organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­thieno[2,3-b]quinoxaline

aLaboratoire Nationale de Controle des Medicaments, Direction du Medicament et de la Pharmacie, BP 6206, 10000 Rabat, Morocco, bLaboratoire de Chimie Heterocyclique, Pole de Competence PHARCHIM, Université Mohammed V-Agdal, BP 1014, Rabat, Morocco, cLaboratoire de Diffraction des Rayons X, Division UATRS, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco, and dUnité de la Radioimmunoanalyse, Centre National d'Etudes Scientifiques et Techniques d'Energie Nucléaire, Maamoura, Morocco
*Correspondence e-mail: yramli76@yahoo.fr

(Received 28 December 2011; accepted 2 January 2012; online 14 January 2012)

The title compound, C16H10N2S, is almost planar (r.m.s. deviation for all non-H atoms = 0.080 Å). The dihedral angle between the three fused-ring system and the phenyl ring is 9.26 (3)°. The S atom and the opposite C atom of the thio­phene ring are mutually disordered with an occupancy ratio of 0.7706 (19):0.2294 (19).

Related literature

For a related structure, see: Ramli et al. (2011[Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.]). For the biological activity of quinoxaline derivatives, see: Kleim et al. (1995[Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253-2257.]). For their anti­tumour and anti­tuberculous properties, see: Abasolo et al. (1987[Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem. 24, 1771-1775.]); Rodrigo et al. (2002[Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137-143.]) and for their anti­fungal, herbicidal, anti­dyslipidemic and anti­oxidative activity, see: Jampilek et al. (2005[Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591-599.]); Sashidhara et al. (2009[Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813-1818.]); Watkins et al. (2009[Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580-585.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10N2S

  • Mr = 262.32

  • Monoclinic, P 21 /n

  • a = 6.3875 (3) Å

  • b = 16.2896 (8) Å

  • c = 11.6054 (6) Å

  • β = 96.039 (3)°

  • V = 1200.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.41 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 27721 measured reflections

  • 4821 independent reflections

  • 4179 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.06

  • 4821 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoxaline derivatives were found to exhibit antimicrobial [Kleim et al. 1995], antitumor [Abasolo et al. 1987], and antituberculous activity [Rodrigo et al.2002]. They, also, exhibit interesting antifungal, herbicidal, Antidyslipidemic and antioxidative activities of quinoxaline derivatives, see: [Jampilek et al. 2005, Sashidhara et al. 2009, Watkins et al. 2009].

In a former paper, we reported the crystal structure of 2-Methyl-3-(n-octylsulfanyl)quinoxaline [Ramli et al. 2011]. In this communication, the crystal structure of 2-phenyl-4a,8a-dihydrothieno[2,3-b]quinoxaline.

The title compound, C16H10N2S, shows an almost planar geometry, defined by the attached benzene [r.m.s. deviation: 0.0089 (10) A] and 4a,8a-dihydrothieno[2,3-b]quinoxaline groups [r.m.s. deviation: 0.2722 (9) A]. The dihedral angle between the planes of this groups is 9.26 (3)°. The S1 and C9 atoms of the thiophene ring displays 0.7706 (19): 0.2294 (19) positional disorder.

Related literature top

For a related structure, see: Ramli et al. (2011). For the biological activity of quinoxaline derivatives, see: Kleim et al. (1995). For their antitumour and antituberculous properties, see: Abasolo et al. (1987); Rodrigo et al. (2002) and for their antifungal, herbicidal, antidyslipidemic and antioxidative activity, see: Jampilek et al. (2005); Sashidhara et al. (2009); Watkins et al. (2009).

Experimental top

6.25 mmol of 3-methylquinoxaline-2-thione is merged with 12.5 mmol of the appropriate aldehyde for 2 h at the boiling point of the latter. At the end of the reaction, the solid is allowed to cool and then heated to 100° C for 10 minutes in 50 ml of ethanol. The product is filtered hot and washed with ethanol

Refinement top

The H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93Å and Uiso(H) = 1.2 Ueq(C).

The atoms S1 and C8 in the thiophene ring are mutually disordered by a ratio of 0.7706 (19):0.2294 (19).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
2-Phenylthieno[2,3-b]quinoxaline top
Crystal data top
C16H10N2SF(000) = 544
Mr = 262.32Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 215 reflections
a = 6.3875 (3) Åθ = 1.8–26.7°
b = 16.2896 (8) ŵ = 0.25 mm1
c = 11.6054 (6) ÅT = 296 K
β = 96.039 (3)°Prism, yellow
V = 1200.84 (10) Å30.41 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
4179 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 34.0°, θmin = 2.2°
ω and ϕ scansh = 108
27721 measured reflectionsk = 2525
4821 independent reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.5714P]
where P = (Fo2 + 2Fc2)/3
4821 reflections(Δ/σ)max = 0.004
192 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H10N2SV = 1200.84 (10) Å3
Mr = 262.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3875 (3) ŵ = 0.25 mm1
b = 16.2896 (8) ÅT = 296 K
c = 11.6054 (6) Å0.41 × 0.24 × 0.21 mm
β = 96.039 (3)°
Data collection top
Bruker APEXII CCD detector
diffractometer
4179 reflections with I > 2σ(I)
27721 measured reflectionsRint = 0.034
4821 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.58 e Å3
4821 reflectionsΔρmin = 0.24 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.54001 (5)0.93619 (2)0.62771 (5)0.01314 (11)0.7706 (19)
C10.90893 (16)1.05183 (6)0.61903 (9)0.01554 (17)
H10.81091.03830.55690.019*
C60.87615 (15)1.02638 (6)0.73110 (8)0.01308 (16)
C51.02452 (16)1.04876 (6)0.82349 (9)0.01653 (18)
H51.00411.03310.89860.020*
C70.69078 (15)0.97700 (6)0.75084 (8)0.01331 (17)
C41.20213 (17)1.09414 (6)0.80401 (10)0.01888 (19)
H41.29931.10880.86600.023*
C21.08669 (17)1.09714 (6)0.59971 (10)0.01815 (19)
H21.10661.11380.52500.022*
C31.23453 (17)1.11763 (6)0.69180 (10)0.01883 (19)
H31.35471.14690.67860.023*
C100.14188 (16)0.83199 (6)0.87817 (8)0.01446 (17)
C150.08412 (15)0.82081 (6)0.75707 (8)0.01349 (16)
C90.42799 (16)0.90599 (6)0.83950 (10)0.01732 (18)
C140.10173 (16)0.77645 (6)0.71932 (9)0.01765 (19)
H140.14010.76880.64050.021*
C160.36948 (16)0.89267 (6)0.71805 (9)0.01666 (18)
C110.01306 (17)0.79725 (7)0.95760 (9)0.01880 (19)
H110.05040.80321.03680.023*
C120.16630 (18)0.75488 (7)0.91879 (11)0.0211 (2)
H120.25000.73260.97180.025*
C130.22485 (17)0.74484 (6)0.79834 (11)0.0205 (2)
H130.34760.71660.77280.025*
N20.20272 (14)0.85147 (5)0.67565 (8)0.01643 (16)
N10.31701 (15)0.87565 (6)0.91971 (8)0.01824 (17)
C8A0.6155 (2)0.95601 (9)0.8506 (2)0.0156 (3)0.7706 (19)
H8A0.68010.97270.92230.019*0.7706 (19)
S1B0.6418 (2)0.96348 (8)0.89788 (17)0.0172 (4)0.2294 (19)
C8B0.5408 (8)0.9415 (3)0.6794 (7)0.0181 (9)0.2294 (19)
H8B0.54540.94810.60020.022*0.2294 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01306 (14)0.01609 (14)0.0103 (2)0.00218 (10)0.00130 (12)0.00077 (12)
C10.0167 (4)0.0156 (4)0.0146 (4)0.0001 (3)0.0033 (3)0.0008 (3)
C60.0123 (4)0.0128 (3)0.0144 (4)0.0005 (3)0.0020 (3)0.0005 (3)
C50.0156 (4)0.0175 (4)0.0162 (4)0.0015 (3)0.0000 (3)0.0002 (3)
C70.0127 (4)0.0139 (3)0.0132 (4)0.0002 (3)0.0005 (3)0.0000 (3)
C40.0154 (4)0.0179 (4)0.0229 (5)0.0021 (3)0.0001 (4)0.0012 (3)
C20.0199 (4)0.0162 (4)0.0197 (5)0.0003 (3)0.0081 (4)0.0001 (3)
C30.0159 (4)0.0146 (4)0.0268 (5)0.0009 (3)0.0062 (4)0.0016 (3)
C100.0148 (4)0.0150 (4)0.0137 (4)0.0015 (3)0.0019 (3)0.0004 (3)
C150.0137 (4)0.0134 (3)0.0134 (4)0.0003 (3)0.0016 (3)0.0015 (3)
C90.0133 (4)0.0158 (4)0.0221 (5)0.0005 (3)0.0012 (3)0.0012 (3)
C140.0165 (4)0.0164 (4)0.0193 (5)0.0014 (3)0.0018 (3)0.0013 (3)
C160.0149 (4)0.0162 (4)0.0197 (5)0.0023 (3)0.0057 (3)0.0051 (3)
C110.0207 (5)0.0209 (4)0.0157 (4)0.0037 (4)0.0059 (4)0.0033 (3)
C120.0190 (5)0.0192 (4)0.0268 (5)0.0024 (4)0.0103 (4)0.0071 (4)
C130.0151 (4)0.0161 (4)0.0300 (6)0.0019 (3)0.0012 (4)0.0035 (4)
N20.0175 (4)0.0173 (4)0.0149 (4)0.0016 (3)0.0037 (3)0.0027 (3)
N10.0170 (4)0.0197 (4)0.0175 (4)0.0008 (3)0.0009 (3)0.0023 (3)
C8A0.0148 (6)0.0193 (6)0.0120 (7)0.0013 (4)0.0015 (5)0.0012 (5)
S1B0.0150 (5)0.0205 (5)0.0160 (8)0.0038 (4)0.0006 (5)0.0002 (5)
C8B0.022 (2)0.023 (2)0.008 (2)0.0030 (16)0.0028 (19)0.0009 (18)
Geometric parameters (Å, º) top
S1A—C161.7403 (11)C10—C151.4267 (14)
S1A—C71.7669 (10)C15—N21.3663 (13)
C1—C21.3921 (15)C15—C141.4192 (14)
C1—C61.4017 (14)C9—N11.3236 (15)
C1—H10.9300C9—C161.4362 (15)
C6—C51.4024 (14)C9—C8A1.4430 (19)
C6—C71.4692 (14)C9—S1B1.7338 (18)
C5—C41.3923 (15)C14—C131.3698 (16)
C5—H50.9300C14—H140.9300
C7—C8B1.331 (7)C16—N21.3103 (14)
C7—C8A1.344 (2)C16—C8B1.460 (6)
C7—S1B1.781 (2)C11—C121.3722 (16)
C4—C31.3935 (16)C11—H110.9300
C4—H40.9300C12—C131.4179 (17)
C2—C31.3903 (16)C12—H120.9300
C2—H20.9300C13—H130.9300
C3—H30.9300C8A—H8A0.9300
C10—N11.3697 (13)C8B—H8B0.9300
C10—C111.4165 (14)
C16—S1A—C789.34 (5)C14—C15—C10119.36 (9)
C2—C1—C6120.68 (9)N1—C9—C16122.04 (9)
C2—C1—H1119.7N1—C9—C8A130.45 (13)
C6—C1—H1119.7C16—C9—C8A107.50 (12)
C1—C6—C5118.53 (9)N1—C9—S1B112.64 (10)
C1—C6—C7120.54 (9)C16—C9—S1B125.31 (10)
C5—C6—C7120.93 (9)C8A—C9—S1B17.82 (8)
C4—C5—C6120.70 (10)C13—C14—C15120.34 (10)
C4—C5—H5119.7C13—C14—H14119.8
C6—C5—H5119.7C15—C14—H14119.8
C8B—C7—C8A97.3 (3)N2—C16—C9124.28 (9)
C8B—C7—C6132.8 (3)N2—C16—C8B140.3 (3)
C8A—C7—C6129.87 (12)C9—C16—C8B95.3 (3)
C8B—C7—S1A15.8 (3)N2—C16—S1A121.20 (8)
C8A—C7—S1A112.77 (10)C9—C16—S1A114.52 (8)
C6—C7—S1A117.35 (7)C8B—C16—S1A19.4 (3)
C8B—C7—S1B110.8 (3)C12—C11—C10120.63 (10)
C8A—C7—S1B13.58 (8)C12—C11—H11119.7
C6—C7—S1B116.29 (8)C10—C11—H11119.7
S1A—C7—S1B126.35 (7)C11—C12—C13120.40 (10)
C5—C4—C3120.08 (10)C11—C12—H12119.8
C5—C4—H4120.0C13—C12—H12119.8
C3—C4—H4120.0C14—C13—C12120.42 (10)
C3—C2—C1120.20 (10)C14—C13—H13119.8
C3—C2—H2119.9C12—C13—H13119.8
C1—C2—H2119.9C16—N2—C15114.55 (9)
C2—C3—C4119.79 (10)C9—N1—C10115.11 (9)
C2—C3—H3120.1C7—C8A—C9115.82 (17)
C4—C3—H3120.1C7—C8A—H8A122.1
N1—C10—C11119.16 (9)C9—C8A—H8A122.1
N1—C10—C15122.00 (9)C9—S1B—C784.43 (10)
C11—C10—C15118.84 (9)C7—C8B—C16124.0 (6)
N2—C15—C14118.63 (9)C7—C8B—H8B118.0
N2—C15—C10122.00 (9)C16—C8B—H8B118.0

Experimental details

Crystal data
Chemical formulaC16H10N2S
Mr262.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.3875 (3), 16.2896 (8), 11.6054 (6)
β (°) 96.039 (3)
V3)1200.84 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.41 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27721, 4821, 4179
Rint0.034
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.06
No. of reflections4821
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem. 24, 1771–1775.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591–599.  CrossRef PubMed CAS Google Scholar
First citationKleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253–2257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.  CAS Google Scholar
First citationSashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580–585.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds