metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butyl­bis­­(di­phenyl­glyoximato)(pyridine-κN)­cobalt(III)

aDQIAQF/INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, p. 3, EHA1428 Buenos Aires, Argentina, and bFaculty of Science and Technology, Purbanchal University, Biratnagar, Nepal
*Correspondence e-mail: skumarchem01@gmail.com

(Received 22 December 2011; accepted 3 January 2012; online 7 January 2012)

In the title compound, [Co(C4H9)(C14H11N2O2)2(C5H5N)], the CoIII atom is coordinated by a butyl group, a nitro­gen-bonded pyridine and two N,N′-bidentate diphenyl­glyoximate ligands in a distorted octa­hedral geometry. The crystal structure features two short O—H⋯O bridges between the two chelating anions, with O⋯O distances less than 2.5 Å.

Related literature

For background to the chemistry of cobaloximes, see: Schrauzer (1968[Schrauzer, G. N. (1968). Acc. Chem. Res. 1, 97-103.]); Zangrando et al. (2003[Zangrando, E., Trani, M., Stabon, E., Carfagna, C., Milani, B. & Mestroni, G. (2003). Eur. J. Inorg. Chem. pp. 2683-2692]); Brown (2006[Brown, K. L. (2006). Dalton Trans. pp. 1123-1133.]); Randaccio (1999[Randaccio, L. (1999). Comments Inorg. Chem. 21, 327-376.]). For related structues, see: Kumar & Gupta (2011[Kumar, S. & Gupta, B. D. (2011). Inorg. Chem. 50, 9207-9209.]); Mandal & Gupta (2005[Mandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501-1510.], 2007[Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658-670.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H9)(C14H11N2O2)2(C5H5N)]

  • Mr = 673.64

  • Monoclinic, P 21 /n

  • a = 11.863 (4) Å

  • b = 19.520 (7) Å

  • c = 14.402 (5) Å

  • β = 98.486 (8)°

  • V = 3298.5 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.848

  • 18829 measured reflections

  • 6796 independent reflections

  • 3770 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.184

  • S = 0.97

  • 6796 reflections

  • 432 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H01⋯O4 1.18 (6) 1.30 (6) 2.480 (4) 178 (9)
O1—H02⋯O3 1.18 (6) 1.27 (6) 2.446 (4) 173 (5)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

One of the unique and intriguing properties of the coenzyme B12 is different catalytic activity of two different coenzymes. How the Co—C bond is activated toward homolysis or heterolysis is an enduring subject of research (Zangrando et al., 2003; Brown, 2006; Randaccio, 1999). The recent crystallographic data on cobalamins suggest that the structural effects of changes in the alkyl residue are similar (Kumar & Gupta, 2011) to those found in the cobaloximes, RCo(dmgH)2B, and sometimes can be related to their chemical reactivity (Mandal & Gupta, 2005, 2007). Cobaloximes have the general formula RCo(L)2B, where R is an organic group bonded to cobalt. B is an axial base trans to the organic group, and L is a monoanionic dioxime ligand. Diphenylglyoximate (dpg) is a familiar ligand with excellent coordination capability to generate mono-, bi- or trinuclear complexes. Herein, we report the synthesis and structure of new cobaloxime compound, namely butyl-Co(dpgH)2pyridine.

The crystal structure of title compound is shown in Figure 1. The cobalt atom is coordinated by two N,N-bidentate diphenylglyoximate ligands, a butyl and a pyridyl residue in a distored octahedral geometry. The Co—N(dpg) bond lengths range from 1.877 (3) to 1.886 (3) Å.

Related literature top

For background to the chemistry of cobaloximes, see: Schrauzer (1968); Zangrando et al. (2003); Brown (2006); Randaccio (1999). For related structues, see: Kumar & Gupta (2011); Mandal & Gupta (2005, 2007).

Experimental top

A solution of ClCo(dpgH)2py (1 mmol) in 10 ml of methanol was purged thoroughly with N2 for 20 min and was cooled to 0 °C with stirring. The solution turned deep blue after the addition of a few drops of aqueous NaOH followed by sodium borohydride (1.5 mmol in 0.5 ml of water). The color of the solution turned orange-red on the addition of bromobutane (1.5 mmol). The reaction was stirred 1 h at 0 °C then poured into 20 ml chilled water. The resulting orange-red precipitate was filtered, washed with water, and dried. The obtained orange colored compound was recrytallized from dichloromethane and methanol. After five days, orange colored crystals obtained which were suitable for single-crystal data collection.

Refinement top

H atoms were visible in difference Fourier maps but those bonded to C atoms were placed idealized positions and included in the refinement in a riding-model approximation with C—H(aromatic) = 0.95 Å and Uiso(H) = 1.2 UeqC; C—H(methylene) = 0.99 Å and Uiso(H) = 1.2 UeqC; C—H (methyl) = 0.99 Å, and Uiso(H) = 1.5 UeqC. H atoms bonded to O atoms in the compound were refined freely with isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound is drawn of the 50% probability level for non-hydrogen atoms.
[Figure 2] Fig. 2. Packing of the complex in the unit cell.
Butylbis(diphenylglyoximato)(pyridine-κN)cobalt(III) top
Crystal data top
[Co(C4H9)(C14H11N2O2)2(C5H5N)]F(000) = 1408
Mr = 673.64Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1034 reflections
a = 11.863 (4) Åθ = 2.3–18.6°
b = 19.520 (7) ŵ = 0.57 mm1
c = 14.402 (5) ÅT = 100 K
β = 98.486 (8)°Prism, orange
V = 3298.5 (19) Å30.34 × 0.32 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6796 independent reflections
Radiation source: fine-focus sealed tube3770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
phi and ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1413
Tmin = 0.830, Tmax = 0.848k = 1624
18829 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
6796 reflections(Δ/σ)max = 0.001
432 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co(C4H9)(C14H11N2O2)2(C5H5N)]V = 3298.5 (19) Å3
Mr = 673.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.863 (4) ŵ = 0.57 mm1
b = 19.520 (7) ÅT = 100 K
c = 14.402 (5) Å0.34 × 0.32 × 0.30 mm
β = 98.486 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6796 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3770 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.848Rint = 0.111
18829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.80 e Å3
6796 reflectionsΔρmin = 0.45 e Å3
432 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.08170 (5)0.10089 (3)0.75782 (4)0.02066 (19)
O10.0991 (2)0.10204 (16)0.56369 (19)0.0229 (7)
O40.0709 (2)0.10561 (15)0.95271 (19)0.0218 (7)
O30.0756 (3)0.15157 (16)0.6064 (2)0.0262 (8)
O20.2395 (2)0.04611 (16)0.90772 (19)0.0224 (7)
C160.0827 (4)0.1505 (2)0.8539 (3)0.0193 (10)
N10.0509 (3)0.14466 (19)0.7007 (2)0.0208 (8)
N20.0184 (3)0.12110 (18)0.8665 (2)0.0204 (8)
N30.1476 (3)0.08265 (19)0.6496 (2)0.0226 (9)
C230.1499 (4)0.1671 (2)0.9301 (3)0.0195 (10)
C320.1087 (4)0.0783 (2)0.6532 (3)0.0301 (11)
H320.14120.09480.59310.036*
N50.0019 (3)0.00897 (18)0.7464 (2)0.0204 (8)
C70.3130 (4)0.0451 (3)0.4455 (3)0.0300 (12)
H70.29730.08790.41470.036*
C180.2561 (4)0.2355 (2)0.6420 (3)0.0261 (11)
H180.19150.25430.61930.031*
C90.3916 (4)0.0057 (2)0.7914 (3)0.0218 (10)
C20.2842 (4)0.0320 (2)0.7575 (3)0.0197 (10)
N40.2157 (3)0.05638 (18)0.8134 (2)0.0191 (8)
C10.2425 (3)0.0475 (2)0.6583 (3)0.0200 (10)
C280.1957 (4)0.2316 (2)0.9378 (3)0.0250 (11)
H280.17770.26730.89760.030*
C330.0484 (4)0.0177 (2)0.6624 (3)0.0264 (11)
H330.03900.00670.60700.032*
C40.3626 (4)0.0782 (2)0.5362 (3)0.0231 (10)
H40.38040.12060.56710.028*
C130.5124 (4)0.1048 (3)0.7867 (4)0.0379 (13)
H130.52580.14850.76150.046*
C210.4455 (4)0.1830 (3)0.7107 (3)0.0294 (11)
H210.51040.16570.73450.035*
C150.1253 (4)0.1635 (2)0.7544 (3)0.0184 (9)
C30.2963 (3)0.0297 (2)0.5754 (3)0.0213 (10)
C340.1579 (4)0.1948 (2)0.7681 (3)0.0216 (10)
H34A0.17350.20800.70480.026*
H34B0.10250.22830.78640.026*
C220.3364 (4)0.1631 (2)0.7510 (3)0.0232 (10)
H220.32680.13170.80200.028*
C140.4128 (4)0.0689 (2)0.7534 (3)0.0262 (11)
H140.35930.08780.70450.031*
C270.2677 (4)0.2452 (3)1.0034 (3)0.0286 (11)
H270.29720.29001.00940.034*
C80.2713 (4)0.0323 (2)0.5285 (3)0.0247 (10)
H80.22570.06560.55360.030*
C240.1761 (4)0.1151 (2)0.9898 (3)0.0272 (11)
H240.14430.07070.98580.033*
C170.2410 (4)0.1892 (2)0.7163 (3)0.0232 (10)
C250.2482 (4)0.1279 (3)1.0547 (3)0.0323 (12)
H250.26480.09241.09570.039*
C190.3644 (4)0.2543 (2)0.6010 (3)0.0290 (11)
H190.37420.28490.54920.035*
C100.4719 (4)0.0221 (3)0.8616 (3)0.0282 (11)
H100.45850.06550.88790.034*
C110.5716 (4)0.0135 (3)0.8933 (3)0.0341 (12)
H110.62640.00580.94090.041*
C50.4023 (4)0.0643 (3)0.4527 (3)0.0284 (11)
H50.44740.09740.42690.034*
C60.3776 (4)0.0035 (3)0.4064 (3)0.0334 (12)
H60.40430.00530.34850.040*
C200.4589 (4)0.2282 (3)0.6357 (3)0.0345 (13)
H200.53320.24150.60780.041*
C260.2961 (4)0.1916 (3)1.0605 (3)0.0352 (13)
H260.34850.19931.10330.042*
C300.0729 (4)0.0892 (3)0.8195 (3)0.0331 (12)
H300.07960.11360.87550.040*
C350.2666 (4)0.2021 (3)0.8350 (4)0.0382 (13)
H35A0.32560.17260.81380.046*
H35B0.25390.18590.89780.046*
C360.3102 (5)0.2757 (3)0.8432 (4)0.0480 (15)
H36A0.31580.29360.77970.058*
H36B0.25490.30450.87070.058*
C310.1206 (4)0.1145 (3)0.7337 (3)0.0322 (12)
H310.16140.15650.72970.039*
C120.5915 (4)0.0767 (3)0.8561 (4)0.0383 (13)
H120.65960.10080.87830.046*
C290.0152 (4)0.0279 (2)0.8232 (3)0.0297 (11)
H290.01690.01060.88300.036*
C370.4250 (5)0.2807 (3)0.9033 (4)0.0560 (17)
H37A0.45010.32860.90680.084*
H37B0.48030.25290.87570.084*
H37C0.41950.26390.96660.084*
H010.158 (5)0.074 (3)0.928 (4)0.062 (17)*
H020.012 (5)0.126 (3)0.579 (4)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0225 (3)0.0236 (4)0.0154 (3)0.0019 (3)0.0012 (2)0.0017 (3)
O10.0239 (17)0.0320 (19)0.0124 (15)0.0063 (15)0.0015 (13)0.0050 (14)
O40.0236 (17)0.0301 (18)0.0109 (15)0.0036 (14)0.0000 (12)0.0029 (13)
O30.0278 (18)0.035 (2)0.0155 (16)0.0070 (15)0.0038 (13)0.0037 (14)
O20.0199 (16)0.0324 (19)0.0136 (16)0.0033 (14)0.0014 (12)0.0001 (13)
C160.021 (2)0.019 (2)0.017 (2)0.0008 (19)0.0005 (18)0.0004 (18)
N10.022 (2)0.026 (2)0.0141 (19)0.0007 (17)0.0026 (15)0.0036 (16)
N20.028 (2)0.022 (2)0.0099 (18)0.0007 (17)0.0005 (15)0.0001 (15)
N30.029 (2)0.027 (2)0.0115 (19)0.0001 (18)0.0014 (16)0.0019 (16)
C230.021 (2)0.024 (3)0.012 (2)0.0025 (19)0.0016 (17)0.0025 (18)
C320.038 (3)0.032 (3)0.018 (3)0.001 (2)0.004 (2)0.001 (2)
N50.020 (2)0.025 (2)0.0164 (19)0.0017 (17)0.0031 (15)0.0013 (16)
C70.034 (3)0.030 (3)0.024 (3)0.006 (2)0.003 (2)0.009 (2)
C180.031 (3)0.024 (3)0.023 (3)0.002 (2)0.005 (2)0.003 (2)
C90.020 (2)0.029 (3)0.016 (2)0.004 (2)0.0034 (18)0.0070 (19)
C20.022 (2)0.020 (2)0.017 (2)0.0015 (19)0.0023 (18)0.0005 (18)
N40.022 (2)0.025 (2)0.0093 (18)0.0008 (17)0.0005 (15)0.0019 (15)
C10.016 (2)0.022 (2)0.021 (2)0.0009 (19)0.0014 (18)0.0004 (19)
C280.026 (3)0.027 (3)0.020 (2)0.002 (2)0.001 (2)0.002 (2)
C330.027 (3)0.035 (3)0.017 (2)0.001 (2)0.0003 (19)0.004 (2)
C40.022 (2)0.027 (3)0.020 (2)0.000 (2)0.0009 (19)0.002 (2)
C130.040 (3)0.038 (3)0.037 (3)0.016 (3)0.010 (2)0.005 (3)
C210.025 (3)0.040 (3)0.023 (3)0.001 (2)0.002 (2)0.005 (2)
C150.026 (2)0.015 (2)0.014 (2)0.0001 (19)0.0034 (18)0.0002 (18)
C30.012 (2)0.028 (3)0.023 (2)0.0008 (19)0.0004 (18)0.001 (2)
C340.023 (2)0.022 (2)0.020 (2)0.002 (2)0.0026 (19)0.0026 (19)
C220.024 (2)0.030 (3)0.014 (2)0.003 (2)0.0010 (18)0.000 (2)
C140.026 (3)0.033 (3)0.021 (2)0.001 (2)0.005 (2)0.003 (2)
C270.025 (3)0.033 (3)0.027 (3)0.004 (2)0.000 (2)0.007 (2)
C80.021 (2)0.031 (3)0.022 (2)0.000 (2)0.0032 (19)0.002 (2)
C240.036 (3)0.024 (3)0.022 (3)0.005 (2)0.004 (2)0.001 (2)
C170.028 (3)0.023 (3)0.017 (2)0.003 (2)0.0015 (19)0.0023 (19)
C250.041 (3)0.031 (3)0.028 (3)0.003 (2)0.015 (2)0.002 (2)
C190.040 (3)0.023 (3)0.023 (3)0.005 (2)0.002 (2)0.002 (2)
C100.028 (3)0.032 (3)0.025 (3)0.002 (2)0.003 (2)0.000 (2)
C110.022 (3)0.049 (4)0.029 (3)0.001 (2)0.004 (2)0.006 (2)
C50.025 (3)0.036 (3)0.025 (3)0.002 (2)0.007 (2)0.003 (2)
C60.030 (3)0.047 (3)0.022 (3)0.008 (3)0.001 (2)0.001 (2)
C200.029 (3)0.043 (3)0.027 (3)0.010 (2)0.010 (2)0.004 (2)
C260.036 (3)0.040 (3)0.032 (3)0.002 (3)0.012 (2)0.013 (2)
C300.045 (3)0.032 (3)0.021 (3)0.007 (3)0.002 (2)0.005 (2)
C350.040 (3)0.032 (3)0.044 (3)0.002 (3)0.008 (3)0.002 (3)
C360.047 (4)0.047 (4)0.048 (4)0.007 (3)0.001 (3)0.000 (3)
C310.039 (3)0.029 (3)0.028 (3)0.007 (2)0.003 (2)0.001 (2)
C120.028 (3)0.055 (4)0.032 (3)0.013 (3)0.002 (2)0.011 (3)
C290.040 (3)0.029 (3)0.018 (2)0.001 (2)0.002 (2)0.003 (2)
C370.056 (4)0.065 (4)0.051 (4)0.022 (3)0.021 (3)0.018 (3)
Geometric parameters (Å, º) top
Co1—N11.870 (4)C13—H130.9500
Co1—N21.875 (3)C21—C201.384 (7)
Co1—N31.879 (4)C21—C221.394 (6)
Co1—N41.883 (3)C21—H210.9500
Co1—C342.039 (4)C15—C171.488 (6)
Co1—N52.045 (4)C3—C81.396 (6)
O1—N31.339 (4)C34—C351.498 (6)
O1—H021.19 (7)C34—H34A0.9900
O4—N21.339 (4)C34—H34B0.9900
O4—H011.30 (6)C22—C171.399 (6)
O3—N11.354 (4)C22—H220.9500
O3—H021.27 (7)C14—H140.9500
O2—N41.361 (4)C27—C261.402 (7)
O2—H011.18 (6)C27—H270.9500
C16—N21.318 (5)C8—H80.9500
C16—C151.470 (6)C24—C251.379 (6)
C16—C231.483 (6)C24—H240.9500
N1—C151.308 (5)C25—C261.375 (7)
N3—C11.308 (5)C25—H250.9500
C23—C281.384 (6)C19—C201.389 (7)
C23—C241.395 (6)C19—H190.9500
C32—C331.378 (6)C10—C111.389 (6)
C32—C311.383 (6)C10—H100.9500
C32—H320.9500C11—C121.378 (7)
N5—C291.348 (5)C11—H110.9500
N5—C331.357 (5)C5—C61.372 (7)
C7—C81.382 (6)C5—H50.9500
C7—C61.390 (7)C6—H60.9500
C7—H70.9500C20—H200.9500
C18—C191.382 (6)C26—H260.9500
C18—C171.391 (6)C30—C311.373 (6)
C18—H180.9500C30—C291.376 (6)
C9—C141.387 (6)C30—H300.9500
C9—C101.393 (6)C35—C361.525 (7)
C9—C21.489 (6)C35—H35A0.9900
C2—N41.315 (5)C35—H35B0.9900
C2—C11.472 (6)C36—C371.506 (8)
C1—C31.476 (6)C36—H36A0.9900
C28—C271.389 (6)C36—H36B0.9900
C28—H280.9500C31—H310.9500
C33—H330.9500C12—H120.9500
C4—C51.380 (6)C29—H290.9500
C4—C31.402 (6)C37—H37A0.9800
C4—H40.9500C37—H37B0.9800
C13—C121.380 (7)C37—H37C0.9800
C13—C141.397 (6)
N1—Co1—N281.74 (15)C35—C34—Co1117.5 (3)
N1—Co1—N398.50 (15)C35—C34—H34A107.9
N2—Co1—N3178.50 (16)Co1—C34—H34A107.9
N1—Co1—N4179.07 (15)C35—C34—H34B107.9
N2—Co1—N499.17 (15)Co1—C34—H34B107.9
N3—Co1—N480.59 (15)H34A—C34—H34B107.2
N1—Co1—C3487.49 (17)C21—C22—C17120.0 (4)
N2—Co1—C3488.76 (17)C21—C22—H22120.0
N3—Co1—C3489.78 (17)C17—C22—H22120.0
N4—Co1—C3492.67 (16)C9—C14—C13120.3 (5)
N1—Co1—N589.95 (15)C9—C14—H14119.9
N2—Co1—N590.15 (15)C13—C14—H14119.9
N3—Co1—N591.33 (15)C28—C27—C26118.8 (5)
N4—Co1—N589.90 (15)C28—C27—H27120.6
C34—Co1—N5177.33 (16)C26—C27—H27120.6
N3—O1—H02102 (3)C7—C8—C3119.8 (4)
N2—O4—H0197 (2)C7—C8—H8120.1
N1—O3—H02102 (3)C3—C8—H8120.1
N4—O2—H0197 (3)C25—C24—C23120.2 (4)
N2—C16—C15112.5 (4)C25—C24—H24119.9
N2—C16—C23124.8 (4)C23—C24—H24119.9
C15—C16—C23122.6 (4)C18—C17—C22119.5 (4)
C15—N1—O3120.0 (3)C18—C17—C15120.7 (4)
C15—N1—Co1117.7 (3)C22—C17—C15119.7 (4)
O3—N1—Co1122.0 (3)C26—C25—C24120.5 (5)
C16—N2—O4121.0 (3)C26—C25—H25119.7
C16—N2—Co1116.5 (3)C24—C25—H25119.7
O4—N2—Co1122.5 (3)C18—C19—C20119.8 (4)
C1—N3—O1118.9 (3)C18—C19—H19120.1
C1—N3—Co1118.5 (3)C20—C19—H19120.1
O1—N3—Co1122.5 (3)C11—C10—C9120.1 (5)
C28—C23—C24119.1 (4)C11—C10—H10120.0
C28—C23—C16121.2 (4)C9—C10—H10120.0
C24—C23—C16119.4 (4)C12—C11—C10120.4 (5)
C33—C32—C31118.3 (4)C12—C11—H11119.8
C33—C32—H32120.9C10—C11—H11119.8
C31—C32—H32120.9C6—C5—C4121.2 (5)
C29—N5—C33116.4 (4)C6—C5—H5119.4
C29—N5—Co1121.1 (3)C4—C5—H5119.4
C33—N5—Co1122.5 (3)C5—C6—C7118.9 (4)
C8—C7—C6121.1 (5)C5—C6—H6120.5
C8—C7—H7119.5C7—C6—H6120.5
C6—C7—H7119.5C21—C20—C19120.6 (5)
C19—C18—C17120.5 (4)C21—C20—H20119.7
C19—C18—H18119.8C19—C20—H20119.7
C17—C18—H18119.8C25—C26—C27120.1 (4)
C14—C9—C10119.2 (4)C25—C26—H26119.9
C14—C9—C2120.3 (4)C27—C26—H26119.9
C10—C9—C2120.4 (4)C31—C30—C29119.0 (4)
N4—C2—C1111.7 (4)C31—C30—H30120.5
N4—C2—C9123.7 (4)C29—C30—H30120.5
C1—C2—C9124.7 (4)C34—C35—C36112.9 (4)
C2—N4—O2120.1 (3)C34—C35—H35A109.0
C2—N4—Co1117.8 (3)C36—C35—H35A109.0
O2—N4—Co1122.0 (3)C34—C35—H35B109.0
N3—C1—C2111.3 (4)C36—C35—H35B109.0
N3—C1—C3120.9 (4)H35A—C35—H35B107.8
C2—C1—C3127.8 (4)C37—C36—C35111.9 (5)
C23—C28—C27121.1 (4)C37—C36—H36A109.2
C23—C28—H28119.4C35—C36—H36A109.2
C27—C28—H28119.4C37—C36—H36B109.2
N5—C33—C32123.5 (4)C35—C36—H36B109.2
N5—C33—H33118.2H36A—C36—H36B107.9
C32—C33—H33118.2C30—C31—C32119.4 (5)
C5—C4—C3120.1 (4)C30—C31—H31120.3
C5—C4—H4119.9C32—C31—H31120.3
C3—C4—H4119.9C11—C12—C13120.0 (5)
C12—C13—C14119.9 (5)C11—C12—H12120.0
C12—C13—H13120.0C13—C12—H12120.0
C14—C13—H13120.0N5—C29—C30123.4 (4)
C20—C21—C22119.7 (4)N5—C29—H29118.3
C20—C21—H21120.2C30—C29—H29118.3
C22—C21—H21120.2C36—C37—H37A109.5
N1—C15—C16111.3 (4)C36—C37—H37B109.5
N1—C15—C17122.9 (4)H37A—C37—H37B109.5
C16—C15—C17125.6 (4)C36—C37—H37C109.5
C8—C3—C4118.8 (4)H37A—C37—H37C109.5
C8—C3—C1120.6 (4)H37B—C37—H37C109.5
C4—C3—C1120.1 (4)
N2—Co1—N1—C154.5 (3)Co1—N3—C1—C3178.0 (3)
N3—Co1—N1—C15177.0 (3)N4—C2—C1—N30.7 (5)
N4—Co1—N1—C15166 (45)C9—C2—C1—N3178.4 (4)
C34—Co1—N1—C1593.6 (3)N4—C2—C1—C3179.1 (4)
N5—Co1—N1—C1585.6 (3)C9—C2—C1—C30.0 (7)
N2—Co1—N1—O3178.6 (3)C24—C23—C28—C270.5 (7)
N3—Co1—N1—O32.9 (3)C16—C23—C28—C27173.7 (4)
N4—Co1—N1—O38 (10)C29—N5—C33—C321.3 (6)
C34—Co1—N1—O392.3 (3)Co1—N5—C33—C32177.6 (4)
N5—Co1—N1—O388.4 (3)C31—C32—C33—N51.2 (7)
C15—C16—N2—O4179.8 (3)O3—N1—C15—C16178.9 (3)
C23—C16—N2—O42.3 (6)Co1—N1—C15—C164.8 (5)
C15—C16—N2—Co11.5 (5)O3—N1—C15—C173.4 (6)
C23—C16—N2—Co1176.5 (3)Co1—N1—C15—C17170.7 (3)
N1—Co1—N2—C163.2 (3)N2—C16—C15—N12.0 (5)
N3—Co1—N2—C16103 (6)C23—C16—C15—N1179.9 (4)
N4—Co1—N2—C16176.7 (3)N2—C16—C15—C17173.3 (4)
C34—Co1—N2—C1690.8 (3)C23—C16—C15—C174.7 (7)
N5—Co1—N2—C1686.8 (3)C5—C4—C3—C80.1 (6)
N1—Co1—N2—O4178.1 (3)C5—C4—C3—C1172.7 (4)
N3—Co1—N2—O479 (6)N3—C1—C3—C892.1 (6)
N4—Co1—N2—O42.0 (3)C2—C1—C3—C889.6 (6)
C34—Co1—N2—O490.5 (3)N3—C1—C3—C480.4 (5)
N5—Co1—N2—O492.0 (3)C2—C1—C3—C497.9 (6)
N1—Co1—N3—C1176.0 (3)N1—Co1—C34—C35163.0 (4)
N2—Co1—N3—C185 (6)N2—Co1—C34—C3581.3 (4)
N4—Co1—N3—C13.8 (3)N3—Co1—C34—C3598.4 (4)
C34—Co1—N3—C196.5 (3)N4—Co1—C34—C3517.9 (4)
N5—Co1—N3—C185.9 (3)N5—Co1—C34—C35147 (3)
N1—Co1—N3—O11.5 (3)C20—C21—C22—C170.6 (7)
N2—Co1—N3—O198 (6)C10—C9—C14—C131.3 (6)
N4—Co1—N3—O1178.7 (3)C2—C9—C14—C13178.7 (4)
C34—Co1—N3—O185.9 (3)C12—C13—C14—C91.5 (7)
N5—Co1—N3—O191.6 (3)C23—C28—C27—C261.7 (7)
N2—C16—C23—C28129.9 (5)C6—C7—C8—C31.5 (7)
C15—C16—C23—C2852.3 (6)C4—C3—C8—C70.7 (6)
N2—C16—C23—C2456.0 (6)C1—C3—C8—C7173.3 (4)
C15—C16—C23—C24121.8 (5)C28—C23—C24—C250.9 (7)
N1—Co1—N5—C29118.8 (3)C16—C23—C24—C25173.3 (4)
N2—Co1—N5—C2937.0 (3)C19—C18—C17—C221.7 (7)
N3—Co1—N5—C29142.7 (3)C19—C18—C17—C15173.8 (4)
N4—Co1—N5—C2962.1 (3)C21—C22—C17—C180.5 (7)
C34—Co1—N5—C29103 (3)C21—C22—C17—C15175.0 (4)
N1—Co1—N5—C3360.1 (3)N1—C15—C17—C1843.1 (6)
N2—Co1—N5—C33141.8 (3)C16—C15—C17—C18142.0 (5)
N3—Co1—N5—C3338.4 (3)N1—C15—C17—C22132.3 (5)
N4—Co1—N5—C33119.0 (3)C16—C15—C17—C2242.5 (6)
C34—Co1—N5—C3376 (3)C23—C24—C25—C260.8 (7)
C14—C9—C2—N4128.6 (5)C17—C18—C19—C201.7 (7)
C10—C9—C2—N451.4 (6)C14—C9—C10—C110.4 (6)
C14—C9—C2—C152.5 (6)C2—C9—C10—C11179.6 (4)
C10—C9—C2—C1127.5 (5)C9—C10—C11—C120.4 (7)
C1—C2—N4—O2179.0 (3)C3—C4—C5—C60.2 (7)
C9—C2—N4—O21.9 (6)C4—C5—C6—C71.0 (7)
C1—C2—N4—Co12.3 (5)C8—C7—C6—C51.7 (7)
C9—C2—N4—Co1178.6 (3)C22—C21—C20—C190.6 (7)
N1—Co1—N4—C27 (10)C18—C19—C20—C210.6 (7)
N2—Co1—N4—C2178.2 (3)C24—C25—C26—C273.1 (7)
N3—Co1—N4—C23.3 (3)C28—C27—C26—C253.5 (7)
C34—Co1—N4—C292.6 (3)Co1—C34—C35—C36175.0 (4)
N5—Co1—N4—C288.1 (3)C34—C35—C36—C37174.4 (5)
N1—Co1—N4—O2169 (45)C29—C30—C31—C320.7 (7)
N2—Co1—N4—O21.6 (3)C33—C32—C31—C300.2 (7)
N3—Co1—N4—O2179.9 (3)C10—C11—C12—C130.3 (8)
C34—Co1—N4—O290.7 (3)C14—C13—C12—C110.6 (8)
N5—Co1—N4—O288.6 (3)C33—N5—C29—C300.4 (7)
O1—N3—C1—C2178.9 (3)Co1—N5—C29—C30178.5 (4)
Co1—N3—C1—C23.5 (5)C31—C30—C29—N50.6 (8)
O1—N3—C1—C30.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H01···O41.18 (6)1.30 (6)2.480 (4)178 (9)
O1—H02···O31.18 (6)1.27 (6)2.446 (4)173 (5)

Experimental details

Crystal data
Chemical formula[Co(C4H9)(C14H11N2O2)2(C5H5N)]
Mr673.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.863 (4), 19.520 (7), 14.402 (5)
β (°) 98.486 (8)
V3)3298.5 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.34 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.830, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
18829, 6796, 3770
Rint0.111
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.184, 0.97
No. of reflections6796
No. of parameters432
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.45

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H01···O41.18 (6)1.30 (6)2.480 (4)178 (9)
O1—H02···O31.18 (6)1.27 (6)2.446 (4)173 (5)
 

Footnotes

This article is dedicated to late Professor B. D. Gupta.

Acknowledgements

The authors are thankul to the IIT Kanpur, India for data collection. SK is thankful to TWAS and CONICET, Argentina.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, K. L. (2006). Dalton Trans. pp. 1123–1133.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, S. & Gupta, B. D. (2011). Inorg. Chem. 50, 9207–9209.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501–1510.  Web of Science CSD CrossRef CAS Google Scholar
First citationMandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658–670.  Web of Science CSD CrossRef CAS Google Scholar
First citationRandaccio, L. (1999). Comments Inorg. Chem. 21, 327–376.  Web of Science CrossRef CAS Google Scholar
First citationSchrauzer, G. N. (1968). Acc. Chem. Res. 1, 97–103.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZangrando, E., Trani, M., Stabon, E., Carfagna, C., Milani, B. & Mestroni, G. (2003). Eur. J. Inorg. Chem. pp. 2683–2692  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds