 35–41.  CrossRef CAS Google Scholar
First citationSchollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, D. L., Ahmed, P. S., Chambers, P., Tyms, A. S., Bedard, J., Duchaine, J., Falardeau, G., Lavallee, J. F., Brown, W., Rando, R. F. & Browlin, T. (1999). Antivir. Chem. Chemother. 10, 79–86.  Web of Science PubMed CAS Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. & Srinivasan, P. C. (2005). Acta Cryst. E61, o2227–o2229.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds