organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o407-o408

(1R,2R,E,E)-N,N′-Bis(4-chloro­benzyl­­idene)cyclo­hexane-1,2-di­amine

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: k-jadidi@sbu.ac.ir

(Received 2 January 2012; accepted 7 January 2012; online 14 January 2012)

The title Schiff base ligand, C20H20Cl2N2, was prepared by condensation of commercially available p-chloro­benzalde­hyde and (R,R)-1,2-diammonium­cyclo­hexane mono-(+)-tartrate. The cyclo­hexane ring adopts a chair conformation. The dihedral angle between the two aromatic rings is 62.52 (8)°. The crystal structure is stabilized by an inter­molecular C—H⋯Cl hydrogen bond.

Related literature

For the crystal structures of some Schiff bases derived from cyclo­hexane-1,2-diamine, see: Fan et al. (2011[Fan, P., Ge, C., Zhang, X., Zhang, R. & Li, S. (2011). Acta Cryst. E67, o3399.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o1699-o1701.]); Saleh Salga et al. (2010[Saleh Salga, M., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, o1095.]). For applications of chiral Schiff base ligands, see: Da Silva et al. (2011[Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. & De Fátima, Â. (2011). J. Adv. Res. 2, 1-8.]); Przybylski et al. (2009[Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]); Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]); Dhar & Taploo (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]); Munslow et al. (2001[Munslow, I. J., Gillespie, K. M., Deeth, R. J. & Scott, P. (2001). Chem. Commun. pp. 1638-1639.]); Gillespie et al. (2002[Gillespie, K. M., Sanders, C. J., O'Shaughnessy, P., Westmoreland, I., Thickitt, C. P. & Scott, P. (2002). J. Org. Chem. 67, 3450-3458.]); Kureshy et al. (2001[Kureshy, R. I., Khan, N. U. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915-2918.]); Takenaka et al. (2002[Takenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299-8305.]). For the synthesis of the title compound, see: Larrow & Jacobsen (1998[Larrow, J. F. & Jacobsen, E. N. (1998). Org. Synth. 75, 1-11.]); Periasamy et al. (2001[Periasamy, M., Srinivas, G. & Suresh, S. (2001). Tetrahedron Lett. 42, 7123-7125.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20Cl2N2

  • Mr = 359.28

  • Orthorhombic, P 21 21 21

  • a = 5.5058 (11) Å

  • b = 15.734 (3) Å

  • c = 21.302 (4) Å

  • V = 1845.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 120 K

  • 0.5 × 0.23 × 0.15 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 12920 measured reflections

  • 4973 independent reflections

  • 4065 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.113

  • S = 1.13

  • 4973 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2099 Friedel pairs

  • Flack parameter: −0.11 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl1i 0.97 2.81 3.525 (3) 131
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt,Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt,Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The class of chiral chelating Schiff bases are significant compounds in chemistry so that several reviews have been published on these substances (Da Silva et al., 2011; Przybylski et al., 2009; Gupta and Sutar 2008). Because of their stereochemical structures as well as their industrial properties (Dhar & Taploo, 1982) and potent biological activities (Da Silva et al., 2011; Przybylski et al., 2009) they are very attractive synthetic targets. Furthermore, it should be stressed that these useful and recyclable materials have been widely used in various enantioselective reactions, such as cyclopropanation (Munslow et al., 2001), aziridination (Gillespie et al., 2002), epoxidation (Kureshy et al., 2001), Diels-Alder reaction (Takenaka et al., 2002) as ligands or catalysts.

The asymmetric unit of the title compound which contains one molecule of related Schiff base compound is shown in Fig. 1. The reaction scheme for the synthesis of the title Schiff base is presented in Fig. 2. The bond distances and angles in the title compound are in agreement with related structures (Fan et al., 2011; Glidewell et al., 2005; Saleh Salga et al., 2010). The crystal structure is stabilized by an intermolecular C—H···Cl hydrogen bond (Fig. 3 & Table 1).

Related literature top

For the crystal structures of some Schiff bases derived from cyclohexane-1,2-diamine, see: Fan et al. (2011); Glidewell et al. (2005); Saleh Salga et al. (2010). For applications of chiral Schiff base ligands, see: Da Silva et al. (2011); Przybylski et al. (2009); Gupta & Sutar (2008); Dhar & Taploo (1982); Munslow et al. (2001); Gillespie et al. (2002); Kureshy et al. (2001); Takenaka et al. (2002). For the synthesis of the title compound, see: Larrow & Jacobsen (1998); Periasamy et al. (2001).

Experimental top

In a 25 ml two-necked round bottom flask with a reflux condenser, (R,R)-1,2-diammoniumcyclohexane mono-(+)-tartrate (2.64 g 10 mmol, 2 eq) and K2CO3 (2.76 g 20 mmol, 2 eq) were dissolved in H2O (3 ml) (Larrow & Jacobsen 1998). The mixture was stirred and heated gently (~50 °C) for 10 min. Then a solution of p-chlorobenzaldehyde (2.8 g 20 mmol, 2 eq) in EtOH (10 ml) was poured in dropping funnel and added dropwise. The reaction mixture was stirred and refluxed for further 2 hrs. The mixture was cooled to room temperature and concentrated in vacuo. The residue was dissolved in CH2Cl2 (10 ml) and washed with saturated sodium bicarbonate (5 ml) and dried over Na2SO4. The organic layer was evaporated to yield crude product. Recrystallization in hot EtOH (7 ml) afford desired compound as colorless needles. 3.47 g, 97% yield, mp. 150 °C (mp 148–150°C), [α]20 D= -308° (c=1, CHCl3) ([α]20 D= -136 (c=1, CHCl3))(Periasamy et al., 2001).

Refinement top

All hydrogen atoms were positioned geometrically and refined as riding atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The reaction scheme for the synthesis of the title compound.
[Figure 3] Fig. 3. The intermolecular C—H···Cl hydrogen bonds are shown as blue dashed lines.
(1R,2R,E,E)-N,N'-Bis(4- chlorobenzylidene)cyclohexane-1,2-diamine top
Crystal data top
C20H20Cl2N2F(000) = 752
Mr = 359.28Dx = 1.293 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4973 reflections
a = 5.5058 (11) Åθ = 2.3–29.2°
b = 15.734 (3) ŵ = 0.36 mm1
c = 21.302 (4) ÅT = 120 K
V = 1845.4 (6) Å3Needle, colorless
Z = 40.5 × 0.23 × 0.15 mm
Data collection top
Stoe IPDS 2T
diffractometer
4065 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
Graphite monochromatorθmax = 29.2°, θmin = 2.3°
Detector resolution: 0.15 mm pixels mm-1h = 77
rotation method scansk = 1921
12920 measured reflectionsl = 2929
4973 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.5925P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.002
S = 1.13Δρmax = 0.29 e Å3
4973 reflectionsΔρmin = 0.34 e Å3
218 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0059 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2099 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.11 (7)
Crystal data top
C20H20Cl2N2V = 1845.4 (6) Å3
Mr = 359.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5058 (11) ŵ = 0.36 mm1
b = 15.734 (3) ÅT = 120 K
c = 21.302 (4) Å0.5 × 0.23 × 0.15 mm
Data collection top
Stoe IPDS 2T
diffractometer
4065 reflections with I > 2σ(I)
12920 measured reflectionsRint = 0.088
4973 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.29 e Å3
S = 1.13Δρmin = 0.34 e Å3
4973 reflectionsAbsolute structure: Flack (1983), 2099 Friedel pairs
218 parametersAbsolute structure parameter: 0.11 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02567 (12)1.06658 (5)0.95529 (3)0.03732 (17)
Cl21.02450 (16)0.61772 (5)1.03022 (3)0.0446 (2)
C90.5215 (5)1.08153 (16)0.83309 (11)0.0302 (5)
H90.64981.11820.82460.036*
N20.9823 (4)0.78245 (13)0.73687 (9)0.0292 (5)
C31.0135 (5)0.91257 (17)0.56137 (10)0.0316 (5)
H3A0.97290.93100.51920.038*
H3B1.15980.94220.57420.038*
C180.9686 (5)0.65212 (16)0.95383 (11)0.0333 (6)
N10.6607 (4)0.92267 (14)0.71446 (9)0.0284 (5)
C120.1355 (5)0.97300 (18)0.85723 (11)0.0293 (5)
H120.00500.93710.86550.035*
C80.4930 (5)1.00840 (15)0.79711 (10)0.0258 (5)
C100.3615 (5)1.10062 (18)0.88148 (12)0.0319 (6)
H100.38251.14930.90570.038*
C70.6765 (5)0.98715 (16)0.74955 (10)0.0256 (5)
H70.81021.02280.74510.031*
C140.8364 (5)0.73657 (17)0.76733 (12)0.0302 (6)
H140.69160.72060.74820.036*
C110.1706 (5)1.04590 (17)0.89291 (11)0.0279 (5)
C10.8652 (5)0.90495 (16)0.67300 (11)0.0269 (5)
H11.00990.93470.68840.032*
C150.8846 (5)0.70693 (17)0.83196 (12)0.0301 (6)
C20.8063 (5)0.93512 (19)0.60586 (11)0.0301 (5)
H2A0.65750.90830.59160.036*
H2B0.78140.99620.60580.036*
C171.1362 (6)0.70438 (18)0.92486 (12)0.0339 (6)
H171.27610.72100.94600.041*
C130.2957 (5)0.95433 (17)0.80948 (11)0.0285 (6)
H130.27320.90570.78540.034*
C41.0598 (6)0.81726 (19)0.56146 (11)0.0366 (6)
H4A1.19630.80450.53430.044*
H4B0.91830.78800.54510.044*
C51.1139 (6)0.78524 (18)0.62769 (12)0.0349 (6)
H5A1.13230.72390.62680.042*
H5B1.26580.80960.64210.042*
C60.9115 (5)0.80889 (17)0.67350 (11)0.0292 (6)
H60.76210.77920.66150.035*
C190.7602 (5)0.6264 (2)0.92339 (13)0.0382 (7)
H190.64860.59120.94330.046*
C161.0941 (5)0.73191 (17)0.86384 (12)0.0328 (6)
H161.20620.76720.84410.039*
C200.7205 (5)0.65407 (19)0.86231 (13)0.0372 (6)
H200.58090.63680.84130.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0353 (3)0.0513 (4)0.0254 (2)0.0067 (3)0.0022 (3)0.0030 (3)
Cl20.0633 (5)0.0419 (4)0.0286 (3)0.0112 (4)0.0068 (3)0.0108 (3)
C90.0313 (13)0.0296 (12)0.0298 (10)0.0005 (12)0.0019 (11)0.0020 (10)
N20.0323 (11)0.0293 (10)0.0260 (9)0.0006 (10)0.0026 (10)0.0040 (8)
C30.0306 (13)0.0398 (14)0.0244 (10)0.0026 (12)0.0017 (11)0.0063 (10)
C180.0463 (15)0.0281 (12)0.0257 (10)0.0069 (13)0.0033 (12)0.0060 (10)
N10.0292 (11)0.0311 (11)0.0248 (9)0.0003 (10)0.0013 (8)0.0026 (9)
C120.0284 (13)0.0353 (14)0.0242 (11)0.0005 (12)0.0041 (10)0.0025 (11)
C80.0280 (13)0.0271 (12)0.0221 (9)0.0014 (11)0.0050 (10)0.0011 (8)
C100.0356 (14)0.0317 (14)0.0283 (11)0.0033 (12)0.0057 (11)0.0058 (10)
C70.0286 (12)0.0261 (12)0.0223 (10)0.0007 (10)0.0018 (10)0.0039 (10)
C140.0313 (14)0.0307 (14)0.0287 (12)0.0028 (12)0.0007 (11)0.0002 (11)
C110.0291 (12)0.0340 (14)0.0206 (10)0.0089 (11)0.0021 (10)0.0017 (10)
C10.0267 (12)0.0299 (13)0.0240 (10)0.0016 (11)0.0006 (10)0.0006 (10)
C150.0341 (13)0.0268 (13)0.0295 (12)0.0005 (11)0.0025 (11)0.0038 (10)
C20.0307 (12)0.0337 (14)0.0259 (11)0.0052 (12)0.0000 (10)0.0050 (11)
C170.0394 (15)0.0322 (14)0.0301 (13)0.0022 (13)0.0025 (11)0.0001 (11)
C130.0346 (13)0.0285 (13)0.0225 (10)0.0002 (11)0.0058 (10)0.0001 (10)
C40.0426 (16)0.0417 (15)0.0253 (11)0.0037 (14)0.0015 (11)0.0037 (11)
C50.0404 (16)0.0330 (14)0.0312 (13)0.0088 (13)0.0005 (12)0.0006 (11)
C60.0341 (14)0.0299 (13)0.0235 (11)0.0002 (12)0.0031 (10)0.0020 (10)
C190.0355 (15)0.0385 (16)0.0405 (14)0.0014 (13)0.0086 (12)0.0122 (13)
C160.0362 (15)0.0300 (14)0.0323 (13)0.0047 (12)0.0008 (11)0.0062 (11)
C200.0313 (14)0.0388 (16)0.0415 (15)0.0053 (13)0.0012 (12)0.0060 (13)
Geometric parameters (Å, º) top
Cl1—C111.743 (3)C14—C151.478 (4)
Cl2—C181.742 (2)C14—H140.9300
C9—C101.389 (4)C1—C61.533 (4)
C9—C81.391 (3)C1—C21.541 (3)
C9—H90.9300C1—H10.9800
N2—C141.260 (3)C15—C201.388 (4)
N2—C61.466 (3)C15—C161.395 (4)
C3—C41.521 (4)C2—H2A0.9700
C3—C21.525 (3)C2—H2B0.9700
C3—H3A0.9700C17—C161.390 (3)
C3—H3B0.9700C17—H170.9300
C18—C191.379 (4)C13—H130.9300
C18—C171.382 (4)C4—C51.527 (4)
N1—C71.263 (3)C4—H4A0.9700
N1—C11.458 (3)C4—H4B0.9700
C12—C131.378 (4)C5—C61.527 (4)
C12—C111.389 (4)C5—H5A0.9700
C12—H120.9300C5—H5B0.9700
C8—C131.404 (4)C6—H60.9800
C8—C71.469 (3)C19—C201.390 (4)
C10—C111.380 (4)C19—H190.9300
C10—H100.9300C16—H160.9300
C7—H70.9300C20—H200.9300
C10—C9—C8121.1 (3)C16—C15—C14120.9 (2)
C10—C9—H9119.5C3—C2—C1110.3 (2)
C8—C9—H9119.5C3—C2—H2A109.6
C14—N2—C6117.9 (2)C1—C2—H2A109.6
C4—C3—C2110.7 (2)C3—C2—H2B109.6
C4—C3—H3A109.5C1—C2—H2B109.6
C2—C3—H3A109.5H2A—C2—H2B108.1
C4—C3—H3B109.5C18—C17—C16119.5 (3)
C2—C3—H3B109.5C18—C17—H17120.3
H3A—C3—H3B108.1C16—C17—H17120.3
C19—C18—C17121.4 (2)C12—C13—C8120.3 (2)
C19—C18—Cl2119.7 (2)C12—C13—H13119.9
C17—C18—Cl2119.0 (2)C8—C13—H13119.9
C7—N1—C1117.3 (2)C3—C4—C5111.0 (2)
C13—C12—C11119.4 (3)C3—C4—H4A109.4
C13—C12—H12120.3C5—C4—H4A109.4
C11—C12—H12120.3C3—C4—H4B109.4
C9—C8—C13119.0 (2)C5—C4—H4B109.4
C9—C8—C7119.4 (2)H4A—C4—H4B108.0
C13—C8—C7121.5 (2)C6—C5—C4111.6 (2)
C11—C10—C9118.6 (2)C6—C5—H5A109.3
C11—C10—H10120.7C4—C5—H5A109.3
C9—C10—H10120.7C6—C5—H5B109.3
N1—C7—C8122.9 (2)C4—C5—H5B109.3
N1—C7—H7118.5H5A—C5—H5B108.0
C8—C7—H7118.5N2—C6—C5109.0 (2)
N2—C14—C15123.1 (3)N2—C6—C1109.3 (2)
N2—C14—H14118.4C5—C6—C1110.9 (2)
C15—C14—H14118.4N2—C6—H6109.2
C10—C11—C12121.6 (2)C5—C6—H6109.2
C10—C11—Cl1119.3 (2)C1—C6—H6109.2
C12—C11—Cl1119.0 (2)C18—C19—C20118.6 (3)
N1—C1—C6108.2 (2)C18—C19—H19120.7
N1—C1—C2109.9 (2)C20—C19—H19120.7
C6—C1—C2110.2 (2)C17—C16—C15120.4 (3)
N1—C1—H1109.5C17—C16—H16119.8
C6—C1—H1109.5C15—C16—H16119.8
C2—C1—H1109.5C15—C20—C19121.5 (3)
C20—C15—C16118.7 (2)C15—C20—H20119.3
C20—C15—C14120.4 (3)C19—C20—H20119.3
C10—C9—C8—C131.3 (4)C9—C8—C13—C121.0 (4)
C10—C9—C8—C7175.4 (2)C7—C8—C13—C12175.6 (2)
C8—C9—C10—C110.7 (4)C2—C3—C4—C556.8 (3)
C1—N1—C7—C8174.9 (2)C3—C4—C5—C655.3 (3)
C9—C8—C7—N1178.8 (2)C14—N2—C6—C5127.0 (3)
C13—C8—C7—N14.6 (4)C14—N2—C6—C1111.7 (3)
C6—N2—C14—C15178.9 (2)C4—C5—C6—N2175.6 (2)
C9—C10—C11—C120.2 (4)C4—C5—C6—C155.2 (3)
C9—C10—C11—Cl1177.6 (2)N1—C1—C6—N263.4 (3)
C13—C12—C11—C100.5 (4)C2—C1—C6—N2176.4 (2)
C13—C12—C11—Cl1177.32 (19)N1—C1—C6—C5176.4 (2)
C7—N1—C1—C6138.6 (2)C2—C1—C6—C556.2 (3)
C7—N1—C1—C2101.0 (3)C17—C18—C19—C200.0 (4)
N2—C14—C15—C20177.8 (3)Cl2—C18—C19—C20179.5 (2)
N2—C14—C15—C162.7 (4)C18—C17—C16—C150.1 (4)
C4—C3—C2—C158.1 (3)C20—C15—C16—C170.2 (4)
N1—C1—C2—C3176.9 (2)C14—C15—C16—C17179.3 (3)
C6—C1—C2—C357.8 (3)C16—C15—C20—C190.4 (4)
C19—C18—C17—C160.2 (4)C14—C15—C20—C19179.1 (3)
Cl2—C18—C17—C16179.7 (2)C18—C19—C20—C150.3 (4)
C11—C12—C13—C80.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl1i0.972.813.525 (3)131
Symmetry code: (i) x+1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H20Cl2N2
Mr359.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)5.5058 (11), 15.734 (3), 21.302 (4)
V3)1845.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.5 × 0.23 × 0.15
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12920, 4973, 4065
Rint0.088
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.113, 1.13
No. of reflections4973
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34
Absolute structureFlack (1983), 2099 Friedel pairs
Absolute structure parameter0.11 (7)

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl1i0.972.813.525 (3)130.8
Symmetry code: (i) x+1/2, y+2, z1/2.
 

Acknowledgements

The authors thank the Vice President of Research Affairs at Shahid Beheshti University, General Campus, for financial support.

References

First citationDa Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. & De Fátima, Â. (2011). J. Adv. Res. 2, 1–8.  CrossRef Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationFan, P., Ge, C., Zhang, X., Zhang, R. & Li, S. (2011). Acta Cryst. E67, o3399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGillespie, K. M., Sanders, C. J., O'Shaughnessy, P., Westmoreland, I., Thickitt, C. P. & Scott, P. (2002). J. Org. Chem. 67, 3450–3458.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o1699–o1701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationKureshy, R. I., Khan, N. U. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915–2918.  Web of Science CrossRef CAS Google Scholar
First citationLarrow, J. F. & Jacobsen, E. N. (1998). Org. Synth. 75, 1–11.  CAS Google Scholar
First citationMunslow, I. J., Gillespie, K. M., Deeth, R. J. & Scott, P. (2001). Chem. Commun. pp. 1638–1639.  Web of Science CSD CrossRef Google Scholar
First citationPeriasamy, M., Srinivas, G. & Suresh, S. (2001). Tetrahedron Lett. 42, 7123–7125.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  Web of Science CrossRef CAS Google Scholar
First citationSaleh Salga, M., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, o1095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt,Germany.  Google Scholar
First citationTakenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299–8305.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o407-o408
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds