organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o328-o329

Methyl (2E)-2-[(2,4-dioxo-1,3-thia­zolidin-3-yl)meth­yl]-3-phenyl­prop-2-enoate

aDepartment of Physics, Sri Balaji Chokkalingam Engineering College, Arni, Thiruvannamalai 632 317, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 2 January 2012; accepted 6 January 2012; online 11 January 2012)

In the title compound, C14H13NO4S, the thia­zolidine ring is essentially planar [maximum deviation = 0.010 (2) Å for the carbonyl C atom between the N and S atoms] and is oriented at a dihedral angle of 60.1 (1)° with respect to the benzene ring. In the crystal, mol­ecules are linked into zigzag chains running along the c axis by C—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π inter­actions involving the benzene ring.

Related literature

For the biological activity of thia­zolidine derivatives, see: Chen et al. (2000[Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315.]); Jacop & Kutty (2004[Jacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76-79.]); Kalia et al. (2007[Kalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616-622.]); Vicentini et al. (1998[Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.]); Vigorita et al. (1992[Vigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893-906.]). For resonance effects of acrylate, see: Merlino (1971[Merlino, S. (1971). Acta Cryst. B27, 2491-2492.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544-1546.]). For closely related structures, see: Fun et al. (2009[Fun, H.-K., Goh, J. H., Vinayaka, A. C. & Kalluraya, B. (2009). Acta Cryst. E65, o2094.]); Vijayakumar et al. (2012[Vijayakumar, S., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o156-o157.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4S

  • Mr = 291.31

  • Orthorhombic, P c a 21

  • a = 11.9274 (3) Å

  • b = 15.6064 (6) Å

  • c = 7.2949 (3) Å

  • V = 1357.90 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.26 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 0.956

  • 13845 measured reflections

  • 2948 independent reflections

  • 2576 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.03

  • 2948 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1348 Friedel pairs

  • Flack parameter: 0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.97 2.54 3.379 (2) 145
C9—H9⋯Cgii 0.93 2.81 3.522 (2) 134
C12—H12⋯Cgiii 0.93 2.80 3.541 (2) 137
Symmetry codes: (i) [-x+2, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{3\over 2}}, -y, z]; (iii) [-x+2, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazolidine derivatives exhibit herbicidal (Chen et al., 2000; Vicentini et al., 1998), antineoplastic (Vigorita et al., 1992), hypolipidemic (Jacop & Kutty, 2004) and anti-inflammatory (Kalia et al., 2007) activities. In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The thiazolidine ring (S1/N1/C1–C3) is essentially planar [maximum deviation = 0.010 (2) Å for the C3 atom] and lies at an angle 60.1 (1)° with respect to the benzene ring. The significant difference in length of the C13—O4 = 1.333 (2) Å and C14—O4 = 1.445 (2) Å bonds is attributed to a partial contribution from the O-–C = O+–C resonance structure of the O3C13—O4—C14 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986). The sum of bond angles around N1 (359°) indicates that N1 is in sp2 hybridization. The geometric parameters of the title molecule agrees well with those reported for similar structures (Fun et al., 2009, Vijayakumar et al., 2012).

In the crystal, intermolecular C—H···O hydrogen bonds invoving atoms C2 and O1 link molecules into C(4) chains running along c axis (Fig. 2). The crystal packing is further stabilized by C—H···π interactions, the first one between a benzene H atom and the benzene ring (C7–C12) of an adjacent molecule, with a C9—H9···Cgii seperation of 2.81 Å and the second one between a benzene H atom and the benzene ring (C7–C12) of a neighbouring molecule, with a C12—H12···Cgiii seperation of 2.80 Å ( Table 1 and Fig. 3; Cg is the centroid of the C7–C12 benzene ring , symmetry code as in Fig. 3).

Related literature top

For the biological activity of thiazolidine derivatives, see: Chen et al. (2000); Jacop & Kutty (2004); Kalia et al. (2007); Vicentini et al. (1998); Vigorita et al. (1992). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For closely related structures, see: Fun et al. (2009); Vijayakumar et al. (2012).

Experimental top

A solution of thiazolidine-2,4-dione (1 mmol, 0.117 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, methyl (2Z)-methyl-2 -(bromomethyl)-3-phenylprop-2-enoate (1 mmol, 0.254 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. Ethyl acetate (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.285 g, 98% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating C(4) chains along c axis. [Symmetry code: (i)2-x, 1-y, -1/2+z; (iv) x, y, -1+z; (v)2-x, 1-y, -3/2+z; (vi)x, y, -2+z; (vii)2-x, 1-y, -5/2+z].
[Figure 3] Fig. 3. A view of the C—H···π interactions, in the molecular structure of the title compound. Cg is the centroid of the (C7–C12) benzene ring. [Symmetry code: (ii) 3/2-x, y, 1/2+z; (iii) 2-x, -y, -1/2+z.]
Methyl (2E)-2-[(2,4-dioxo-1,3-thiazolidin-3-yl)methyl]-3- phenylprop-2-enoate top
Crystal data top
C14H13NO4SF(000) = 608
Mr = 291.31Dx = 1.425 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2955 reflections
a = 11.9274 (3) Åθ = 1.3–26.9°
b = 15.6064 (6) ŵ = 0.25 mm1
c = 7.2949 (3) ÅT = 293 K
V = 1357.90 (8) Å3Block, colourless
Z = 40.26 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2948 independent reflections
Radiation source: fine-focus sealed tube2576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.2°
ω scansh = 915
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1919
Tmin = 0.937, Tmax = 0.956l = 99
13845 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.0813P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2948 reflectionsΔρmax = 0.12 e Å3
182 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1348 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C14H13NO4SV = 1357.90 (8) Å3
Mr = 291.31Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.9274 (3) ŵ = 0.25 mm1
b = 15.6064 (6) ÅT = 293 K
c = 7.2949 (3) Å0.26 × 0.22 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2948 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2576 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.956Rint = 0.026
13845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.12 e Å3
S = 1.03Δρmin = 0.22 e Å3
2948 reflectionsAbsolute structure: Flack (1983), 1348 Friedel pairs
182 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88283 (12)0.42078 (11)0.3591 (3)0.0453 (4)
C20.88406 (18)0.46494 (13)0.1782 (3)0.0656 (6)
H2A0.94630.50490.17250.079*
H2B0.81500.49670.16090.079*
C30.89926 (13)0.30148 (13)0.1635 (3)0.0476 (4)
C40.90014 (12)0.27637 (10)0.4973 (3)0.0414 (3)
H4A0.84440.23150.48540.050*
H4B0.88270.30880.60710.050*
C51.01448 (11)0.23548 (9)0.5200 (2)0.0358 (3)
C61.02982 (13)0.15517 (9)0.5761 (2)0.0371 (3)
H61.10430.13770.58050.044*
C70.94821 (12)0.08968 (10)0.6322 (2)0.0351 (3)
C80.84781 (14)0.10827 (10)0.7234 (2)0.0415 (4)
H80.82960.16480.75080.050*
C90.77608 (14)0.04342 (11)0.7725 (2)0.0474 (4)
H90.70920.05640.83190.057*
C100.80204 (15)0.04058 (11)0.7348 (3)0.0501 (4)
H100.75250.08400.76720.060*
C110.90151 (15)0.06013 (11)0.6491 (3)0.0492 (4)
H110.91950.11700.62460.059*
C120.97448 (14)0.00418 (10)0.5993 (2)0.0421 (4)
H121.04210.00970.54310.050*
C131.11324 (12)0.29123 (10)0.4825 (2)0.0396 (3)
C141.31055 (14)0.30026 (12)0.4659 (3)0.0592 (5)
H14A1.30180.33850.36380.089*
H14B1.37370.26340.44480.089*
H14C1.32280.33300.57560.089*
N10.89204 (9)0.33305 (8)0.3393 (2)0.0387 (3)
O10.87429 (10)0.45658 (8)0.5042 (2)0.0606 (3)
O20.90570 (11)0.22625 (10)0.1267 (2)0.0704 (4)
O31.10784 (9)0.36635 (7)0.4537 (2)0.0627 (4)
O41.21042 (8)0.24908 (7)0.4864 (2)0.0562 (3)
S10.89843 (4)0.38495 (4)0.00251 (8)0.07068 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0282 (7)0.0397 (8)0.0680 (12)0.0004 (6)0.0036 (8)0.0022 (9)
C20.0571 (11)0.0562 (12)0.0834 (16)0.0031 (9)0.0105 (10)0.0271 (11)
C30.0327 (8)0.0616 (11)0.0484 (10)0.0003 (7)0.0045 (7)0.0026 (9)
C40.0379 (8)0.0397 (8)0.0467 (9)0.0014 (6)0.0036 (7)0.0044 (8)
C50.0328 (7)0.0388 (7)0.0359 (7)0.0008 (5)0.0004 (6)0.0030 (6)
C60.0333 (7)0.0420 (8)0.0360 (7)0.0000 (6)0.0017 (6)0.0004 (6)
C70.0354 (7)0.0388 (8)0.0312 (7)0.0002 (6)0.0038 (6)0.0016 (6)
C80.0456 (9)0.0414 (8)0.0376 (8)0.0038 (6)0.0035 (7)0.0025 (7)
C90.0416 (9)0.0605 (10)0.0401 (9)0.0026 (7)0.0059 (8)0.0073 (7)
C100.0526 (9)0.0543 (10)0.0434 (9)0.0163 (8)0.0092 (8)0.0097 (8)
C110.0621 (11)0.0373 (8)0.0482 (10)0.0015 (7)0.0080 (9)0.0020 (7)
C120.0442 (9)0.0401 (8)0.0419 (9)0.0055 (7)0.0023 (7)0.0022 (7)
C130.0374 (7)0.0409 (8)0.0405 (8)0.0027 (6)0.0025 (7)0.0052 (7)
C140.0339 (8)0.0728 (11)0.0709 (14)0.0108 (8)0.0018 (9)0.0034 (11)
N10.0350 (6)0.0353 (7)0.0457 (8)0.0001 (5)0.0021 (6)0.0020 (6)
O10.0543 (7)0.0463 (7)0.0811 (10)0.0042 (5)0.0015 (8)0.0153 (8)
O20.0777 (10)0.0645 (9)0.0690 (10)0.0068 (7)0.0084 (8)0.0233 (8)
O30.0443 (7)0.0381 (6)0.1056 (13)0.0058 (5)0.0005 (7)0.0012 (7)
O40.0319 (5)0.0495 (6)0.0873 (9)0.0023 (4)0.0024 (6)0.0087 (7)
S10.0586 (3)0.1007 (4)0.0527 (3)0.0051 (2)0.0039 (3)0.0233 (3)
Geometric parameters (Å, º) top
C1—O11.202 (3)C7—C121.392 (2)
C1—N11.381 (2)C7—C81.400 (2)
C1—C21.489 (3)C8—C91.373 (2)
C2—S11.797 (3)C8—H80.9300
C2—H2A0.9700C9—C101.375 (2)
C2—H2B0.9700C9—H90.9300
C3—O21.207 (2)C10—C111.375 (3)
C3—N11.376 (2)C10—H100.9300
C3—S11.754 (2)C11—C121.377 (3)
C4—N11.456 (2)C11—H110.9300
C4—C51.515 (2)C12—H120.9300
C4—H4A0.9700C13—O31.1928 (19)
C4—H4B0.9700C13—O41.3330 (18)
C5—C61.331 (2)C14—O41.4445 (18)
C5—C131.490 (2)C14—H14A0.9600
C6—C71.470 (2)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
O1—C1—N1124.04 (18)C9—C8—H8119.9
O1—C1—C2124.52 (16)C7—C8—H8119.9
N1—C1—C2111.44 (18)C8—C9—C10120.69 (16)
C1—C2—S1108.14 (13)C8—C9—H9119.7
C1—C2—H2A110.1C10—C9—H9119.7
S1—C2—H2A110.1C9—C10—C11119.78 (15)
C1—C2—H2B110.1C9—C10—H10120.1
S1—C2—H2B110.1C11—C10—H10120.1
H2A—C2—H2B108.4C10—C11—C12120.23 (16)
O2—C3—N1124.05 (18)C10—C11—H11119.9
O2—C3—S1124.99 (16)C12—C11—H11119.9
N1—C3—S1110.95 (14)C11—C12—C7120.73 (16)
N1—C4—C5113.71 (13)C11—C12—H12119.6
N1—C4—H4A108.8C7—C12—H12119.6
C5—C4—H4A108.8O3—C13—O4122.40 (13)
N1—C4—H4B108.8O3—C13—C5124.31 (13)
C5—C4—H4B108.8O4—C13—C5113.29 (13)
H4A—C4—H4B107.7O4—C14—H14A109.5
C6—C5—C13119.85 (13)O4—C14—H14B109.5
C6—C5—C4123.64 (13)H14A—C14—H14B109.5
C13—C5—C4116.47 (12)O4—C14—H14C109.5
C5—C6—C7130.50 (15)H14A—C14—H14C109.5
C5—C6—H6114.8H14B—C14—H14C109.5
C7—C6—H6114.8C3—N1—C1117.22 (16)
C12—C7—C8118.24 (14)C3—N1—C4121.05 (13)
C12—C7—C6118.01 (14)C1—N1—C4121.65 (16)
C8—C7—C6123.69 (14)C13—O4—C14116.35 (12)
C9—C8—C7120.28 (15)C3—S1—C292.23 (10)
O1—C1—C2—S1179.94 (13)C6—C5—C13—O48.7 (2)
N1—C1—C2—S10.45 (17)C4—C5—C13—O4173.45 (16)
N1—C4—C5—C6142.14 (16)O2—C3—N1—C1178.70 (15)
N1—C4—C5—C1340.1 (2)S1—C3—N1—C11.56 (16)
C13—C5—C6—C7175.87 (15)O2—C3—N1—C44.6 (2)
C4—C5—C6—C71.8 (3)S1—C3—N1—C4175.10 (10)
C5—C6—C7—C12149.04 (17)O1—C1—N1—C3178.90 (14)
C5—C6—C7—C833.6 (3)C2—C1—N1—C30.71 (18)
C12—C7—C8—C92.2 (2)O1—C1—N1—C44.5 (2)
C6—C7—C8—C9179.56 (15)C2—C1—N1—C4175.93 (14)
C7—C8—C9—C100.7 (3)C5—C4—N1—C366.50 (18)
C8—C9—C10—C110.8 (3)C5—C4—N1—C1110.01 (16)
C9—C10—C11—C120.7 (3)O3—C13—O4—C144.0 (3)
C10—C11—C12—C71.0 (3)C5—C13—O4—C14175.17 (15)
C8—C7—C12—C112.4 (2)O2—C3—S1—C2178.77 (16)
C6—C7—C12—C11179.87 (15)N1—C3—S1—C21.50 (13)
C6—C5—C13—O3170.43 (18)C1—C2—S1—C31.09 (14)
C4—C5—C13—O37.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.543.379 (2)145
C9—H9···Cgii0.932.813.522 (2)134
C12—H12···Cgiii0.932.803.541 (2)137
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+3/2, y, z; (iii) x+2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO4S
Mr291.31
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)11.9274 (3), 15.6064 (6), 7.2949 (3)
V3)1357.90 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.937, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
13845, 2948, 2576
Rint0.026
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.03
No. of reflections2948
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.22
Absolute structureFlack (1983), 1348 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.543.379 (2)144.8
C9—H9···Cgii0.932.813.522 (2)134.0
C12—H12···Cgiii0.932.803.541 (2)137.0
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+3/2, y, z; (iii) x+2, y, z1/2.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Vinayaka, A. C. & Kalluraya, B. (2009). Acta Cryst. E65, o2094.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76–79.  Google Scholar
First citationKalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616–622.  CAS Google Scholar
First citationMerlino, S. (1971). Acta Cryst. B27, 2491–2492.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.  CrossRef CAS Google Scholar
First citationVigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893–906.  PubMed CAS Web of Science Google Scholar
First citationVijayakumar, S., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o156–o157.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o328-o329
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds