organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o312-o313

1,1′-[Imidazolidine-1,3-diylbis(methyl­ene)]bis­­(1H-benzotriazole)

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 23 December 2011; accepted 3 January 2012; online 11 January 2012)

In the title compound, C17H18N8, the imidazolidine ring adopts an envelope conformation with the substituents at the N atoms in trans positions with respect to the central ring. The dihedral angle between the two benzotriazole rings is 71.65 (10)°. In the crystal, non-classical C—H⋯N inter­actions link the mol­ecules into helical chains along the b axis. The crystal packing is further stabilized by weak C—H⋯π inter­actions.

Related literature

For related structures, see: Rivera et al. (2011a[Rivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011a). Acta Cryst. E67, o990.],b[Rivera, A., Pacheco, D. J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011b). Acta Cryst. E67, o3071.]). For the synthesis of the title compound, see: Rivera et al. (2004[Rivera, A., Núñez, M. E., Maldonado, M. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77-80.]); Katriztky et al. (1990[Katriztky, A. R., Pilarski, B. & Urogdi, L. (1990). J. Chem. Soc., Perkin Trans. 1, pp. 541-547.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the anomeric effect, see: Dabbagh et al. (2002[Dabbagh, H. A., Modarresi-Alam, A. R., Tadjarodi, A. & Taeb, A. (2002). Tetrahedron, 58, 2621-2625.]); Selámbaron et al. (2001[Selámbaron, J., Monge, S., Carré, F., Fruchier, A., Roque, J. P. & Pavia, A. A. (2001). Carbohydr. Res. 330, 43-51.]); Zefirov & Shekhtman (1971[Zefirov, N. S. & Shekhtman, N. M. (1971). Russ. Chem. Rev. 40, 315-329.]); Hendrickson (1961[Hendrickson, J. B. (1961). J. Am. Chem. Soc. 83, 4537-4547.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N8

  • Mr = 334.4

  • Monoclinic, P 21

  • a = 11.8609 (6) Å

  • b = 4.6429 (2) Å

  • c = 14.4712 (8) Å

  • β = 93.053 (4)°

  • V = 795.78 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 120 K

  • 0.43 × 0.18 × 0.10 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.378, Tmax = 1

  • 10081 measured reflections

  • 1609 independent reflections

  • 1541 reflections with I > 3σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.52

  • 1609 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the N6/N7/N8/C13/C12 aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N5i 0.96 2.60 3.552 (2) 173
C11—H11bCg3ii 0.96 2.86 3.394 (2) 116
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+2]; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The anomeric effect is a stereoelectronic effect observed in various heterocyclic compounds and some acyclic structures with a great deal of importance due its implications on the molecular structure, conformational properties and reactivity of organic compounds (Zefirov & Shekhtman, 1971; Selámbaron, et al., 2001; Dabbagh, et al., 2002). Our investigations on the synthesis and structural studies of heterocyclic compounds have evidenced the occurrence of a n(N)σ* (C—N) electron delocalization (Rivera et al., 2011a, 2011b). In this article, we discussed the crystal structure of the title compound, which can be synthetized by a three component condensation between ethylenediamine, formaldehyde and benzotriazole (Katriztky et al., 1990) or using a novel methodology involving a Mannich type reaction between the aminal cage 1,3,6,8-tetrazatricyclo[4.4.1.13,8]dodecane and benzotriazole (Rivera et al., 2004). By recrystallization from ethanol we obtained suitable crystals for X-rays analysis.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The anomeric effect is evidenced by the C—N bond lengths, which are longer as C11—N6 [1.484 (2) Å] and shorter as N2—C11 [1.433 (2) Å] than the expected bond length of 1.469 Å (Allen et al., 1987). Moreover, this effect is confirmed by the bond angles around N2 with a Σα = 339.43 (13) which are distorted from a normal tetrahedral geometry in a five-membered ring (Hendrickson, 1961), whereas for N1 the bond lenghts and angles are within normal ranges. These results are in a good agreement with the crystal structures of related structures (Rivera et al., 2011a, 2011b).

The imidazolidine ring adopts an envelope conformation on C1 as seen in the puckering parameters Q(2) = 0.3953 (17) Å and ϕ2 = 40.3 (2) ° (Cremer & Pople, 1975), with endocyclic bond angles between 103.06 (13) ° and 106.55 (13) °. The geometry of the N—C—C—N moiety is close to the planar in a syn-periplanar conformation evidenced by the N2—C2—C3—N1 torsion angle [3.05 (17) °]. The benzotriazolylmethyl substituents are arranged trans respect the imidazolidine ring, which is preferred because the nitrogen lone pairs are oriented anti-axial to avoid repulsion electronic repulsions. The benzotriazole rings makes an angle of 38.47 (10) ° and 78.88 (10) ° with the mean plane of imidazolidine ring. The dihedral angle between the two benzotriazole rings is 71.65 (10) °. Chains of molecules in the title compound are linked along the b direction by non-classical intermolecular hydrogen bonds C17—H17···N5 interactions [2.60 Å] which link neighboring molecules. The crystal packing is further stabilized by weak C—H···π interactions.

Related literature top

For related structures, see: Rivera et al. (2011a,b). For the synthesis of the title compound, see: Rivera et al. (2004); Katriztky et al. (1990). For ring conformations, see Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the anomeric effect, see: Dabbagh et al. (2002); Selámbaron et al. (2001); Zefirov & Shekhtman (1971); Hendrickson (1961).

Experimental top

For the originally reported synthesis, see: Rivera et al. (2004). Single crystals of the title compound (I) were grown from ethanol by recrystallization.

Refinement top

All H atoms atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq of the parent atom. As the structure contains only light atoms, the Friedel-pair reflections were merged and the Flack parameter has not been determined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme.displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along b axis.
1,1'-[Imidazolidine-1,3-diylbis(methylene)]bis(1H-benzotriazole) top
Crystal data top
C17H18N8F(000) = 352
Mr = 334.4Dx = 1.395 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ybCell parameters from 7090 reflections
a = 11.8609 (6) Åθ = 3.1–66.9°
b = 4.6429 (2) ŵ = 0.74 mm1
c = 14.4712 (8) ÅT = 120 K
β = 93.053 (4)°Prism, colourless
V = 795.78 (7) Å30.43 × 0.18 × 0.10 mm
Z = 2
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1609 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1541 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.3784 pixels mm-1θmax = 67.0°, θmin = 3.1°
Rotation method data acquisition using ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 55
Tmin = 0.378, Tmax = 1l = 1716
10081 measured reflections
Refinement top
Refinement on F273 constraints
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.52(Δ/σ)max = 0.005
1609 reflectionsΔρmax = 0.09 e Å3
226 parametersΔρmin = 0.11 e Å3
0 restraints
Crystal data top
C17H18N8V = 795.78 (7) Å3
Mr = 334.4Z = 2
Monoclinic, P21Cu Kα radiation
a = 11.8609 (6) ŵ = 0.74 mm1
b = 4.6429 (2) ÅT = 120 K
c = 14.4712 (8) Å0.43 × 0.18 × 0.10 mm
β = 93.053 (4)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1609 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1541 reflections with I > 3σ(I)
Tmin = 0.378, Tmax = 1Rint = 0.030
10081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.52Δρmax = 0.09 e Å3
1609 reflectionsΔρmin = 0.11 e Å3
226 parameters
Special details top

Experimental. CrysAlisPro (Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.21591 (11)0.2699 (3)0.93068 (9)0.0235 (4)
N20.26794 (11)0.5272 (3)1.06164 (10)0.0238 (4)
N30.09989 (11)0.3594 (3)0.79499 (9)0.0235 (4)
N40.01384 (12)0.4004 (4)0.78915 (11)0.0290 (4)
N50.05795 (11)0.2425 (4)0.72197 (10)0.0298 (5)
N60.40908 (11)0.4060 (3)1.18741 (10)0.0239 (4)
N70.50606 (11)0.2991 (4)1.15561 (10)0.0280 (4)
N80.54874 (11)0.1110 (4)1.21481 (10)0.0279 (4)
C10.31519 (14)0.3661 (4)0.98560 (11)0.0264 (5)
C20.17294 (13)0.3532 (4)1.09029 (11)0.0248 (5)
C30.13569 (13)0.1890 (4)1.00110 (11)0.0239 (5)
C40.17205 (15)0.4928 (4)0.86759 (12)0.0263 (5)
C50.12961 (13)0.1659 (4)0.73030 (11)0.0215 (5)
C60.02769 (13)0.0916 (4)0.68333 (12)0.0253 (5)
C70.02635 (16)0.1107 (4)0.61123 (12)0.0314 (5)
C80.12773 (17)0.2263 (5)0.58977 (12)0.0354 (6)
C90.23000 (15)0.1486 (5)0.63788 (12)0.0308 (5)
C100.23362 (14)0.0484 (4)0.70895 (11)0.0251 (5)
C110.34550 (15)0.6304 (4)1.13345 (12)0.0286 (5)
C120.38817 (13)0.2843 (4)1.27059 (11)0.0228 (5)
C130.47863 (13)0.0943 (4)1.28781 (12)0.0232 (5)
C140.48715 (14)0.0715 (4)1.36880 (12)0.0270 (5)
C150.40331 (15)0.0378 (4)1.42939 (13)0.0311 (5)
C160.31195 (15)0.1530 (5)1.41080 (13)0.0329 (6)
C170.30163 (14)0.3172 (4)1.33186 (12)0.0293 (5)
H1a0.3586320.4938530.9493140.0316*
H1b0.3558740.2018651.0100350.0316*
H2a0.1130220.4778041.1076350.0298*
H2b0.1991610.218391.1369220.0298*
H3a0.1403310.0145171.0123420.0287*
H3b0.0609180.248440.9807470.0287*
H4a0.1287740.6286580.9010230.0316*
H4b0.2337580.589130.8403540.0316*
H70.0427680.1655570.5783710.0376*
H80.1294650.3644080.5405090.0424*
H90.2990610.2360790.6204380.037*
H100.3029810.1018220.7417350.0302*
H11a0.306160.751461.1748110.0343*
H11b0.3976070.7624461.1076640.0343*
H140.548770.20241.3811950.0325*
H150.4066310.1464381.4859210.0373*
H160.2548610.16831.455140.0395*
H170.2392680.4458441.3195320.0351*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0240 (6)0.0259 (8)0.0205 (7)0.0003 (6)0.0004 (5)0.0012 (6)
N20.0261 (7)0.0225 (7)0.0223 (7)0.0021 (6)0.0037 (5)0.0009 (6)
N30.0221 (6)0.0253 (7)0.0229 (7)0.0011 (6)0.0008 (5)0.0020 (6)
N40.0230 (7)0.0315 (8)0.0326 (8)0.0042 (7)0.0022 (6)0.0053 (7)
N50.0218 (7)0.0346 (9)0.0325 (8)0.0010 (6)0.0027 (5)0.0075 (7)
N60.0235 (6)0.0241 (8)0.0235 (7)0.0008 (6)0.0032 (5)0.0013 (6)
N70.0227 (6)0.0338 (9)0.0269 (7)0.0032 (6)0.0025 (5)0.0021 (7)
N80.0221 (7)0.0336 (9)0.0275 (7)0.0006 (6)0.0023 (5)0.0019 (7)
C10.0233 (7)0.0334 (10)0.0224 (8)0.0017 (8)0.0009 (6)0.0024 (8)
C20.0212 (7)0.0296 (9)0.0236 (8)0.0009 (7)0.0008 (6)0.0008 (7)
C30.0233 (8)0.0239 (9)0.0243 (8)0.0025 (7)0.0007 (6)0.0003 (7)
C40.0323 (8)0.0244 (9)0.0219 (8)0.0026 (8)0.0032 (6)0.0010 (7)
C50.0234 (7)0.0221 (9)0.0187 (7)0.0006 (7)0.0008 (6)0.0035 (7)
C60.0240 (8)0.0260 (9)0.0255 (8)0.0022 (7)0.0033 (6)0.0080 (7)
C70.0360 (9)0.0301 (10)0.0267 (9)0.0058 (8)0.0098 (7)0.0031 (8)
C80.0514 (11)0.0314 (10)0.0228 (8)0.0009 (9)0.0021 (7)0.0015 (8)
C90.0332 (8)0.0330 (11)0.0264 (8)0.0063 (8)0.0038 (6)0.0011 (8)
C100.0229 (8)0.0291 (10)0.0235 (8)0.0004 (7)0.0009 (6)0.0029 (7)
C110.0348 (9)0.0208 (9)0.0288 (9)0.0039 (8)0.0109 (7)0.0012 (8)
C120.0224 (7)0.0225 (9)0.0228 (8)0.0029 (7)0.0062 (6)0.0028 (7)
C130.0193 (7)0.0246 (9)0.0253 (8)0.0022 (7)0.0032 (6)0.0039 (7)
C140.0262 (8)0.0241 (9)0.0299 (9)0.0014 (7)0.0066 (6)0.0000 (7)
C150.0322 (9)0.0317 (11)0.0289 (9)0.0030 (8)0.0028 (7)0.0043 (8)
C160.0292 (8)0.0394 (11)0.0303 (9)0.0009 (8)0.0039 (7)0.0004 (9)
C170.0238 (8)0.0336 (11)0.0302 (9)0.0041 (8)0.0013 (6)0.0026 (8)
Geometric parameters (Å, º) top
N1—C11.455 (2)C4—H4b0.96
N1—C31.479 (2)C5—C61.398 (2)
N1—C41.458 (2)C5—C101.398 (2)
N2—C11.466 (2)C6—C71.403 (3)
N2—C21.464 (2)C7—C81.368 (3)
N2—C111.433 (2)C7—H70.96
N3—N41.3604 (19)C8—C91.413 (3)
N3—C41.458 (2)C8—H80.96
N3—C51.357 (2)C9—C101.376 (3)
N4—N51.305 (2)C9—H90.96
N5—C61.377 (2)C10—H100.96
N6—N71.355 (2)C11—H11a0.96
N6—C111.484 (2)C11—H11b0.96
N6—C121.364 (2)C12—C131.401 (2)
N7—N81.307 (2)C12—C171.400 (2)
N8—C131.381 (2)C13—C141.402 (2)
C1—H1a0.96C14—C151.369 (3)
C1—H1b0.96C14—H140.96
C2—C31.543 (2)C15—C161.414 (3)
C2—H2a0.96C15—H150.96
C2—H2b0.96C16—C171.373 (3)
C3—H3a0.96C16—H160.96
C3—H3b0.96C17—H170.96
C4—H4a0.96
C1—N1—C3103.48 (12)N3—C5—C10132.45 (15)
C1—N1—C4112.04 (14)C6—C5—C10123.13 (15)
C3—N1—C4112.98 (13)N5—C6—C5108.33 (15)
C1—N2—C2105.19 (14)N5—C6—C7131.54 (15)
C1—N2—C11117.30 (13)C5—C6—C7120.12 (16)
C2—N2—C11116.94 (13)C6—C7—C8117.14 (16)
N4—N3—C4121.83 (14)C6—C7—H7121.4291
N4—N3—C5110.05 (13)C8—C7—H7121.4287
C4—N3—C5127.90 (14)C7—C8—C9122.02 (18)
N3—N4—N5108.94 (14)C7—C8—H8118.9882
N4—N5—C6108.26 (13)C9—C8—H8118.9897
N7—N6—C11119.68 (14)C8—C9—C10122.01 (17)
N7—N6—C12110.21 (14)C8—C9—H9118.9967
C11—N6—C12130.08 (14)C10—C9—H9118.9971
N6—N7—N8109.17 (13)C5—C10—C9115.58 (15)
N7—N8—C13108.11 (14)C5—C10—H10122.2124
N1—C1—N2103.65 (13)C9—C10—H10122.2126
N1—C1—H1a109.4707N2—C11—N6115.81 (15)
N1—C1—H1b109.4711N2—C11—H11a109.4718
N2—C1—H1a109.4712N2—C11—H11b109.4704
N2—C1—H1b109.4715N6—C11—H11a109.4709
H1a—C1—H1b114.7236N6—C11—H11b109.4712
N2—C2—C3103.06 (13)H11a—C11—H11b102.2888
N2—C2—H2a109.4714N6—C12—C13104.13 (14)
N2—C2—H2b109.4715N6—C12—C17133.44 (16)
C3—C2—H2a109.4717C13—C12—C17122.43 (16)
C3—C2—H2b109.4711N8—C13—C12108.38 (15)
H2a—C2—H2b115.2N8—C13—C14130.61 (16)
N1—C3—C2106.55 (13)C12—C13—C14121.01 (15)
N1—C3—H3a109.4715C13—C14—C15116.76 (16)
N1—C3—H3b109.4715C13—C14—H14121.6205
C2—C3—H3a109.4712C15—C14—H14121.6212
C2—C3—H3b109.4712C14—C15—C16121.66 (17)
H3a—C3—H3b112.2427C14—C15—H15119.1684
N1—C4—N3109.01 (15)C16—C15—H15119.1674
N1—C4—H4a109.4712C15—C16—C17122.64 (17)
N1—C4—H4b109.4703C15—C16—H16118.6785
N3—C4—H4a109.4717C17—C16—H16118.6776
N3—C4—H4b109.4721C12—C17—C16115.49 (16)
H4a—C4—H4b109.9289C12—C17—H17122.2546
N3—C5—C6104.42 (14)C16—C17—H17122.2552
N2—C2—C3—N13.05 (17)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N6/N7/N8/C13/C12 aromatic ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···N5i0.962.603.552 (2)173
C11—H11b···Cg3ii0.962.863.394 (2)116
Symmetry codes: (i) x, y+1/2, z+2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H18N8
Mr334.4
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)11.8609 (6), 4.6429 (2), 14.4712 (8)
β (°) 93.053 (4)
V3)795.78 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.43 × 0.18 × 0.10
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.378, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
10081, 1609, 1541
Rint0.030
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.52
No. of reflections1609
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.09, 0.11

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the N6/N7/N8/C13/C12 aromatic ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···N5i0.962.603.552 (2)173
C11—H11b···Cg3ii0.962.863.394 (2)116
Symmetry codes: (i) x, y+1/2, z+2; (ii) x, y+1, z.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDabbagh, H. A., Modarresi-Alam, A. R., Tadjarodi, A. & Taeb, A. (2002). Tetrahedron, 58, 2621–2625.  Web of Science CSD CrossRef CAS Google Scholar
First citationHendrickson, J. B. (1961). J. Am. Chem. Soc. 83, 4537–4547.  CrossRef CAS Web of Science Google Scholar
First citationKatriztky, A. R., Pilarski, B. & Urogdi, L. (1990). J. Chem. Soc., Perkin Trans. 1, pp. 541–547.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011a). Acta Cryst. E67, o990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Núñez, M. E., Maldonado, M. & Joseph-Nathan, P. (2004). Heterocycl. Commun. 10, 77–80.  CrossRef CAS Google Scholar
First citationRivera, A., Pacheco, D. J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011b). Acta Cryst. E67, o3071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSelámbaron, J., Monge, S., Carré, F., Fruchier, A., Roque, J. P. & Pavia, A. A. (2001). Carbohydr. Res. 330, 43–51.  Web of Science PubMed Google Scholar
First citationZefirov, N. S. & Shekhtman, N. M. (1971). Russ. Chem. Rev. 40, 315–329.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o312-o313
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds