organic compounds
(1R,2R,E,E)-N,N′-Bis(4-chlorobenzylidene)cyclohexane-1,2-diamine
aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: k-jadidi@sbu.ac.ir
The title Schiff base ligand, C20H20Cl2N2, was prepared by condensation of commercially available p-chlorobenzaldehyde and (R,R)-1,2-diammoniumcyclohexane mono-(+)-tartrate. The cyclohexane ring adopts a chair conformation. The dihedral angle between the two aromatic rings is 62.52 (8)°. The is stabilized by an intermolecular C—H⋯Cl hydrogen bond.
Related literature
For the crystal structures of some et al. (2011); Glidewell et al. (2005); Saleh Salga et al. (2010). For applications of chiral Schiff base ligands, see: Da Silva et al. (2011); Przybylski et al. (2009); Gupta & Sutar (2008); Dhar & Taploo (1982); Munslow et al. (2001); Gillespie et al. (2002); Kureshy et al. (2001); Takenaka et al. (2002). For the synthesis of the title compound, see: Larrow & Jacobsen (1998); Periasamy et al. (2001).
derived from cyclohexane-1,2-diamine, see: FanExperimental
Crystal data
|
Data collection
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812000724/bt5777sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812000724/bt5777Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812000724/bt5777Isup3.cml
In a 25 ml two-necked round bottom flask with a reflux condenser, (R,R)-1,2-diammoniumcyclohexane mono-(+)-tartrate (2.64 g 10 mmol, 2 eq) and K2CO3 (2.76 g 20 mmol, 2 eq) were dissolved in H2O (3 ml) (Larrow & Jacobsen 1998). The mixture was stirred and heated gently (~50 °C) for 10 min. Then a solution of p-chlorobenzaldehyde (2.8 g 20 mmol, 2 eq) in EtOH (10 ml) was poured in dropping funnel and added dropwise. The reaction mixture was stirred and refluxed for further 2 hrs. The mixture was cooled to room temperature and concentrated in vacuo. The residue was dissolved in CH2Cl2 (10 ml) and washed with saturated sodium bicarbonate (5 ml) and dried over Na2SO4. The organic layer was evaporated to yield crude product. Recrystallization in hot EtOH (7 ml) afford desired compound as colorless needles. 3.47 g, 97% yield, mp. 150 °C (mp 148–150°C), [α]20 D= -308° (c=1, CHCl3) ([α]20 D= -136 (c=1, CHCl3))(Periasamy et al., 2001).
All hydrogen atoms were positioned geometrically and refined as riding atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C20H20Cl2N2 | F(000) = 752 |
Mr = 359.28 | Dx = 1.293 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4973 reflections |
a = 5.5058 (11) Å | θ = 2.3–29.2° |
b = 15.734 (3) Å | µ = 0.36 mm−1 |
c = 21.302 (4) Å | T = 120 K |
V = 1845.4 (6) Å3 | Needle, colorless |
Z = 4 | 0.5 × 0.23 × 0.15 mm |
Stoe IPDS 2T diffractometer | 4065 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.088 |
Graphite monochromator | θmax = 29.2°, θmin = 2.3° |
Detector resolution: 0.15 mm pixels mm-1 | h = −7→7 |
rotation method scans | k = −19→21 |
12920 measured reflections | l = −29→29 |
4973 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.0326P)2 + 0.5925P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max = 0.002 |
S = 1.13 | Δρmax = 0.29 e Å−3 |
4973 reflections | Δρmin = −0.34 e Å−3 |
218 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0059 (11) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 2099 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.11 (7) |
C20H20Cl2N2 | V = 1845.4 (6) Å3 |
Mr = 359.28 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.5058 (11) Å | µ = 0.36 mm−1 |
b = 15.734 (3) Å | T = 120 K |
c = 21.302 (4) Å | 0.5 × 0.23 × 0.15 mm |
Stoe IPDS 2T diffractometer | 4065 reflections with I > 2σ(I) |
12920 measured reflections | Rint = 0.088 |
4973 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.113 | Δρmax = 0.29 e Å−3 |
S = 1.13 | Δρmin = −0.34 e Å−3 |
4973 reflections | Absolute structure: Flack (1983), 2099 Friedel pairs |
218 parameters | Absolute structure parameter: −0.11 (7) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.02567 (12) | 1.06658 (5) | 0.95529 (3) | 0.03732 (17) | |
Cl2 | 1.02450 (16) | 0.61772 (5) | 1.03022 (3) | 0.0446 (2) | |
C9 | 0.5215 (5) | 1.08153 (16) | 0.83309 (11) | 0.0302 (5) | |
H9 | 0.6498 | 1.1182 | 0.8246 | 0.036* | |
N2 | 0.9823 (4) | 0.78245 (13) | 0.73687 (9) | 0.0292 (5) | |
C3 | 1.0135 (5) | 0.91257 (17) | 0.56137 (10) | 0.0316 (5) | |
H3A | 0.9729 | 0.9310 | 0.5192 | 0.038* | |
H3B | 1.1598 | 0.9422 | 0.5742 | 0.038* | |
C18 | 0.9686 (5) | 0.65212 (16) | 0.95383 (11) | 0.0333 (6) | |
N1 | 0.6607 (4) | 0.92267 (14) | 0.71446 (9) | 0.0284 (5) | |
C12 | 0.1355 (5) | 0.97300 (18) | 0.85723 (11) | 0.0293 (5) | |
H12 | 0.0050 | 0.9371 | 0.8655 | 0.035* | |
C8 | 0.4930 (5) | 1.00840 (15) | 0.79711 (10) | 0.0258 (5) | |
C10 | 0.3615 (5) | 1.10062 (18) | 0.88148 (12) | 0.0319 (6) | |
H10 | 0.3825 | 1.1493 | 0.9057 | 0.038* | |
C7 | 0.6765 (5) | 0.98715 (16) | 0.74955 (10) | 0.0256 (5) | |
H7 | 0.8102 | 1.0228 | 0.7451 | 0.031* | |
C14 | 0.8364 (5) | 0.73657 (17) | 0.76733 (12) | 0.0302 (6) | |
H14 | 0.6916 | 0.7206 | 0.7482 | 0.036* | |
C11 | 0.1706 (5) | 1.04590 (17) | 0.89291 (11) | 0.0279 (5) | |
C1 | 0.8652 (5) | 0.90495 (16) | 0.67300 (11) | 0.0269 (5) | |
H1 | 1.0099 | 0.9347 | 0.6884 | 0.032* | |
C15 | 0.8846 (5) | 0.70693 (17) | 0.83196 (12) | 0.0301 (6) | |
C2 | 0.8063 (5) | 0.93512 (19) | 0.60586 (11) | 0.0301 (5) | |
H2A | 0.6575 | 0.9083 | 0.5916 | 0.036* | |
H2B | 0.7814 | 0.9962 | 0.6058 | 0.036* | |
C17 | 1.1362 (6) | 0.70438 (18) | 0.92486 (12) | 0.0339 (6) | |
H17 | 1.2761 | 0.7210 | 0.9460 | 0.041* | |
C13 | 0.2957 (5) | 0.95433 (17) | 0.80948 (11) | 0.0285 (6) | |
H13 | 0.2732 | 0.9057 | 0.7854 | 0.034* | |
C4 | 1.0598 (6) | 0.81726 (19) | 0.56146 (11) | 0.0366 (6) | |
H4A | 1.1963 | 0.8045 | 0.5343 | 0.044* | |
H4B | 0.9183 | 0.7880 | 0.5451 | 0.044* | |
C5 | 1.1139 (6) | 0.78524 (18) | 0.62769 (12) | 0.0349 (6) | |
H5A | 1.1323 | 0.7239 | 0.6268 | 0.042* | |
H5B | 1.2658 | 0.8096 | 0.6421 | 0.042* | |
C6 | 0.9115 (5) | 0.80889 (17) | 0.67350 (11) | 0.0292 (6) | |
H6 | 0.7621 | 0.7792 | 0.6615 | 0.035* | |
C19 | 0.7602 (5) | 0.6264 (2) | 0.92339 (13) | 0.0382 (7) | |
H19 | 0.6486 | 0.5912 | 0.9433 | 0.046* | |
C16 | 1.0941 (5) | 0.73191 (17) | 0.86384 (12) | 0.0328 (6) | |
H16 | 1.2062 | 0.7672 | 0.8441 | 0.039* | |
C20 | 0.7205 (5) | 0.65407 (19) | 0.86231 (13) | 0.0372 (6) | |
H20 | 0.5809 | 0.6368 | 0.8413 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0353 (3) | 0.0513 (4) | 0.0254 (2) | 0.0067 (3) | 0.0022 (3) | −0.0030 (3) |
Cl2 | 0.0633 (5) | 0.0419 (4) | 0.0286 (3) | 0.0112 (4) | 0.0068 (3) | 0.0108 (3) |
C9 | 0.0313 (13) | 0.0296 (12) | 0.0298 (10) | −0.0005 (12) | −0.0019 (11) | −0.0020 (10) |
N2 | 0.0323 (11) | 0.0293 (10) | 0.0260 (9) | −0.0006 (10) | −0.0026 (10) | 0.0040 (8) |
C3 | 0.0306 (13) | 0.0398 (14) | 0.0244 (10) | 0.0026 (12) | 0.0017 (11) | 0.0063 (10) |
C18 | 0.0463 (15) | 0.0281 (12) | 0.0257 (10) | 0.0069 (13) | 0.0033 (12) | 0.0060 (10) |
N1 | 0.0292 (11) | 0.0311 (11) | 0.0248 (9) | 0.0003 (10) | −0.0013 (8) | −0.0026 (9) |
C12 | 0.0284 (13) | 0.0353 (14) | 0.0242 (11) | −0.0005 (12) | −0.0041 (10) | 0.0025 (11) |
C8 | 0.0280 (13) | 0.0271 (12) | 0.0221 (9) | 0.0014 (11) | −0.0050 (10) | 0.0011 (8) |
C10 | 0.0356 (14) | 0.0317 (14) | 0.0283 (11) | 0.0033 (12) | −0.0057 (11) | −0.0058 (10) |
C7 | 0.0286 (12) | 0.0261 (12) | 0.0223 (10) | −0.0007 (10) | −0.0018 (10) | 0.0039 (10) |
C14 | 0.0313 (14) | 0.0307 (14) | 0.0287 (12) | −0.0028 (12) | 0.0007 (11) | 0.0002 (11) |
C11 | 0.0291 (12) | 0.0340 (14) | 0.0206 (10) | 0.0089 (11) | −0.0021 (10) | 0.0017 (10) |
C1 | 0.0267 (12) | 0.0299 (13) | 0.0240 (10) | −0.0016 (11) | 0.0006 (10) | −0.0006 (10) |
C15 | 0.0341 (13) | 0.0268 (13) | 0.0295 (12) | 0.0005 (11) | 0.0025 (11) | 0.0038 (10) |
C2 | 0.0307 (12) | 0.0337 (14) | 0.0259 (11) | 0.0052 (12) | 0.0000 (10) | 0.0050 (11) |
C17 | 0.0394 (15) | 0.0322 (14) | 0.0301 (13) | −0.0022 (13) | −0.0025 (11) | 0.0001 (11) |
C13 | 0.0346 (13) | 0.0285 (13) | 0.0225 (10) | −0.0002 (11) | −0.0058 (10) | 0.0001 (10) |
C4 | 0.0426 (16) | 0.0417 (15) | 0.0253 (11) | 0.0037 (14) | 0.0015 (11) | −0.0037 (11) |
C5 | 0.0404 (16) | 0.0330 (14) | 0.0312 (13) | 0.0088 (13) | 0.0005 (12) | 0.0006 (11) |
C6 | 0.0341 (14) | 0.0299 (13) | 0.0235 (11) | 0.0002 (12) | −0.0031 (10) | 0.0020 (10) |
C19 | 0.0355 (15) | 0.0385 (16) | 0.0405 (14) | −0.0014 (13) | 0.0086 (12) | 0.0122 (13) |
C16 | 0.0362 (15) | 0.0300 (14) | 0.0323 (13) | −0.0047 (12) | 0.0008 (11) | 0.0062 (11) |
C20 | 0.0313 (14) | 0.0388 (16) | 0.0415 (15) | −0.0053 (13) | 0.0012 (12) | 0.0060 (13) |
Cl1—C11 | 1.743 (3) | C14—C15 | 1.478 (4) |
Cl2—C18 | 1.742 (2) | C14—H14 | 0.9300 |
C9—C10 | 1.389 (4) | C1—C6 | 1.533 (4) |
C9—C8 | 1.391 (3) | C1—C2 | 1.541 (3) |
C9—H9 | 0.9300 | C1—H1 | 0.9800 |
N2—C14 | 1.260 (3) | C15—C20 | 1.388 (4) |
N2—C6 | 1.466 (3) | C15—C16 | 1.395 (4) |
C3—C4 | 1.521 (4) | C2—H2A | 0.9700 |
C3—C2 | 1.525 (3) | C2—H2B | 0.9700 |
C3—H3A | 0.9700 | C17—C16 | 1.390 (3) |
C3—H3B | 0.9700 | C17—H17 | 0.9300 |
C18—C19 | 1.379 (4) | C13—H13 | 0.9300 |
C18—C17 | 1.382 (4) | C4—C5 | 1.527 (4) |
N1—C7 | 1.263 (3) | C4—H4A | 0.9700 |
N1—C1 | 1.458 (3) | C4—H4B | 0.9700 |
C12—C13 | 1.378 (4) | C5—C6 | 1.527 (4) |
C12—C11 | 1.389 (4) | C5—H5A | 0.9700 |
C12—H12 | 0.9300 | C5—H5B | 0.9700 |
C8—C13 | 1.404 (4) | C6—H6 | 0.9800 |
C8—C7 | 1.469 (3) | C19—C20 | 1.390 (4) |
C10—C11 | 1.380 (4) | C19—H19 | 0.9300 |
C10—H10 | 0.9300 | C16—H16 | 0.9300 |
C7—H7 | 0.9300 | C20—H20 | 0.9300 |
C10—C9—C8 | 121.1 (3) | C16—C15—C14 | 120.9 (2) |
C10—C9—H9 | 119.5 | C3—C2—C1 | 110.3 (2) |
C8—C9—H9 | 119.5 | C3—C2—H2A | 109.6 |
C14—N2—C6 | 117.9 (2) | C1—C2—H2A | 109.6 |
C4—C3—C2 | 110.7 (2) | C3—C2—H2B | 109.6 |
C4—C3—H3A | 109.5 | C1—C2—H2B | 109.6 |
C2—C3—H3A | 109.5 | H2A—C2—H2B | 108.1 |
C4—C3—H3B | 109.5 | C18—C17—C16 | 119.5 (3) |
C2—C3—H3B | 109.5 | C18—C17—H17 | 120.3 |
H3A—C3—H3B | 108.1 | C16—C17—H17 | 120.3 |
C19—C18—C17 | 121.4 (2) | C12—C13—C8 | 120.3 (2) |
C19—C18—Cl2 | 119.7 (2) | C12—C13—H13 | 119.9 |
C17—C18—Cl2 | 119.0 (2) | C8—C13—H13 | 119.9 |
C7—N1—C1 | 117.3 (2) | C3—C4—C5 | 111.0 (2) |
C13—C12—C11 | 119.4 (3) | C3—C4—H4A | 109.4 |
C13—C12—H12 | 120.3 | C5—C4—H4A | 109.4 |
C11—C12—H12 | 120.3 | C3—C4—H4B | 109.4 |
C9—C8—C13 | 119.0 (2) | C5—C4—H4B | 109.4 |
C9—C8—C7 | 119.4 (2) | H4A—C4—H4B | 108.0 |
C13—C8—C7 | 121.5 (2) | C6—C5—C4 | 111.6 (2) |
C11—C10—C9 | 118.6 (2) | C6—C5—H5A | 109.3 |
C11—C10—H10 | 120.7 | C4—C5—H5A | 109.3 |
C9—C10—H10 | 120.7 | C6—C5—H5B | 109.3 |
N1—C7—C8 | 122.9 (2) | C4—C5—H5B | 109.3 |
N1—C7—H7 | 118.5 | H5A—C5—H5B | 108.0 |
C8—C7—H7 | 118.5 | N2—C6—C5 | 109.0 (2) |
N2—C14—C15 | 123.1 (3) | N2—C6—C1 | 109.3 (2) |
N2—C14—H14 | 118.4 | C5—C6—C1 | 110.9 (2) |
C15—C14—H14 | 118.4 | N2—C6—H6 | 109.2 |
C10—C11—C12 | 121.6 (2) | C5—C6—H6 | 109.2 |
C10—C11—Cl1 | 119.3 (2) | C1—C6—H6 | 109.2 |
C12—C11—Cl1 | 119.0 (2) | C18—C19—C20 | 118.6 (3) |
N1—C1—C6 | 108.2 (2) | C18—C19—H19 | 120.7 |
N1—C1—C2 | 109.9 (2) | C20—C19—H19 | 120.7 |
C6—C1—C2 | 110.2 (2) | C17—C16—C15 | 120.4 (3) |
N1—C1—H1 | 109.5 | C17—C16—H16 | 119.8 |
C6—C1—H1 | 109.5 | C15—C16—H16 | 119.8 |
C2—C1—H1 | 109.5 | C15—C20—C19 | 121.5 (3) |
C20—C15—C16 | 118.7 (2) | C15—C20—H20 | 119.3 |
C20—C15—C14 | 120.4 (3) | C19—C20—H20 | 119.3 |
C10—C9—C8—C13 | 1.3 (4) | C9—C8—C13—C12 | −1.0 (4) |
C10—C9—C8—C7 | −175.4 (2) | C7—C8—C13—C12 | 175.6 (2) |
C8—C9—C10—C11 | −0.7 (4) | C2—C3—C4—C5 | −56.8 (3) |
C1—N1—C7—C8 | −174.9 (2) | C3—C4—C5—C6 | 55.3 (3) |
C9—C8—C7—N1 | −178.8 (2) | C14—N2—C6—C5 | −127.0 (3) |
C13—C8—C7—N1 | 4.6 (4) | C14—N2—C6—C1 | 111.7 (3) |
C6—N2—C14—C15 | −178.9 (2) | C4—C5—C6—N2 | −175.6 (2) |
C9—C10—C11—C12 | −0.2 (4) | C4—C5—C6—C1 | −55.2 (3) |
C9—C10—C11—Cl1 | 177.6 (2) | N1—C1—C6—N2 | −63.4 (3) |
C13—C12—C11—C10 | 0.5 (4) | C2—C1—C6—N2 | 176.4 (2) |
C13—C12—C11—Cl1 | −177.32 (19) | N1—C1—C6—C5 | 176.4 (2) |
C7—N1—C1—C6 | 138.6 (2) | C2—C1—C6—C5 | 56.2 (3) |
C7—N1—C1—C2 | −101.0 (3) | C17—C18—C19—C20 | 0.0 (4) |
N2—C14—C15—C20 | −177.8 (3) | Cl2—C18—C19—C20 | −179.5 (2) |
N2—C14—C15—C16 | 2.7 (4) | C18—C17—C16—C15 | −0.1 (4) |
C4—C3—C2—C1 | 58.1 (3) | C20—C15—C16—C17 | −0.2 (4) |
N1—C1—C2—C3 | −176.9 (2) | C14—C15—C16—C17 | 179.3 (3) |
C6—C1—C2—C3 | −57.8 (3) | C16—C15—C20—C19 | 0.4 (4) |
C19—C18—C17—C16 | 0.2 (4) | C14—C15—C20—C19 | −179.1 (3) |
Cl2—C18—C17—C16 | 179.7 (2) | C18—C19—C20—C15 | −0.3 (4) |
C11—C12—C13—C8 | 0.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cl1i | 0.97 | 2.81 | 3.525 (3) | 131 |
Symmetry code: (i) −x+1/2, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H20Cl2N2 |
Mr | 359.28 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 120 |
a, b, c (Å) | 5.5058 (11), 15.734 (3), 21.302 (4) |
V (Å3) | 1845.4 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.5 × 0.23 × 0.15 |
Data collection | |
Diffractometer | Stoe IPDS 2T diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12920, 4973, 4065 |
Rint | 0.088 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.113, 1.13 |
No. of reflections | 4973 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.34 |
Absolute structure | Flack (1983), 2099 Friedel pairs |
Absolute structure parameter | −0.11 (7) |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cl1i | 0.97 | 2.81 | 3.525 (3) | 130.8 |
Symmetry code: (i) −x+1/2, −y+2, z−1/2. |
Acknowledgements
The authors thank the Vice President of Research Affairs at Shahid Beheshti University, General Campus, for financial support.
References
Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. & De Fátima, Â. (2011). J. Adv. Res. 2, 1–8. CrossRef Google Scholar
Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506. CAS Google Scholar
Fan, P., Ge, C., Zhang, X., Zhang, R. & Li, S. (2011). Acta Cryst. E67, o3399. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gillespie, K. M., Sanders, C. J., O'Shaughnessy, P., Westmoreland, I., Thickitt, C. P. & Scott, P. (2002). J. Org. Chem. 67, 3450–3458. Web of Science CSD CrossRef PubMed CAS Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o1699–o1701. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450. Web of Science CrossRef CAS Google Scholar
Kureshy, R. I., Khan, N. U. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915–2918. Web of Science CrossRef CAS Google Scholar
Larrow, J. F. & Jacobsen, E. N. (1998). Org. Synth. 75, 1–11. CAS Google Scholar
Munslow, I. J., Gillespie, K. M., Deeth, R. J. & Scott, P. (2001). Chem. Commun. pp. 1638–1639. Web of Science CSD CrossRef Google Scholar
Periasamy, M., Srinivas, G. & Suresh, S. (2001). Tetrahedron Lett. 42, 7123–7125. Web of Science CSD CrossRef CAS Google Scholar
Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148. Web of Science CrossRef CAS Google Scholar
Saleh Salga, M., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, o1095. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt,Germany. Google Scholar
Takenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299–8305. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The class of chiral chelating Schiff bases are significant compounds in chemistry so that several reviews have been published on these substances (Da Silva et al., 2011; Przybylski et al., 2009; Gupta and Sutar 2008). Because of their stereochemical structures as well as their industrial properties (Dhar & Taploo, 1982) and potent biological activities (Da Silva et al., 2011; Przybylski et al., 2009) they are very attractive synthetic targets. Furthermore, it should be stressed that these useful and recyclable materials have been widely used in various enantioselective reactions, such as cyclopropanation (Munslow et al., 2001), aziridination (Gillespie et al., 2002), epoxidation (Kureshy et al., 2001), Diels-Alder reaction (Takenaka et al., 2002) as ligands or catalysts.
The asymmetric unit of the title compound which contains one molecule of related Schiff base compound is shown in Fig. 1. The reaction scheme for the synthesis of the title Schiff base is presented in Fig. 2. The bond distances and angles in the title compound are in agreement with related structures (Fan et al., 2011; Glidewell et al., 2005; Saleh Salga et al., 2010). The crystal structure is stabilized by an intermolecular C—H···Cl hydrogen bond (Fig. 3 & Table 1).