organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-Meth­­oxy-N-[(5-nitro­thio­phen-2-yl)methyl­­idene]aniline

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayis University, TR-55139 Kurupelit-Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayis University, 55139 Samsun, Turkey, and cDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and, Faculty of Technology, Amasya University, TR-05100 Amasya, Turkey
*Correspondence e-mail: nihal_kan84@windowslive.com

(Received 30 December 2011; accepted 5 January 2012; online 14 January 2012)

The dihedral angle between the benzene and thio­phene rings in the title compound, C12H10N2O3S, is 27.94 (13)°. An inter­molecular C—H⋯π inter­action contributes to the stability of the crystal structure.

Related literature

For the biological properties of Schiff bases, see: Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.]), for their industrial properties, see: Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]) and for their reaction properties, see: Aydoğan et al. (2001[Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]). For related structures, see: Ağar et al. (2010[Ağar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759-1772.]); Tanak et al. (2009[Tanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.]); Ceylan et al. (2011[Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O3S

  • Mr = 262.28

  • Orthorhombic, P 21 21 21

  • a = 6.6825 (6) Å

  • b = 7.7926 (5) Å

  • c = 23.7180 (12) Å

  • V = 1235.09 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.59 × 0.39 × 0.05 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.974, Tmax = 0.974

  • 5645 measured reflections

  • 2599 independent reflections

  • 1799 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.069

  • S = 0.93

  • 2599 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1067 Friedel pairs

  • Flack parameter: −0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg2i 0.93 2.77 3.605 (3) 149
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases, i.e., compounds having a double C=N bond, are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton et al., 1979; Layer, 1963; Ingold 1969). On the industrial scale, they have a wide range of applications, such as dyes and pigments (Taggi et al., 2002). Schiff bases have also been employed as ligands for the complexation of metal ions (Aydoğan et al., 2001).

The molecular structure of the title compound is shown on Fig. 1. The dihedral angle between the C10—C13/S1 nitrothiophene and the C1—C6 phenyl ring is 27.94 (13)°. The deviation from planarity may be due to steric repulsion between the methylene group and phenyl ring. The length of the C5=N2 double bond is 1.266 (3) Å, slightly shorter than standard 1.28 Å value of a C=N double bond and consistent with related structures (Ağar et al., 2010; Tanak et al., 2009; Ceylan et al., 2011).

The crystal structure is stabilized by an intermolecular C—H···π interaction (C10—H10···Cg2). No significant ππ interactions are observed in the crystal structure.

Related literature top

For the biological properties of Schiff bases, see: Barton & Ollis (1979); Layer (1963); Ingold (1969), for their industrial properties, see: Taggi et al. (2002) and for their reaction properties, see: Aydoğan et al. (2001). For related structures, see: Ağar et al. (2010); Tanak et al. (2009); Ceylan et al. (2011).

Experimental top

The compound (Z)—N-(2-methoxyphenyl)-1-(5-nitrothiophen-2-yl)methanimine was prepared by reflux a mixture of a solution containing 5-nitro-2-thiophene-carboxaldehyde (0.0078 g 0.050 mmol) in 20 ml e thanol and a solution containing o-Anisidine (0.0062 g 0.050 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 hunder reflux. The crystals of (Z)—N-(2-methoxyphenyl)-1-(5-nitrothiophen-2-yl)methanimine suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 76; 85–87 °C).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability diplacement ellipsoids.
(Z)-2-Methoxy-N-[(5-nitrothiophen-2-yl)methylidene]aniline top
Crystal data top
C12H10N2O3SF(000) = 544
Mr = 262.28Dx = 1.411 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6785 reflections
a = 6.6825 (6) Åθ = 2.6–27.2°
b = 7.7926 (5) ŵ = 0.26 mm1
c = 23.7180 (12) ÅT = 296 K
V = 1235.09 (15) Å3Plate, yellow
Z = 40.59 × 0.39 × 0.05 mm
Data collection top
Stoe IPDS II
diffractometer
2599 independent reflections
Radiation source: fine-focus sealed tube1799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 2.8°
rotation method scansh = 68
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.974, Tmax = 0.974l = 2929
5645 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0284P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2599 reflectionsΔρmax = 0.12 e Å3
163 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1067 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C12H10N2O3SV = 1235.09 (15) Å3
Mr = 262.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6825 (6) ŵ = 0.26 mm1
b = 7.7926 (5) ÅT = 296 K
c = 23.7180 (12) Å0.59 × 0.39 × 0.05 mm
Data collection top
Stoe IPDS II
diffractometer
2599 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1799 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.974Rint = 0.038
5645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.12 e Å3
S = 0.93Δρmin = 0.21 e Å3
2599 reflectionsAbsolute structure: Flack (1983), 1067 Friedel pairs
163 parametersAbsolute structure parameter: 0.04 (8)
0 restraints
Special details top

Experimental. 108 frames, detector distance = 120 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93052 (10)0.80791 (7)0.16132 (3)0.06181 (17)
O40.4298 (3)0.59180 (17)0.04012 (7)0.0711 (5)
C70.5822 (4)0.2075 (3)0.11420 (10)0.0649 (6)
H70.67800.17490.14050.078*
C110.4265 (4)0.4242 (3)0.05670 (10)0.0572 (5)
C60.5750 (4)0.3765 (3)0.09543 (9)0.0568 (6)
N20.7021 (4)0.5066 (2)0.11656 (8)0.0613 (5)
C11.1502 (4)0.8578 (3)0.19332 (10)0.0561 (6)
O11.3451 (3)1.0633 (2)0.23403 (9)0.0968 (7)
C80.4476 (5)0.0878 (3)0.09384 (11)0.0735 (7)
H80.45460.02550.10600.088*
N11.1877 (4)1.0325 (3)0.20966 (9)0.0695 (6)
C50.8791 (4)0.4701 (3)0.13135 (10)0.0614 (6)
H50.92680.35920.12590.074*
C90.3052 (5)0.1357 (3)0.05614 (12)0.0744 (8)
H90.21470.05460.04280.089*
C41.0087 (3)0.5975 (3)0.15657 (11)0.0562 (6)
O21.0599 (4)1.1402 (2)0.19817 (8)0.0883 (6)
C100.2928 (4)0.3033 (3)0.03729 (10)0.0671 (6)
H100.19440.33430.01150.081*
C31.1934 (4)0.5742 (3)0.17897 (11)0.0675 (7)
H31.25820.46860.17980.081*
C21.2765 (4)0.7248 (3)0.20070 (11)0.0685 (7)
H21.40130.73230.21780.082*
C130.2741 (5)0.6489 (3)0.00482 (13)0.0897 (9)
H13A0.29330.76820.00370.135*
H13B0.14810.63390.02360.135*
H13C0.27480.58370.02950.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0602 (3)0.0558 (3)0.0694 (4)0.0056 (3)0.0122 (4)0.0013 (3)
O40.0705 (11)0.0537 (8)0.0889 (13)0.0040 (9)0.0184 (12)0.0056 (8)
C70.0688 (15)0.0610 (12)0.0650 (14)0.0041 (14)0.0017 (15)0.0057 (12)
C110.0587 (13)0.0531 (11)0.0598 (14)0.0041 (12)0.0017 (14)0.0040 (9)
C60.0613 (14)0.0544 (11)0.0548 (14)0.0042 (12)0.0049 (14)0.0065 (9)
N20.0669 (15)0.0554 (10)0.0615 (12)0.0027 (10)0.0049 (11)0.0060 (9)
C10.0587 (15)0.0552 (12)0.0543 (14)0.0048 (10)0.0054 (12)0.0014 (10)
O10.0939 (17)0.0998 (13)0.0967 (15)0.0252 (12)0.0188 (13)0.0225 (11)
C80.087 (2)0.0523 (12)0.0808 (19)0.0052 (15)0.0142 (18)0.0050 (12)
N10.0762 (16)0.0724 (14)0.0598 (14)0.0166 (13)0.0058 (12)0.0045 (10)
C50.0612 (19)0.0548 (12)0.0681 (16)0.0022 (11)0.0007 (13)0.0027 (11)
C90.0749 (18)0.0668 (15)0.0813 (19)0.0151 (14)0.0057 (18)0.0075 (13)
C40.0531 (14)0.0539 (11)0.0616 (15)0.0036 (9)0.0017 (12)0.0006 (11)
O20.1080 (15)0.0631 (10)0.0937 (14)0.0073 (12)0.0122 (15)0.0038 (9)
C100.0635 (15)0.0672 (14)0.0706 (16)0.0065 (13)0.0015 (14)0.0088 (13)
C30.0599 (17)0.0611 (13)0.0816 (19)0.0080 (13)0.0018 (14)0.0015 (12)
C20.0580 (15)0.0760 (16)0.0714 (16)0.0016 (13)0.0133 (13)0.0070 (13)
C130.081 (2)0.0754 (16)0.112 (2)0.0061 (15)0.0289 (19)0.0128 (15)
Geometric parameters (Å, º) top
S1—C11.698 (2)C8—H80.9300
S1—C41.725 (2)N1—O21.228 (3)
O4—C111.364 (2)C5—C41.447 (3)
O4—C131.408 (3)C5—H50.9300
C7—C81.383 (4)C9—C101.383 (3)
C7—C61.391 (3)C9—H90.9300
C7—H70.9300C4—C31.356 (3)
C11—C101.378 (3)C10—H100.9300
C11—C61.402 (3)C3—C21.397 (3)
C6—N21.414 (3)C3—H30.9300
N2—C51.266 (3)C2—H20.9300
C1—C21.348 (3)C13—H13A0.9600
C1—N11.437 (3)C13—H13B0.9600
O1—N11.224 (3)C13—H13C0.9600
C8—C91.358 (4)
C1—S1—C489.14 (11)C4—C5—H5119.3
C11—O4—C13117.5 (2)C8—C9—C10120.9 (2)
C8—C7—C6120.3 (2)C8—C9—H9119.5
C8—C7—H7119.9C10—C9—H9119.5
C6—C7—H7119.9C3—C4—C5127.9 (2)
O4—C11—C10124.7 (2)C3—C4—S1112.20 (18)
O4—C11—C6115.5 (2)C5—C4—S1119.86 (17)
C10—C11—C6119.8 (2)C11—C10—C9119.9 (2)
C7—C6—C11119.0 (2)C11—C10—H10120.0
C7—C6—N2123.0 (2)C9—C10—H10120.0
C11—C6—N2117.87 (19)C4—C3—C2113.2 (2)
C5—N2—C6119.9 (2)C4—C3—H3123.4
C2—C1—N1125.7 (2)C2—C3—H3123.4
C2—C1—S1115.04 (17)C1—C2—C3110.4 (2)
N1—C1—S1119.23 (18)C1—C2—H2124.8
C9—C8—C7120.0 (2)C3—C2—H2124.8
C9—C8—H8120.0O4—C13—H13A109.5
C7—C8—H8120.0O4—C13—H13B109.5
O1—N1—O2124.6 (2)H13A—C13—H13B109.5
O1—N1—C1117.6 (2)O4—C13—H13C109.5
O2—N1—C1117.8 (2)H13A—C13—H13C109.5
N2—C5—C4121.3 (2)H13B—C13—H13C109.5
N2—C5—H5119.3
C13—O4—C11—C106.3 (4)S1—C1—N1—O22.0 (3)
C13—O4—C11—C6175.0 (2)C6—N2—C5—C4175.9 (2)
C8—C7—C6—C111.5 (4)C7—C8—C9—C100.4 (4)
C8—C7—C6—N2176.9 (2)N2—C5—C4—C3173.5 (3)
O4—C11—C6—C7179.7 (2)N2—C5—C4—S15.6 (3)
C10—C11—C6—C71.0 (3)C1—S1—C4—C30.1 (2)
O4—C11—C6—N24.6 (3)C1—S1—C4—C5179.4 (2)
C10—C11—C6—N2176.7 (2)O4—C11—C10—C9178.8 (2)
C7—C6—N2—C533.7 (4)C6—C11—C10—C90.2 (4)
C11—C6—N2—C5150.8 (2)C8—C9—C10—C110.1 (4)
C4—S1—C1—C20.4 (2)C5—C4—C3—C2179.0 (2)
C4—S1—C1—N1179.1 (2)S1—C4—C3—C20.2 (3)
C6—C7—C8—C91.2 (4)N1—C1—C2—C3178.9 (2)
C2—C1—N1—O12.5 (4)S1—C1—C2—C30.6 (3)
S1—C1—N1—O1178.03 (18)C4—C3—C2—C10.5 (3)
C2—C1—N1—O2177.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg2i0.932.773.605 (3)149
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O3S
Mr262.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.6825 (6), 7.7926 (5), 23.7180 (12)
V3)1235.09 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.59 × 0.39 × 0.05
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.974, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
5645, 2599, 1799
Rint0.038
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.069, 0.93
No. of reflections2599
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.21
Absolute structureFlack (1983), 1067 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg2i0.932.773.605 (3)149
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAğar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759–1772.  Google Scholar
First citationAydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.  Google Scholar
First citationCeylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIngold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.  Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds