organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o418-o419

Methyl (2Z)-2-({N-[2-(hy­dr­oxy­meth­yl)phen­yl]-4-methyl­benzene­sulfonamido}­meth­yl)-3-phenyl­prop-2-enoate

aDepartment of Physics, Ranipettai Engineering College, Thenkadapathangal, Walaja 632 513, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 2 January 2012; accepted 9 January 2012; online 14 January 2012)

In the title compound, C25H25NO5S, the O atom of the hy­droxy group is disordered over two positions, with occupancies of 0.820 (2) and 0.180 (2). The sulfonyl-bound benzene ring forms dihedral angles of 31.8 (1) and 60.7 (1)°, respectively, with the hy­droxy­methyl­benzene and phenyl rings. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(8) ring motif. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For resonance effects of acrylate, see: Merlino (1971[Merlino, S. (1971). Acta Cryst. B27, 2491-2492.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544-1546.]). For related structures, see: Madhanraj et al. (2011[Madhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, o3511.]); Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H25NO5S

  • Mr = 451.52

  • Triclinic, [P \overline 1]

  • a = 7.9528 (3) Å

  • b = 9.5396 (3) Å

  • c = 15.3299 (5) Å

  • α = 88.253 (2)°

  • β = 83.571 (1)°

  • γ = 76.215 (2)°

  • V = 1122.42 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.971

  • 25861 measured reflections

  • 7132 independent reflections

  • 5255 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.05

  • 7132 reflections

  • 297 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C18–C23 and C8–C13 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2 0.82 2.23 2.958 (2) 147
C9—H9⋯Cg1 0.93 2.80 3.545 (2) 138
C5—H5⋯O4i 0.93 2.54 3.429 (2) 160
C14—H14C⋯O2ii 0.96 2.55 3.359 (2) 143
C12—H12⋯Cg1iii 0.93 2.72 3.506 (2) 143
C20—H20⋯Cg2iv 0.93 2.92 3.593 (2) 130
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) x, y+1, z; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988, Mandell & Sande, 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The O1 atom of the hydroxyl group is disordered over two positions with occupancies 0.820 (2):0.180 (2). The S1 atom shows a distorted tetrahedral geometry, with O2—S1—O3[120.0 (1)°] and N1—S1—C8[108.6 (1)°] angles deviating from ideal tetrahedral values. The significant difference in length of the C24—O5 = 1.329 (2) Å and C25—O5 = 1.442 (2) Å bonds is attributed to a partial contribution from the O-–C = O+–C resonance structure of the O4C24—O5—C25 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986). The sum of bond angles around N1 (346°) indicates that N1 is in sp2 hybridization. The sulfonyl-bound benzene (C8–C13) ring forms dihedral angles of 31.8 (1)° and 60.7 (1)°, respectively, with the hydroxymethyl benzene (C1–C6) and benzene (C18–C23) rings. The dihedral angle between hydroxymethyl benzene and benzene rings is 41.2 (1)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Madhanraj et al., 2011, Aziz-ur-Rehman et al., 2010).

The molecule is stabilized by an intramolecular O1A-H1A···O2 hydrogen bond generating an S(8) ring motif (Bernstein et al., 1995) and an intramolecular C-H···π interaction between a sulfonyl–bound benzene H atom and a benzene (C18–C23) ring with a C9—H9···Cg1 seperation of 2.80 Å (Table 1; Cg1 is the centroid of the C18–C23 benzene ring). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The molecules at x, y, z and 1-x, 1-y, 1-z are linked by C5—H5···O4 hydrogen bonds into cyclic centrosymmetric R22(18) dimers (Fig. 2). These dimers are linked by C14—H14C···O2 hydrogen bonds forming supramolecular tapes running along the [100] directions (Fig. 3). The crystal packing is further stabilized by C—H···π interactions, the first one between a sulfonyl–bound benzene H atom and the benzene ring (C18–C23) of an adjacent molecule, with a C12—H12···Cg1iii seperation of 2.72 Å and the second one between a benzene H atom and the benzene ring (C8–C13) of a neighbouring molecule, with a C20—H20···Cg2iv seperation of 2.92 Å ( Table 1 and Fig. 4; Cg1 and Cg2 are the centroids of the (C18–C23) benzene and (C8–C13) benzene rings, respectively. symmetry code as in Fig. 3).

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For related structures, see: Madhanraj et al. (2011); Aziz-ur-Rehman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of N-(2-(hydroxymethyl)phenyl)-(4-methylbenzene)sulfonamide (1 mmol, 0.277 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, (z)-methyl-2-(bromomethyl)-3-phenylprop-2-enoate (1.2 mmol, 0.304 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitile was evaporated. ETOAc (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100-200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.435 g, 96% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

Atom O1 is disordered over two positions (O1A/O1B) with refined occpancies of 0.820 (2) and 0.180 (2). The C—O distances of the disordered hydroxyl group were restrained to 1.40 Å. All the H atoms were positioned geometrically, (C–H = 0.93–0.97 Å and O—H = 0.82 Å) constrained to ride on their parent atom, with Uiso(H) =1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms are presented as a small spheres of arbitrary radius. The disordered component is shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating R22(18) centrosymmetric dimer. [Symmetry code: (i) 1-x, 1-y, 1-z].
[Figure 3] Fig. 3. Supramolecular tape formation in (I) whereby centrosymmetrc R22(18) dimeric aggregates sustained by C—H···O (magenta dashed lines) contacts are linked via C—H···O contacts (cyan dashed lines) along [1 0 0].
[Figure 4] Fig. 4. A view of the C—H···π interactions, in the crystal structure of the title compound. Cg1 and Cg2 are the centroids of the (C18–C23) benzene and (C8–C13) benzene rings, respectively. [Symmetry code: (iii) x, 1+y, z; (iv) -x, 1-y, -z.]
Methyl (2Z)-2-({N-[2-(hydroxymethyl)phenyl]-4- methylbenzenesulfonamido}methyl)-3-phenylprop-2-enoate top
Crystal data top
C25H25NO5SZ = 2
Mr = 451.52F(000) = 476
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9528 (3) ÅCell parameters from 7307 reflections
b = 9.5396 (3) Åθ = 1.3–31.3°
c = 15.3299 (5) ŵ = 0.18 mm1
α = 88.253 (2)°T = 293 K
β = 83.571 (1)°Block, colourless
γ = 76.215 (2)°0.23 × 0.21 × 0.16 mm
V = 1122.42 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7132 independent reflections
Radiation source: fine-focus sealed tube5255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 31.3°, θmin = 1.3°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.959, Tmax = 0.971l = 2122
25861 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.1756P]
where P = (Fo2 + 2Fc2)/3
7132 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C25H25NO5Sγ = 76.215 (2)°
Mr = 451.52V = 1122.42 (7) Å3
Triclinic, P1Z = 2
a = 7.9528 (3) ÅMo Kα radiation
b = 9.5396 (3) ŵ = 0.18 mm1
c = 15.3299 (5) ÅT = 293 K
α = 88.253 (2)°0.23 × 0.21 × 0.16 mm
β = 83.571 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7132 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5255 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.971Rint = 0.027
25861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
7132 reflectionsΔρmin = 0.31 e Å3
297 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.20025 (16)0.58467 (13)0.36181 (8)0.0327 (2)
C20.03176 (18)0.65951 (14)0.39145 (9)0.0401 (3)
H20.06290.63630.36990.048*
C30.0045 (2)0.76791 (16)0.45268 (10)0.0511 (4)
H30.10820.81750.47250.061*
C40.1448 (3)0.80219 (17)0.48427 (11)0.0575 (4)
H40.12710.87620.52480.069*
C50.3121 (2)0.72685 (16)0.45592 (10)0.0515 (4)
H50.40560.75070.47830.062*
C60.34408 (18)0.61594 (14)0.39460 (9)0.0393 (3)
C80.04825 (17)0.61769 (13)0.16515 (8)0.0343 (3)
C90.05349 (19)0.55105 (14)0.12048 (9)0.0410 (3)
H90.01600.45360.10640.049*
C100.2116 (2)0.63118 (16)0.09707 (10)0.0469 (3)
H100.28010.58670.06720.056*
C110.26927 (19)0.77612 (15)0.11741 (10)0.0443 (3)
C120.1653 (2)0.84054 (14)0.16182 (10)0.0460 (3)
H120.20290.93800.17580.055*
C130.0071 (2)0.76351 (14)0.18575 (9)0.0423 (3)
H130.06150.80850.21520.051*
C140.4407 (2)0.8624 (2)0.09128 (14)0.0681 (5)
H14A0.44800.84510.03060.102*
H14B0.44930.96320.09970.102*
H14C0.53430.83380.12680.102*
C150.11357 (16)0.36554 (12)0.31857 (8)0.0339 (2)
H15A0.01520.39080.28430.041*
H15B0.06830.37360.38010.041*
C160.20914 (16)0.21190 (13)0.29938 (8)0.0350 (3)
C170.16244 (17)0.12583 (14)0.24467 (9)0.0393 (3)
H170.23240.03280.23780.047*
C180.01129 (17)0.16300 (13)0.19390 (9)0.0364 (3)
C190.0349 (2)0.14001 (16)0.10405 (10)0.0459 (3)
H190.14520.09790.07680.055*
C200.1044 (2)0.17926 (17)0.05454 (10)0.0530 (4)
H200.08700.16550.00590.064*
C210.2684 (2)0.23862 (17)0.09474 (11)0.0528 (4)
H210.36160.26610.06130.063*
C220.29490 (19)0.25740 (16)0.18413 (11)0.0482 (3)
H220.40650.29480.21140.058*
C230.15595 (18)0.22084 (15)0.23353 (9)0.0403 (3)
H230.17440.23500.29390.048*
C240.36113 (17)0.15603 (14)0.34979 (9)0.0385 (3)
C250.6052 (2)0.03467 (18)0.36773 (12)0.0552 (4)
H25A0.69030.02230.36040.083*
H25B0.65680.13030.34590.083*
H25C0.56480.03970.42890.083*
N10.22546 (13)0.47007 (10)0.29838 (7)0.0317 (2)
O20.36596 (14)0.61308 (12)0.18924 (7)0.0517 (3)
O30.29601 (13)0.38840 (11)0.14434 (6)0.0463 (2)
O40.39010 (15)0.21719 (12)0.41165 (8)0.0565 (3)
O50.46033 (14)0.03080 (11)0.31967 (7)0.0522 (3)
S10.24992 (4)0.51837 (3)0.19400 (2)0.03568 (9)
C70.52803 (19)0.53288 (18)0.36886 (11)0.0509 (4)
H7A0.58500.50670.42170.061*0.820 (2)
H7B0.52480.44410.34050.061*0.820 (2)
H7C0.53700.43330.38700.061*0.180 (2)
H7D0.54880.53370.30530.061*0.180 (2)
O1A0.62756 (19)0.60607 (18)0.31313 (10)0.0630 (4)0.820 (2)
H1A0.58170.62740.26770.095*0.820 (2)
O1B0.6587 (8)0.5806 (8)0.4002 (4)0.0630 (4)0.180 (2)
H1B0.69160.53130.44260.095*0.180 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (6)0.0318 (5)0.0329 (6)0.0103 (5)0.0073 (5)0.0012 (4)
C20.0375 (7)0.0411 (7)0.0410 (7)0.0077 (5)0.0050 (5)0.0004 (5)
C30.0522 (9)0.0453 (7)0.0490 (8)0.0005 (7)0.0006 (7)0.0060 (6)
C40.0780 (12)0.0469 (8)0.0479 (9)0.0131 (8)0.0075 (8)0.0130 (7)
C50.0619 (10)0.0499 (8)0.0506 (8)0.0235 (7)0.0166 (7)0.0052 (6)
C60.0404 (7)0.0410 (6)0.0412 (7)0.0157 (6)0.0117 (5)0.0007 (5)
C80.0372 (6)0.0345 (6)0.0325 (6)0.0101 (5)0.0069 (5)0.0034 (5)
C90.0461 (7)0.0339 (6)0.0444 (7)0.0090 (5)0.0124 (6)0.0010 (5)
C100.0471 (8)0.0449 (7)0.0533 (8)0.0144 (6)0.0185 (6)0.0033 (6)
C110.0422 (7)0.0425 (7)0.0469 (8)0.0079 (6)0.0077 (6)0.0134 (6)
C120.0571 (9)0.0318 (6)0.0468 (8)0.0062 (6)0.0066 (6)0.0045 (5)
C130.0543 (8)0.0351 (6)0.0408 (7)0.0139 (6)0.0114 (6)0.0013 (5)
C140.0516 (10)0.0588 (10)0.0901 (14)0.0034 (8)0.0194 (9)0.0235 (9)
C150.0310 (6)0.0329 (6)0.0398 (6)0.0107 (5)0.0060 (5)0.0000 (5)
C160.0316 (6)0.0341 (6)0.0408 (6)0.0093 (5)0.0079 (5)0.0025 (5)
C170.0337 (6)0.0343 (6)0.0502 (8)0.0065 (5)0.0083 (5)0.0041 (5)
C180.0352 (6)0.0316 (6)0.0449 (7)0.0099 (5)0.0096 (5)0.0053 (5)
C190.0446 (8)0.0464 (7)0.0468 (8)0.0111 (6)0.0021 (6)0.0097 (6)
C200.0671 (10)0.0552 (8)0.0417 (8)0.0198 (8)0.0144 (7)0.0038 (6)
C210.0543 (9)0.0470 (8)0.0627 (10)0.0127 (7)0.0288 (8)0.0006 (7)
C220.0341 (7)0.0471 (7)0.0645 (9)0.0079 (6)0.0120 (6)0.0089 (7)
C230.0368 (7)0.0434 (7)0.0430 (7)0.0122 (5)0.0061 (5)0.0076 (5)
C240.0355 (6)0.0372 (6)0.0448 (7)0.0107 (5)0.0099 (5)0.0052 (5)
C250.0428 (8)0.0558 (9)0.0626 (10)0.0017 (7)0.0180 (7)0.0089 (7)
N10.0315 (5)0.0334 (5)0.0332 (5)0.0115 (4)0.0074 (4)0.0002 (4)
O20.0446 (6)0.0671 (7)0.0514 (6)0.0299 (5)0.0065 (5)0.0116 (5)
O30.0406 (5)0.0528 (6)0.0407 (5)0.0009 (4)0.0032 (4)0.0082 (4)
O40.0584 (7)0.0547 (6)0.0587 (7)0.0063 (5)0.0291 (5)0.0066 (5)
O50.0452 (6)0.0466 (5)0.0611 (7)0.0038 (5)0.0211 (5)0.0034 (5)
S10.03119 (16)0.04236 (17)0.03454 (16)0.01077 (12)0.00391 (11)0.00105 (12)
C70.0365 (7)0.0594 (9)0.0609 (9)0.0160 (7)0.0129 (6)0.0015 (7)
O1A0.0481 (8)0.0859 (10)0.0618 (9)0.0297 (7)0.0067 (6)0.0066 (8)
O1B0.0481 (8)0.0859 (10)0.0618 (9)0.0297 (7)0.0067 (6)0.0066 (8)
Geometric parameters (Å, º) top
C1—C21.3926 (18)C16—C241.4897 (17)
C1—C61.3966 (17)C17—C181.4717 (18)
C1—N11.4484 (15)C17—H170.9300
C2—C31.380 (2)C18—C191.3863 (19)
C2—H20.9300C18—C231.3900 (19)
C3—C41.375 (2)C19—C201.385 (2)
C3—H30.9300C19—H190.9300
C4—C51.381 (2)C20—C211.375 (2)
C4—H40.9300C20—H200.9300
C5—C61.395 (2)C21—C221.374 (2)
C5—H50.9300C21—H210.9300
C6—C71.504 (2)C22—C231.3799 (19)
C8—C91.3869 (18)C22—H220.9300
C8—C131.3901 (18)C23—H230.9300
C8—S11.7535 (13)C24—O41.1998 (17)
C9—C101.3859 (19)C24—O51.3288 (16)
C9—H90.9300C25—O51.4419 (17)
C10—C111.383 (2)C25—H25A0.9600
C10—H100.9300C25—H25B0.9600
C11—C121.385 (2)C25—H25C0.9600
C11—C141.505 (2)N1—S11.6548 (10)
C12—C131.379 (2)O2—S11.4323 (10)
C12—H120.9300O3—S11.4247 (10)
C13—H130.9300C7—O1B1.367 (4)
C14—H14A0.9600C7—O1A1.385 (2)
C14—H14B0.9600C7—H7A0.9700
C14—H14C0.9600C7—H7B0.9700
C15—N11.4915 (15)C7—H7C0.9700
C15—C161.5025 (17)C7—H7D0.9700
C15—H15A0.9700O1A—H7D1.0542
C15—H15B0.9700O1A—H1A0.8200
C16—C171.3315 (18)O1B—H1B0.8200
C2—C1—C6120.74 (12)C20—C19—H19119.8
C2—C1—N1119.33 (11)C18—C19—H19119.8
C6—C1—N1119.89 (11)C21—C20—C19120.00 (14)
C3—C2—C1120.35 (13)C21—C20—H20120.0
C3—C2—H2119.8C19—C20—H20120.0
C1—C2—H2119.8C22—C21—C20120.15 (14)
C4—C3—C2119.66 (14)C22—C21—H21119.9
C4—C3—H3120.2C20—C21—H21119.9
C2—C3—H3120.2C21—C22—C23120.04 (14)
C3—C4—C5120.15 (14)C21—C22—H22120.0
C3—C4—H4119.9C23—C22—H22120.0
C5—C4—H4119.9C22—C23—C18120.64 (13)
C4—C5—C6121.63 (15)C22—C23—H23119.7
C4—C5—H5119.2C18—C23—H23119.7
C6—C5—H5119.2O4—C24—O5123.50 (12)
C5—C6—C1117.44 (13)O4—C24—C16123.47 (12)
C5—C6—C7119.57 (13)O5—C24—C16113.03 (11)
C1—C6—C7122.96 (12)O5—C25—H25A109.5
C9—C8—C13120.41 (12)O5—C25—H25B109.5
C9—C8—S1119.85 (10)H25A—C25—H25B109.5
C13—C8—S1119.73 (10)O5—C25—H25C109.5
C10—C9—C8119.29 (12)H25A—C25—H25C109.5
C10—C9—H9120.4H25B—C25—H25C109.5
C8—C9—H9120.4C1—N1—C15115.15 (10)
C11—C10—C9121.12 (13)C1—N1—S1115.85 (8)
C11—C10—H10119.4C15—N1—S1115.24 (8)
C9—C10—H10119.4C24—O5—C25116.57 (12)
C10—C11—C12118.59 (13)O3—S1—O2119.99 (7)
C10—C11—C14120.71 (14)O3—S1—N1106.47 (6)
C12—C11—C14120.69 (14)O2—S1—N1105.76 (6)
C13—C12—C11121.53 (13)O3—S1—C8107.61 (6)
C13—C12—H12119.2O2—S1—C8107.99 (6)
C11—C12—H12119.2N1—S1—C8108.60 (6)
C12—C13—C8119.05 (13)O1B—C7—O1A60.6 (3)
C12—C13—H13120.5O1B—C7—C6117.5 (3)
C8—C13—H13120.5O1A—C7—C6114.78 (14)
C11—C14—H14A109.5O1B—C7—H7A49.6
C11—C14—H14B109.5O1A—C7—H7A108.6
H14A—C14—H14B109.5C6—C7—H7A108.6
C11—C14—H14C109.5O1B—C7—H7B132.9
H14A—C14—H14C109.5O1A—C7—H7B108.6
H14B—C14—H14C109.5C6—C7—H7B108.6
N1—C15—C16112.99 (10)H7A—C7—H7B107.5
N1—C15—H15A109.0O1B—C7—H7C108.7
C16—C15—H15A109.0O1A—C7—H7C135.8
N1—C15—H15B109.0C6—C7—H7C108.0
C16—C15—H15B109.0H7A—C7—H7C65.9
H15A—C15—H15B107.8H7B—C7—H7C44.2
C17—C16—C24120.28 (12)O1B—C7—H7D107.1
C17—C16—C15124.55 (11)O1A—C7—H7D49.4
C24—C16—C15115.12 (11)C6—C7—H7D107.9
C16—C17—C18126.57 (12)H7A—C7—H7D143.1
C16—C17—H17116.7H7B—C7—H7D64.9
C18—C17—H17116.7H7C—C7—H7D107.2
C19—C18—C23118.62 (12)C7—O1A—H7D44.3
C19—C18—C17119.55 (12)C7—O1A—H1A109.5
C23—C18—C17121.83 (12)H7D—O1A—H1A71.9
C20—C19—C18120.50 (14)C7—O1B—H1B109.5
C6—C1—C2—C31.2 (2)C21—C22—C23—C180.9 (2)
N1—C1—C2—C3179.20 (12)C19—C18—C23—C221.3 (2)
C1—C2—C3—C40.2 (2)C17—C18—C23—C22178.71 (13)
C2—C3—C4—C51.1 (3)C17—C16—C24—O4165.13 (15)
C3—C4—C5—C60.6 (3)C15—C16—C24—O412.34 (19)
C4—C5—C6—C10.8 (2)C17—C16—C24—O514.26 (19)
C4—C5—C6—C7177.31 (15)C15—C16—C24—O5168.28 (11)
C2—C1—C6—C51.67 (19)C2—C1—N1—C1546.81 (15)
N1—C1—C6—C5179.64 (12)C6—C1—N1—C15131.19 (12)
C2—C1—C6—C7176.36 (13)C2—C1—N1—S191.87 (12)
N1—C1—C6—C71.61 (19)C6—C1—N1—S190.13 (12)
C13—C8—C9—C100.4 (2)C16—C15—N1—C1139.33 (11)
S1—C8—C9—C10179.19 (11)C16—C15—N1—S181.74 (11)
C8—C9—C10—C110.1 (2)O4—C24—O5—C252.6 (2)
C9—C10—C11—C120.1 (2)C16—C24—O5—C25176.78 (12)
C9—C10—C11—C14179.67 (15)C1—N1—S1—O3172.29 (8)
C10—C11—C12—C130.0 (2)C15—N1—S1—O349.07 (10)
C14—C11—C12—C13179.51 (15)C1—N1—S1—O243.60 (10)
C11—C12—C13—C80.4 (2)C15—N1—S1—O2177.76 (8)
C9—C8—C13—C120.6 (2)C1—N1—S1—C872.09 (10)
S1—C8—C13—C12179.34 (11)C15—N1—S1—C866.55 (9)
N1—C15—C16—C17122.13 (14)C9—C8—S1—O315.29 (13)
N1—C15—C16—C2460.53 (14)C13—C8—S1—O3163.49 (11)
C24—C16—C17—C18176.84 (13)C9—C8—S1—O2146.17 (11)
C15—C16—C17—C180.4 (2)C13—C8—S1—O232.61 (13)
C16—C17—C18—C19127.54 (16)C9—C8—S1—N199.59 (12)
C16—C17—C18—C2352.5 (2)C13—C8—S1—N181.63 (12)
C23—C18—C19—C202.5 (2)C5—C6—C7—O1B6.8 (4)
C17—C18—C19—C20177.55 (13)C1—C6—C7—O1B175.2 (4)
C18—C19—C20—C211.4 (2)C5—C6—C7—O1A75.15 (19)
C19—C20—C21—C220.8 (2)C1—C6—C7—O1A106.87 (16)
C20—C21—C22—C232.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O20.822.232.958 (2)147
C9—H9···Cg10.932.803.545 (2)138
C5—H5···O4i0.932.543.429 (2)160
C14—H14C···O2ii0.962.553.359 (2)143
C12—H12···Cg1iii0.932.723.506 (2)143
C20—H20···Cg2iv0.932.923.593 (2)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H25NO5S
Mr451.52
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9528 (3), 9.5396 (3), 15.3299 (5)
α, β, γ (°)88.253 (2), 83.571 (1), 76.215 (2)
V3)1122.42 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.23 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
25861, 7132, 5255
Rint0.027
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.05
No. of reflections7132
No. of parameters297
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C18–C23 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O20.822.232.958 (2)147.0
C9—H9···Cg10.932.803.545 (2)138.0
C5—H5···O4i0.932.543.429 (2)159.6
C14—H14C···O2ii0.962.553.359 (2)142.5
C12—H12···Cg1iii0.932.723.506 (2)143.0
C20—H20···Cg2iv0.932.923.593 (2)130.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMadhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2011). Acta Cryst. E67, o3511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.  Google Scholar
First citationMerlino, S. (1971). Acta Cryst. B27, 2491–2492.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o418-o419
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds