organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[(2-Methyl-4-nitro­phen­yl)imino­meth­yl]-1-benzo­thio­phene

aKırıkkale University, Faculty of Education, Department of Elementary Education, Science Teacher Training Programme, 71451 Kırıkkale, Turkey, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and dGiresun University, Faculty of Arts and Sciences, Department of Physics, 28100 Giresun, Turkey
*Correspondence e-mail: necmisamsun@gmail.com

(Received 29 December 2011; accepted 3 January 2012; online 11 January 2012)

In the title conpound, C16H12N2O2S, the 1-benzothio­phene residue and the substituted benzene ring are oriented at a dihedral angle of 53.36 (6)°. The mol­ecular conformation features a short C—H⋯N contact. There are no significant inter­molecular contacts.

Related literature

For the biological activity of Schiff bases, see: Barton et al. (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2. Oxford: Pergamon.]); Ingold (1969[Ingold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]). For industrial applications of Schiff bases, see: Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For chemical properties of Schiff bases, see: Aydoğan et al. (2001[Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]). For related structures, see: Ağar et al. (2010[Ağar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759-1772.]); Ceylan et al. (2011[Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.]); Dege et al. (2006[Dege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk. J. Chem. 30, 103-108.]); Demirtaş et al. (2009[Demirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.]); Tecer et al. (2010[Tecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369-o3370.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O2S

  • Mr = 296.34

  • Monoclinic, P 21

  • a = 7.6224 (4) Å

  • b = 7.9139 (4) Å

  • c = 11.7536 (5) Å

  • β = 91.341 (4)°

  • V = 708.82 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.17 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction SuperNova Single source at offset diffractometer with an Eos detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.563, Tmax = 1.000

  • 2851 measured reflections

  • 2108 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.05

  • 2108 reflections

  • 191 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 572 Friedel pairs

  • Flack parameter: −0.07 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N1 0.93 2.54 3.093 (4) 118

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: OLEX2, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases, i.e., compounds having a double C=N bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton et al., 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydoğan et al., 2001).

The dihedral angle between the C10—C15 benzene and the C1—C9/S1 benzothiophene ring is 53.36 (6)°. The length of the C8=N1 double bond is 1.271 (3) Å, slightly shorter than standard 1.28 Å value of a C=N double bond and consistent with related structures (Ağar et al., 2010; Tecer et al., 2010; Ceylan et al. 2011; Demirtaş et al., 2009).

In the compound, N—O bond distances are 1.218 (4) Å for N2—O1 and N2—O2. The O1—N2—O2 bond angle is 123.4 (3)°. The C1—S1 and C9—S1 bond distances are 1.738 (3) Å and 1.709 (3) Å, respectively. The C—S bond distances are compatible with the literature (Dege et al. 2006; Demirtaş et al., 2009).

Related literature top

For the biological activity of Schiff bases, see: Barton et al. (1979); Ingold (1969); Layer (1963). For industrial applications of Schiff bases, see: Taggi et al. (2002). For chemical properties of Schiff bases, see: Aydoğan et al. (2001). For a related structure, see: Ağar et al. (2010); Ceylan et al. (2011); Dege et al. (2006); Demirtaş et al. (2009); Tecer et al. (2010).

Experimental top

The compound (E)-1-(1-benzothiophen-3-yl)-N-(2-methyl-4-nitrophenyl)methanimine was prepared by refluxing a mixture of a solution containing 1-benzothiophene-3-carbaldehyde (0.0102 g 0.063 mmol) in 20 ml ethanol and a solution containing 2-Methyl-4-nitroaniline (0.0095 g 0.063 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. The crystals of(E)-4-((benzo[b]thiophen-3-ylmethylene)amino)-3-methylbenzoic acid suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield = 63%; m.p: 153–155°C).

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.93 Å and Uiso(H)=1.2Ueq(C) or with C—H = 0.960 Å and 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(E)-3-[(2-Methyl-4-nitrophenyl)iminomethyl]-1-benzothiophene top
Crystal data top
C16H12N2O2SF(000) = 308
Mr = 296.34Dx = 1.388 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ybCell parameters from 1356 reflections
a = 7.6224 (4) Åθ = 3.2–27.7°
b = 7.9139 (4) ŵ = 0.23 mm1
c = 11.7536 (5) ÅT = 296 K
β = 91.341 (4)°Prism, brown
V = 708.82 (6) Å30.17 × 0.15 × 0.12 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova Single source at offset
diffractometer with an Eos detector
2108 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1870 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 16.0454 pixels mm-1θmax = 27.8°, θmin = 3.2°
ω scansh = 49
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 105
Tmin = 0.563, Tmax = 1.000l = 1514
2851 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.1426P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2108 reflectionsΔρmax = 0.15 e Å3
191 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983), 572 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (11)
Crystal data top
C16H12N2O2SV = 708.82 (6) Å3
Mr = 296.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.6224 (4) ŵ = 0.23 mm1
b = 7.9139 (4) ÅT = 296 K
c = 11.7536 (5) Å0.17 × 0.15 × 0.12 mm
β = 91.341 (4)°
Data collection top
Oxford Diffraction SuperNova Single source at offset
diffractometer with an Eos detector
2108 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1870 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 1.000Rint = 0.013
2851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.15 e Å3
S = 1.05Δρmin = 0.14 e Å3
2108 reflectionsAbsolute structure: Flack (1983), 572 Friedel pairs
191 parametersAbsolute structure parameter: 0.07 (11)
1 restraint
Special details top

Experimental. CrysAlis PRO (Oxford Diffraction, 2009)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7745 (4)0.7800 (4)0.3597 (2)0.0487 (7)
C20.9349 (4)0.8478 (4)0.3262 (3)0.0621 (8)
H20.96500.84970.25000.075*
C31.0455 (4)0.9109 (5)0.4081 (3)0.0662 (9)
H31.15290.95610.38760.079*
C40.9999 (4)0.9087 (5)0.5225 (3)0.0591 (8)
H41.07680.95450.57680.071*
C50.8438 (4)0.8401 (4)0.5565 (2)0.0491 (7)
H50.81650.83770.63320.059*
C60.7263 (4)0.7740 (3)0.4744 (2)0.0444 (6)
C70.5540 (3)0.6999 (5)0.4864 (2)0.0488 (6)
C80.4620 (3)0.6719 (4)0.5914 (2)0.0512 (7)
H80.34690.63300.58680.061*
C90.4821 (4)0.6556 (4)0.3838 (2)0.0585 (8)
H90.37080.60830.37590.070*
C100.4313 (3)0.6683 (4)0.7870 (2)0.0497 (7)
C110.2601 (4)0.7284 (4)0.7959 (2)0.0597 (8)
H110.20860.78880.73600.072*
C120.1660 (4)0.6983 (5)0.8939 (2)0.0639 (8)
H120.05160.73730.90040.077*
C130.2467 (4)0.6093 (4)0.9806 (2)0.0603 (9)
C140.4166 (4)0.5529 (5)0.9747 (2)0.0614 (8)
H140.46770.49441.03550.074*
C150.5110 (4)0.5831 (4)0.8783 (2)0.0539 (8)
C160.6974 (4)0.5212 (6)0.8702 (3)0.0789 (11)
H16A0.74640.50450.94530.118*
H16B0.76570.60340.83070.118*
H16C0.69860.41620.82930.118*
N10.5308 (3)0.6980 (4)0.68930 (16)0.0527 (6)
N20.1479 (5)0.5769 (5)1.0843 (3)0.0851 (10)
O10.2209 (5)0.5011 (5)1.1621 (2)0.1246 (13)
O20.0032 (4)0.6264 (5)1.0876 (2)0.1153 (14)
S10.61283 (11)0.69395 (13)0.27057 (6)0.0641 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0627 (17)0.0399 (16)0.0435 (14)0.0049 (13)0.0028 (12)0.0020 (13)
C20.077 (2)0.055 (2)0.0559 (18)0.0021 (18)0.0215 (15)0.0005 (16)
C30.0635 (19)0.060 (2)0.075 (2)0.0075 (17)0.0136 (17)0.0057 (18)
C40.0594 (17)0.057 (2)0.061 (2)0.0096 (16)0.0056 (15)0.0006 (16)
C50.0591 (17)0.0436 (16)0.0445 (15)0.0019 (14)0.0013 (12)0.0024 (14)
C60.0537 (15)0.0366 (15)0.0431 (14)0.0046 (12)0.0027 (11)0.0028 (12)
C70.0583 (15)0.0451 (16)0.0430 (12)0.0049 (15)0.0015 (10)0.0052 (16)
C80.0521 (14)0.0483 (18)0.0533 (15)0.0074 (15)0.0006 (11)0.0051 (16)
C90.0659 (18)0.059 (2)0.0505 (15)0.0105 (16)0.0039 (13)0.0039 (15)
C100.0571 (15)0.0471 (18)0.0447 (13)0.0116 (15)0.0014 (11)0.0015 (14)
C110.0644 (18)0.062 (2)0.0524 (15)0.0003 (16)0.0018 (13)0.0056 (16)
C120.0562 (16)0.071 (2)0.0654 (17)0.002 (2)0.0102 (13)0.013 (2)
C130.074 (2)0.067 (2)0.0397 (15)0.0203 (16)0.0091 (14)0.0096 (15)
C140.077 (2)0.063 (2)0.0440 (16)0.0119 (17)0.0038 (15)0.0017 (15)
C150.0631 (18)0.058 (2)0.0409 (15)0.0080 (14)0.0032 (13)0.0020 (14)
C160.069 (2)0.101 (3)0.067 (2)0.011 (2)0.0075 (17)0.014 (2)
N10.0554 (12)0.0593 (15)0.0433 (11)0.0099 (15)0.0006 (9)0.0055 (15)
N20.100 (2)0.103 (3)0.0538 (18)0.034 (2)0.0222 (17)0.0200 (18)
O10.149 (3)0.169 (4)0.0565 (16)0.017 (3)0.0217 (17)0.029 (2)
O20.096 (2)0.175 (4)0.0766 (17)0.027 (2)0.0362 (15)0.0328 (19)
S10.0847 (5)0.0675 (5)0.0399 (3)0.0104 (5)0.0024 (3)0.0013 (4)
Geometric parameters (Å, º) top
C1—C21.401 (4)C10—C111.395 (4)
C1—C61.406 (3)C10—C151.395 (4)
C1—S11.738 (3)C10—N11.411 (3)
C2—C31.359 (5)C11—C121.391 (4)
C2—H20.9300C11—H110.9300
C3—C41.397 (5)C12—C131.373 (5)
C3—H30.9300C12—H120.9300
C4—C51.376 (4)C13—C141.373 (5)
C4—H40.9300C13—N21.470 (4)
C5—C61.403 (4)C14—C151.377 (4)
C5—H50.9300C14—H140.9300
C6—C71.448 (4)C15—C161.508 (4)
C7—C91.359 (3)C16—H16A0.9600
C7—C81.450 (3)C16—H16B0.9600
C8—N11.271 (3)C16—H16C0.9600
C8—H80.9300N2—O11.218 (4)
C9—S11.709 (3)N2—O21.218 (4)
C9—H90.9300
C2—C1—C6122.1 (3)C11—C10—N1121.7 (3)
C2—C1—S1126.3 (2)C15—C10—N1118.3 (3)
C6—C1—S1111.6 (2)C12—C11—C10120.3 (3)
C3—C2—C1118.3 (3)C12—C11—H11119.8
C3—C2—H2120.9C10—C11—H11119.8
C1—C2—H2120.9C13—C12—C11118.2 (3)
C2—C3—C4120.8 (3)C13—C12—H12120.9
C2—C3—H3119.6C11—C12—H12120.9
C4—C3—H3119.6C12—C13—C14122.4 (3)
C5—C4—C3121.4 (3)C12—C13—N2118.4 (3)
C5—C4—H4119.3C14—C13—N2119.2 (3)
C3—C4—H4119.3C13—C14—C15119.8 (3)
C4—C5—C6119.3 (3)C13—C14—H14120.1
C4—C5—H5120.3C15—C14—H14120.1
C6—C5—H5120.3C14—C15—C10119.3 (3)
C5—C6—C1118.1 (3)C14—C15—C16120.5 (3)
C5—C6—C7130.5 (2)C10—C15—C16120.1 (3)
C1—C6—C7111.4 (2)C15—C16—H16A109.5
C9—C7—C6111.4 (2)C15—C16—H16B109.5
C9—C7—C8121.5 (3)H16A—C16—H16B109.5
C6—C7—C8127.0 (2)C15—C16—H16C109.5
N1—C8—C7123.2 (2)H16A—C16—H16C109.5
N1—C8—H8118.4H16B—C16—H16C109.5
C7—C8—H8118.4C8—N1—C10119.4 (2)
C7—C9—S1114.5 (2)O1—N2—O2123.4 (3)
C7—C9—H9122.7O1—N2—C13118.3 (4)
S1—C9—H9122.7O2—N2—C13118.3 (4)
C11—C10—C15119.9 (2)C9—S1—C191.03 (13)
C6—C1—C2—C30.6 (5)C10—C11—C12—C130.3 (5)
S1—C1—C2—C3179.6 (3)C11—C12—C13—C141.4 (5)
C1—C2—C3—C40.3 (5)C11—C12—C13—N2179.9 (3)
C2—C3—C4—C51.2 (5)C12—C13—C14—C151.0 (5)
C3—C4—C5—C61.3 (5)N2—C13—C14—C15179.7 (3)
C4—C5—C6—C10.3 (4)C13—C14—C15—C101.2 (5)
C4—C5—C6—C7178.2 (3)C13—C14—C15—C16179.7 (3)
C2—C1—C6—C50.6 (4)C11—C10—C15—C142.8 (5)
S1—C1—C6—C5179.6 (2)N1—C10—C15—C14179.9 (3)
C2—C1—C6—C7179.4 (3)C11—C10—C15—C16178.7 (3)
S1—C1—C6—C70.8 (3)N1—C10—C15—C161.6 (5)
C5—C6—C7—C9178.3 (3)C7—C8—N1—C10179.7 (3)
C1—C6—C7—C90.3 (4)C11—C10—N1—C847.3 (5)
C5—C6—C7—C81.9 (5)C15—C10—N1—C8135.7 (3)
C1—C6—C7—C8179.5 (3)C12—C13—N2—O1178.5 (3)
C9—C7—C8—N1173.7 (3)C14—C13—N2—O10.3 (5)
C6—C7—C8—N16.1 (6)C12—C13—N2—O21.9 (5)
C6—C7—C9—S11.3 (4)C14—C13—N2—O2179.3 (3)
C8—C7—C9—S1178.5 (3)C7—C9—S1—C11.5 (3)
C15—C10—C11—C122.4 (5)C2—C1—S1—C9178.9 (3)
N1—C10—C11—C12179.4 (3)C6—C1—S1—C91.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N10.932.543.093 (4)118

Experimental details

Crystal data
Chemical formulaC16H12N2O2S
Mr296.34
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.6224 (4), 7.9139 (4), 11.7536 (5)
β (°) 91.341 (4)
V3)708.82 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction SuperNova Single source at offset
diffractometer with an Eos detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.563, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2851, 2108, 1870
Rint0.013
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.05
No. of reflections2108
No. of parameters191
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14
Absolute structureFlack (1983), 572 Friedel pairs
Absolute structure parameter0.07 (11)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997), OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N10.932.543.093 (4)118.2
 

Acknowledgements

The authors thank Ondokuz Mayis University and the Giresun University Research Fund for financial support of this study.

References

First citationAğar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759–1772.  Google Scholar
First citationAydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2. Oxford: Pergamon.  Google Scholar
First citationCeylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk. J. Chem. 30, 103–108.  CAS Google Scholar
First citationDemirtaş, G., Dege, N., Şekerci, M., Servi, S. & Dinçer, M. (2009). Acta Cryst. E65, o1668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIngold, C. K. (1969). In Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca, New York: Cornell University Press.  Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369–o3370.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds