organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(1a,4a-di­methyl-2,8-dioxo-2,3,4,4a,5,6,7,8-octa­hydro-1aH-1-oxa­cyclo­propa[d]naphthalen-7-yl)acrylate

aLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: mberraho@yahoo.fr

(Received 27 December 2011; accepted 2 January 2012; online 14 January 2012)

The title compound, C16H20O5, was synthesized from ilicic acid [2-(8-hy­droxy-4a,8-dimethyl­deca­hydro­naphthalen-2-yl)acrylic acid], which was isolated from the chloro­form extract of the aerial part of Inula viscose (L) Aiton [or Dittrichia viscosa­ (L) Greuter]. The molecule is built up from two fused six-membered rings, the epoxidized six-membered ring adopts a half-chair conformation while the other ring displays a perfect chair conformation. The crystal structure features C—H⋯O hydrogen bonds.

Related literature

For medicinal background to Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970[Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.]); Chiappini et al. (1982[Chiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159-161.]); Azoulay et al. (1986[Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345-352.]); Bohlman et al. (1977[Bohlman, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-1334.]); Ceccherelli et al. (1988[Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006-1009.]); Geissman & Toribio (1967[Geissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563-1567.]) For the synthesis, see: Barrero et al. (2009[Barrero, A. F., Herrador, M. M., Arteaga, J. & Catalán, V. (2009). Eur. J. Org. Chem. pp. 3589-3594.]); Tebbaa et al. (2011[Tebbaa, M., Elhakmaoui, A., Benharref, A. & Akssira, M. (2011). Tetrahedron Lett. 52, 3769-3771.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20O5

  • Mr = 292.32

  • Orthorhombic, P 21 21 21

  • a = 8.8626 (3) Å

  • b = 9.4552 (3) Å

  • c = 17.4080 (5) Å

  • V = 1458.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.45 × 0.33 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire1 long nozzle diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.650, Tmax = 1.000

  • 33985 measured reflections

  • 1716 independent reflections

  • 1638 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.06

  • 1716 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O5i 0.97 2.57 3.492 (2) 158
C5—H5A⋯O4ii 0.97 2.50 3.337 (2) 145
C7—H7⋯O3ii 0.98 2.54 3.3321 (19) 138
C7—H7⋯O4ii 0.98 2.54 3.3877 (19) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the evaluation of medicinals plants and in particular, Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter]. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini et al., 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlman et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988; Geissman & Toribio, 1967). The ilicic acid is one of the main components of the dichloromethane extract of the Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter]. The literature reports one article on the transformation of the ilicic acid (Barrero et al., 2009). In order to prepare products with high added value, that can be used in the pharmacologycal industry, we have studied the reactivity of this sesquiterpene acid. Thus, from this acid, we have prepared by the method of Barrero et al. (2009), 2-(4a,8-Dimethyl-1, 2,3,4,4 a,5,6,7-octahydro naphthalen-2-yl)-acrylic acid methyl ester(1) (Figure 3). The epoxidation of this sesquiterpene by metachloroperbenzoic acid (mCPBA), followed by the opening of the epoxide, obtained by Bi(OTf)3 (Tebbaa et al., 2011), leads to the compound (2) with a yield of 40%. The oxidation of the latter with chromic anhydride (CrO3) leads to the title compound with a yield of 60%. The crystal structure of the title compound is escribed herein. The molecule is built up from two fused six-membered rings. The molecular structure (Fig. 1), shows that the two rings adopt different conformations. A perfect chair conformation for the first ring (C1, C4a···C8) as indicated by Cremer & Pople (1975) puckering parameters Q(T)= 0.5561 (19)Å and spherical polar angle θ = 178.35 (18)° with ϕ = 245 (6)°. While the second ring (C1, C4a···C1a) displays a half chair conformation with Q(T) = 0.4303 (19), θ = 47,5(2)° and ϕ = 225,8(3). The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds. (Table 1, Figure 2).

Related literature top

For medicinal background to Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Chiappini et al. (1982); Azoulay et al. (1986); Bohlman et al. (1977); Ceccherelli et al. (1988); Geissman & Toribio (1967) For the synthesis, see: Barrero et al. (2009); Tebbaa et al. (2011). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

To a solution of 1 g (4 mmol) of 2-(4a,8-Dimethyl-2, 3,4,4a,5,6- hexahydro-naphthalene-2-yl)-acrylic acid methyl ester (2) dissolved in 20 ml acetone is added in small portions three equivalents of chromic anhydride (CrO3) at 0° C. The reaction mixture is left stirring for 1 h, then treated with 20 ml of cold water and extracted three times with 30 ml of ethyl acetate. The organic phases are combined, dried over sodium sulfate and concentrated under reduced pressure. The residue obtained is chromatographed on silica gel eluting with hexane-ethyl acetate (98–2) allowed the isolation in pure the 2 - (1a, 4a-dimethyl-2, 8 -dioxo- octahydro-1-oxa-cycloprop [d] naphthalene-7-yl)-acrylic acid methyl, with a yield of 60% (70 mg, 2.4 mmol). The title compound was recrystallized from its dichloromethane solution at room temperature.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) and 0.93 Å (C=CH2) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). In the absence of significant anomalous scatterers, the absolute configuration could not be reliably determined and Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. : Synthesis of the title compound.
Methyl 2-(1a,4a-dimethyl-2,8-dioxo-2,3,4,4a,5,6,7,8-octahydro-1aH- 1-oxacyclopropa[d]naphthalen-7-yl)acrylate top
Crystal data top
C16H20O5F(000) = 624
Mr = 292.32Dx = 1.331 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 33985 reflections
a = 8.8626 (3) Åθ = 3.2–26.4°
b = 9.4552 (3) ŵ = 0.10 mm1
c = 17.4080 (5) ÅT = 180 K
V = 1458.75 (8) Å3Prism, colourless
Z = 40.45 × 0.33 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire1 long nozzle
diffractometer
1716 independent reflections
Radiation source: fine-focus sealed tube1638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.650, Tmax = 1.000l = 2121
33985 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.2444P]
where P = (Fo2 + 2Fc2)/3
1716 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H20O5V = 1458.75 (8) Å3
Mr = 292.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8626 (3) ŵ = 0.10 mm1
b = 9.4552 (3) ÅT = 180 K
c = 17.4080 (5) Å0.45 × 0.33 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire1 long nozzle
diffractometer
1716 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1638 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 1.000Rint = 0.040
33985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
1716 reflectionsΔρmin = 0.15 e Å3
193 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Oxford Diffraction, 2010)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13339 (18)0.03809 (16)0.70987 (9)0.0207 (3)
C1A0.05450 (19)0.08964 (18)0.64052 (9)0.0239 (3)
C20.1449 (2)0.1740 (2)0.58274 (10)0.0299 (4)
C30.2984 (2)0.2227 (2)0.60642 (10)0.0330 (4)
H3A0.35780.24170.56070.040*
H3B0.28890.31060.63470.040*
C40.3818 (2)0.1157 (2)0.65598 (10)0.0304 (4)
H4A0.40020.03130.62570.036*
H4B0.47900.15490.67020.036*
C4A0.29707 (17)0.07384 (17)0.72924 (9)0.0220 (3)
C50.29623 (18)0.19549 (17)0.78766 (9)0.0233 (3)
H5A0.25650.27970.76310.028*
H5B0.39920.21540.80310.028*
C60.20299 (18)0.16391 (19)0.85886 (9)0.0244 (4)
H6A0.24940.08680.88700.029*
H6B0.20250.24650.89190.029*
C70.03943 (17)0.12379 (16)0.83876 (8)0.0194 (3)
H70.00670.20640.81420.023*
C80.04044 (17)0.00594 (16)0.78003 (9)0.0204 (3)
C90.05601 (18)0.08709 (18)0.90730 (9)0.0224 (3)
C100.22089 (18)0.10826 (18)0.89680 (9)0.0221 (3)
C110.0043 (2)0.0305 (3)0.97121 (11)0.0409 (5)
H11A0.07090.00371.00980.049*
H11B0.09890.01730.97770.049*
C120.1137 (2)0.1040 (2)0.63642 (10)0.0322 (4)
H12A0.14790.07660.58630.048*
H12B0.15940.04420.67440.048*
H12C0.14150.20060.64600.048*
C130.3722 (2)0.05753 (19)0.76273 (11)0.0314 (4)
H13A0.32460.08170.81050.047*
H13B0.36200.13480.72730.047*
H13C0.47730.03880.77150.047*
C140.4577 (2)0.1183 (3)0.95628 (11)0.0376 (5)
H14A0.48320.20480.93050.056*
H14B0.49520.03950.92720.056*
H14C0.50250.11781.00650.056*
O10.29605 (13)0.10753 (16)0.96328 (7)0.0318 (3)
O20.28032 (14)0.12332 (15)0.83537 (7)0.0307 (3)
O30.11162 (14)0.05477 (12)0.64566 (6)0.0263 (3)
O40.02356 (14)0.10571 (13)0.78860 (7)0.0298 (3)
O50.09164 (19)0.19766 (18)0.52039 (8)0.0492 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0221 (8)0.0195 (7)0.0205 (7)0.0005 (6)0.0014 (6)0.0044 (6)
C1A0.0274 (8)0.0231 (8)0.0211 (7)0.0002 (7)0.0024 (6)0.0017 (6)
C20.0388 (10)0.0275 (8)0.0235 (8)0.0001 (8)0.0015 (7)0.0006 (7)
C30.0358 (10)0.0372 (10)0.0261 (8)0.0086 (9)0.0073 (8)0.0024 (8)
C40.0239 (8)0.0380 (10)0.0293 (8)0.0020 (8)0.0073 (7)0.0046 (8)
C4A0.0181 (7)0.0245 (8)0.0234 (7)0.0004 (6)0.0007 (6)0.0025 (7)
C50.0192 (7)0.0251 (8)0.0255 (7)0.0042 (6)0.0000 (6)0.0029 (7)
C60.0205 (8)0.0291 (9)0.0235 (8)0.0042 (7)0.0015 (7)0.0052 (7)
C70.0184 (7)0.0201 (7)0.0198 (7)0.0001 (6)0.0003 (6)0.0001 (6)
C80.0161 (7)0.0225 (7)0.0226 (7)0.0004 (6)0.0049 (6)0.0004 (6)
C90.0212 (8)0.0242 (8)0.0218 (7)0.0006 (7)0.0005 (6)0.0003 (6)
C100.0215 (8)0.0232 (8)0.0215 (7)0.0022 (7)0.0012 (6)0.0009 (7)
C110.0256 (9)0.0678 (14)0.0294 (9)0.0027 (9)0.0007 (8)0.0167 (10)
C120.0284 (9)0.0370 (10)0.0314 (8)0.0018 (9)0.0083 (7)0.0012 (8)
C130.0262 (9)0.0300 (9)0.0379 (9)0.0058 (8)0.0026 (8)0.0030 (8)
C140.0194 (8)0.0599 (12)0.0336 (9)0.0015 (9)0.0043 (7)0.0025 (10)
O10.0201 (6)0.0533 (8)0.0221 (6)0.0018 (6)0.0024 (5)0.0008 (6)
O20.0256 (6)0.0437 (8)0.0226 (6)0.0003 (6)0.0034 (5)0.0049 (6)
O30.0327 (6)0.0227 (6)0.0235 (6)0.0004 (5)0.0021 (5)0.0059 (5)
O40.0329 (6)0.0234 (6)0.0331 (6)0.0086 (5)0.0033 (5)0.0013 (5)
O50.0603 (9)0.0587 (10)0.0286 (7)0.0110 (8)0.0104 (7)0.0139 (7)
Geometric parameters (Å, º) top
C1—O31.4344 (19)C6—H6B0.9700
C1—C1A1.478 (2)C7—C91.503 (2)
C1—C81.504 (2)C7—C81.512 (2)
C1—C4A1.527 (2)C7—H70.9800
C1A—O31.459 (2)C8—O41.208 (2)
C1A—C121.499 (2)C9—C111.317 (2)
C1A—C21.513 (2)C9—C101.486 (2)
C2—O51.204 (2)C10—O21.2005 (19)
C2—C31.495 (3)C10—O11.3354 (19)
C3—C41.521 (3)C11—H11A0.9300
C3—H3A0.9700C11—H11B0.9300
C3—H3B0.9700C12—H12A0.9600
C4—C4A1.532 (2)C12—H12B0.9600
C4—H4A0.9700C12—H12C0.9600
C4—H4B0.9700C13—H13A0.9600
C4A—C131.525 (2)C13—H13B0.9600
C4A—C51.535 (2)C13—H13C0.9600
C5—C61.519 (2)C14—O11.442 (2)
C5—H5A0.9700C14—H14A0.9600
C5—H5B0.9700C14—H14B0.9600
C6—C71.539 (2)C14—H14C0.9600
C6—H6A0.9700
O3—C1—C1A60.11 (10)C5—C6—H6B109.2
O3—C1—C8115.80 (13)C7—C6—H6B109.2
C1A—C1—C8118.09 (13)H6A—C6—H6B107.9
O3—C1—C4A115.81 (12)C9—C7—C8111.71 (13)
C1A—C1—C4A123.84 (14)C9—C7—C6113.99 (13)
C8—C1—C4A112.69 (13)C8—C7—C6109.26 (12)
O3—C1A—C158.47 (10)C9—C7—H7107.2
O3—C1A—C12115.66 (14)C8—C7—H7107.2
C1—C1A—C12122.65 (15)C6—C7—H7107.2
O3—C1A—C2110.53 (14)O4—C8—C1122.29 (15)
C1—C1A—C2117.81 (15)O4—C8—C7123.90 (15)
C12—C1A—C2116.54 (16)C1—C8—C7113.78 (13)
O5—C2—C3123.23 (18)C11—C9—C10120.07 (15)
O5—C2—C1A119.32 (18)C11—C9—C7124.64 (15)
C3—C2—C1A117.45 (15)C10—C9—C7115.12 (14)
C2—C3—C4113.19 (16)O2—C10—O1123.63 (15)
C2—C3—H3A108.9O2—C10—C9123.85 (15)
C4—C3—H3A108.9O1—C10—C9112.52 (14)
C2—C3—H3B108.9C9—C11—H11A120.0
C4—C3—H3B108.9C9—C11—H11B120.0
H3A—C3—H3B107.8H11A—C11—H11B120.0
C3—C4—C4A113.97 (14)C1A—C12—H12A109.5
C3—C4—H4A108.8C1A—C12—H12B109.5
C4A—C4—H4A108.8H12A—C12—H12B109.5
C3—C4—H4B108.8C1A—C12—H12C109.5
C4A—C4—H4B108.8H12A—C12—H12C109.5
H4A—C4—H4B107.7H12B—C12—H12C109.5
C13—C4A—C1108.59 (14)C4A—C13—H13A109.5
C13—C4A—C4108.35 (14)C4A—C13—H13B109.5
C1—C4A—C4109.80 (13)H13A—C13—H13B109.5
C13—C4A—C5111.05 (13)C4A—C13—H13C109.5
C1—C4A—C5107.90 (12)H13A—C13—H13C109.5
C4—C4A—C5111.11 (13)H13B—C13—H13C109.5
C6—C5—C4A113.32 (13)O1—C14—H14A109.5
C6—C5—H5A108.9O1—C14—H14B109.5
C4A—C5—H5A108.9H14A—C14—H14B109.5
C6—C5—H5B108.9O1—C14—H14C109.5
C4A—C5—H5B108.9H14A—C14—H14C109.5
H5A—C5—H5B107.7H14B—C14—H14C109.5
C5—C6—C7112.04 (13)C10—O1—C14114.97 (13)
C5—C6—H6A109.2C1—O3—C1A61.42 (10)
C7—C6—H6A109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O5i0.972.573.492 (2)158
C5—H5A···O4ii0.972.503.337 (2)145
C7—H7···O3ii0.982.543.3321 (19)138
C7—H7···O4ii0.982.543.3877 (19)145
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H20O5
Mr292.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)8.8626 (3), 9.4552 (3), 17.4080 (5)
V3)1458.75 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.33 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire1 long nozzle
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.650, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
33985, 1716, 1638
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.06
No. of reflections1716
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O5i0.972.573.492 (2)158
C5—H5A···O4ii0.972.503.337 (2)145
C7—H7···O3ii0.982.543.3321 (19)138
C7—H7···O4ii0.982.543.3877 (19)145
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y+1/2, z+3/2.
 

References

First citationAzoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352.  CAS PubMed Web of Science Google Scholar
First citationBarrero, A. F., Herrador, M. M., Arteaga, J. & Catalán, V. (2009). Eur. J. Org. Chem. pp. 3589-3594.  Web of Science CrossRef Google Scholar
First citationBohlman, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.  Google Scholar
First citationCeccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159–161.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGeissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563–1567.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTebbaa, M., Elhakmaoui, A., Benharref, A. & Akssira, M. (2011). Tetrahedron Lett. 52, 3769–3771.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds