metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,3-Di-2-pyridyl­pyrazine-κ2N2,N3)bis­­(thio­cyanato-κS)palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 9 January 2012; accepted 9 January 2012; online 14 January 2012)

The PdII ion in the title complex, [Pd(NCS)2(C14H10N4)], is four-coordinated in a distorted square-planar environment by the two pyridine N atoms of the chelating 2,3-di-2-pyridyl­pyrazine (dpp) ligand and two S atoms from two thio­cyanate anions. The pyridine rings are considerably inclined to the least-squares plane of the PdS2N2 unit [maximum deviation = 0.027 (1) Å], making dihedral angles of 70.3 (2) and 69.2 (1)°. The pyrazine ring is almost perpendicular to the PdS2N2 plane, with a dihedral angle of 86.3 (1)°. The thio­cyanate ligands are located on opposite sides of the PdS2N2 unit plane and are almost linear [N—C—S angles = 177.8 (6) and 178.9 (6)°]. The complex mol­ecules are stacked in columns along the b axis and are connected by inter­molecular C—H⋯N hydrogen bonds, forming chains along the a axis.

Related literature

For related crystal structures of [PdX2(dpp)] (X = Cl, Br or I), see: Ha (2011a[Ha, K. (2011a). Acta Cryst. E67, m1615.],b[Ha, K. (2011b). Acta Cryst. E67, m1896.],c[Ha, K. (2011c). Acta Cryst. E67, m1626.]). For related Pt and Pd complexes, see: Granifo et al. (2000[Granifo, J., Vargas, M. E., Garland, M. T. & Baggio, R. (2000). Inorg. Chim. Acta, 305, 143-150.]); Cai et al. (2009[Cai, X., Donzello, M. P., Viola, E., Rizzoli, C., Ercolani, C. & Kadish, K. M. (2009). Inorg. Chem. 48, 7086-7098.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(NCS)2(C14H10N4)]

  • Mr = 456.82

  • Monoclinic, P 21 /c

  • a = 15.8236 (11) Å

  • b = 13.5901 (9) Å

  • c = 7.9189 (6) Å

  • β = 102.960 (1)°

  • V = 1659.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 200 K

  • 0.27 × 0.25 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.835, Tmax = 1.000

  • 10174 measured reflections

  • 3247 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.100

  • S = 1.00

  • 3247 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N3 2.059 (4)
Pd1—N4 2.039 (5)
Pd1—S1 2.3090 (17)
Pd1—S2 2.3045 (15)
N4—Pd1—N3 86.73 (16)
S2—Pd1—S1 82.78 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N2i 0.95 2.54 3.306 (7) 138
C14—H14⋯N5ii 0.95 2.49 3.277 (8) 140
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [Pd(SCN)2(dpp)] (dpp = 2,3-di-2-pyridylpyrazine, C14H10N4), is isomorphous with the previously reported analogous halogen complexes [PdX2(dpp)] (X = Cl, Br or I) (Ha, 2011a,b,c). The PdII ion is four-coordinated in a distorted square-planar environment by the two pyridine N atoms of the chelating dpp ligand and two S atoms from two thiocyanate anions (Fig. 1). The coordination mode of the dpp ligand is similar to that found in the mononuclear Pt(II) and Pd(II) complexes [PtCl2(dpq)] (dpq = 2,3-di-2-pyridylquinoxaline) (Granifo et al., 2000) and [MCl2(dcdpp)] (M = Pt, Pd; dcdpp = 2,3-dicyano-5,6-di-2-pyridylpyrazine) (Cai et al., 2009).

In the crystal, the pyridine rings are considerably inclined to the least-squares plane of the PdS2N2 unit [maximum deviation = 0.027 (1) Å], making dihedral angles of 70.3 (2)° and 69.2 (1)°. The nearly planar pyrazine ring [maximum deviation = 0.013 (4) Å] is almost perpendicular to the unit plane with a dihedral angle of 86.3 (1)°. The dihedral angle between the two pyridine rings is 76.8 (2)°. The thiocyanato ligands are located on opposite sides of the PdS2N2 unit plane and are almost linear with the bond angles of <S1—C15—N5 = 177.8 (6)° and <S2—C16—N6 = 178.9 (6)°. The Pd—N and Pd—S bond lengths are nearly equivalent, respectively (Table 1). The complex molecules are stacked in columns along the b axis and are connected by intermolecular C—H···N hydrogen bonds, forming chains along the a axis (Fig.2 and Table 2). In the columns, numerous inter- and intramolecular π-π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 4.061 (3) Å.

Related literature top

For related crystal structures of [PdX2(dpp)] (X = Cl, Br or I), see: Ha (2011a,b,c). For related Pt and Pd complexes, see: Granifo et al. (2000); Cai et al. (2009).

Experimental top

To a suspension of Na2PdCl4 (0.1475 g, 0.501 mmol) and KSCN (0.5456 g, 5.614 mmol) in MeOH (30 ml) was added 2,3-di-2-pyridylpyrazine (0.1176 g, 0.502 mmol), and stirred for 24 h at room temperature. After removal of the formed brown precipitate by filtration, the solvent of the filtrate was evaporated. The residue was washed with H2O, and dried at 50 °C, to give a yellow powder (0.2119 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (0.89 e Å-3) and the deepest hole (-0.66 e Å-3) in the difference Fourier map are located 1.05 Å and 0.99 Å from the atoms S1 and Pd1, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level and the atom numbering.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
(2,3-Di-2-pyridylpyrazine-κ2N2,N3)bis(thiocyanato- κS)palladium(II) top
Crystal data top
[Pd(NCS)2(C14H10N4)]F(000) = 904
Mr = 456.82Dx = 1.828 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2951 reflections
a = 15.8236 (11) Åθ = 2.6–25.6°
b = 13.5901 (9) ŵ = 1.38 mm1
c = 7.9189 (6) ÅT = 200 K
β = 102.960 (1)°Plate, yellow
V = 1659.5 (2) Å30.27 × 0.25 × 0.13 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3247 independent reflections
Radiation source: fine-focus sealed tube2248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1919
Tmin = 0.835, Tmax = 1.000k = 1614
10174 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0351P)2]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Pd(NCS)2(C14H10N4)]V = 1659.5 (2) Å3
Mr = 456.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.8236 (11) ŵ = 1.38 mm1
b = 13.5901 (9) ÅT = 200 K
c = 7.9189 (6) Å0.27 × 0.25 × 0.13 mm
β = 102.960 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3247 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2248 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 1.000Rint = 0.071
10174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.00Δρmax = 0.89 e Å3
3247 reflectionsΔρmin = 0.66 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.19166 (3)0.47138 (3)0.53401 (6)0.02445 (15)
S10.11316 (10)0.43246 (12)0.2597 (2)0.0379 (4)
S20.23273 (12)0.30866 (11)0.5347 (2)0.0455 (5)
N10.3412 (3)0.7055 (3)0.3986 (6)0.0299 (12)
N20.4466 (3)0.5833 (3)0.6359 (6)0.0298 (11)
N30.1593 (3)0.6182 (3)0.5309 (5)0.0229 (10)
N40.2666 (3)0.4960 (3)0.7755 (6)0.0236 (11)
N50.0358 (3)0.5536 (4)0.2015 (7)0.0434 (14)
N60.3992 (4)0.3047 (4)0.7615 (8)0.0519 (16)
C10.3097 (3)0.6576 (4)0.5210 (7)0.0237 (13)
C20.3637 (3)0.5968 (4)0.6413 (7)0.0249 (13)
C30.4761 (4)0.6298 (4)0.5124 (8)0.0330 (15)
H30.53500.62150.50630.040*
C40.4231 (4)0.6892 (4)0.3940 (8)0.0317 (14)
H40.44590.71970.30580.038*
C50.2195 (3)0.6873 (4)0.5241 (7)0.0230 (13)
C60.1985 (4)0.7861 (4)0.5149 (8)0.0323 (14)
H60.24100.83380.50510.039*
C70.1161 (4)0.8153 (4)0.5200 (8)0.0328 (15)
H70.10130.88320.51380.039*
C80.0551 (4)0.7456 (4)0.5339 (8)0.0331 (14)
H80.00200.76450.53990.040*
C90.0785 (4)0.6479 (4)0.5391 (7)0.0256 (13)
H90.03650.59950.54870.031*
C100.3414 (3)0.5479 (3)0.7954 (7)0.0218 (12)
C110.3978 (4)0.5543 (4)0.9550 (7)0.0298 (14)
H110.44940.59210.96810.036*
C120.3797 (4)0.5061 (4)1.0957 (8)0.0308 (14)
H120.41900.50861.20560.037*
C130.3029 (4)0.4541 (4)1.0736 (8)0.0323 (14)
H130.28840.42061.16840.039*
C140.2480 (4)0.4517 (4)0.9131 (8)0.0292 (14)
H140.19470.41710.89920.035*
C150.0257 (4)0.5056 (4)0.2271 (8)0.0326 (14)
C160.3312 (5)0.3072 (4)0.6693 (9)0.0371 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0243 (3)0.0191 (2)0.0282 (3)0.00066 (18)0.00218 (18)0.00024 (19)
S10.0347 (10)0.0434 (10)0.0325 (10)0.0005 (7)0.0006 (8)0.0074 (7)
S20.0538 (12)0.0205 (8)0.0555 (12)0.0066 (7)0.0018 (9)0.0058 (7)
N10.029 (3)0.028 (3)0.034 (3)0.002 (2)0.009 (2)0.004 (2)
N20.026 (3)0.028 (3)0.036 (3)0.003 (2)0.008 (2)0.002 (2)
N30.027 (3)0.022 (2)0.020 (3)0.0008 (19)0.005 (2)0.0022 (19)
N40.022 (3)0.022 (2)0.027 (3)0.0048 (18)0.006 (2)0.0001 (19)
N50.028 (3)0.052 (4)0.046 (4)0.001 (3)0.002 (3)0.004 (3)
N60.039 (4)0.052 (4)0.065 (5)0.016 (3)0.013 (3)0.009 (3)
C10.021 (3)0.019 (3)0.029 (3)0.004 (2)0.002 (3)0.007 (2)
C20.025 (3)0.020 (3)0.027 (3)0.002 (2)0.000 (3)0.004 (2)
C30.029 (4)0.032 (3)0.042 (4)0.003 (3)0.014 (3)0.004 (3)
C40.033 (4)0.024 (3)0.040 (4)0.003 (3)0.011 (3)0.002 (3)
C50.024 (3)0.025 (3)0.017 (3)0.001 (2)0.001 (3)0.001 (2)
C60.033 (4)0.028 (3)0.032 (4)0.000 (3)0.000 (3)0.000 (3)
C70.043 (4)0.019 (3)0.037 (4)0.009 (3)0.010 (3)0.002 (3)
C80.026 (3)0.034 (3)0.037 (4)0.009 (3)0.003 (3)0.001 (3)
C90.029 (3)0.028 (3)0.019 (3)0.004 (2)0.004 (3)0.001 (2)
C100.016 (3)0.018 (3)0.029 (3)0.005 (2)0.001 (2)0.001 (2)
C110.027 (3)0.027 (3)0.034 (4)0.006 (2)0.004 (3)0.002 (3)
C120.029 (4)0.026 (3)0.032 (4)0.011 (3)0.004 (3)0.001 (3)
C130.043 (4)0.025 (3)0.029 (4)0.014 (3)0.008 (3)0.008 (3)
C140.023 (3)0.029 (3)0.037 (4)0.003 (2)0.010 (3)0.002 (3)
C150.034 (4)0.041 (4)0.021 (3)0.014 (3)0.002 (3)0.003 (3)
C160.047 (4)0.021 (3)0.049 (5)0.006 (3)0.022 (4)0.006 (3)
Geometric parameters (Å, º) top
Pd1—N32.059 (4)C3—C41.372 (8)
Pd1—N42.039 (5)C3—H30.9500
Pd1—S12.3090 (17)C4—H40.9500
Pd1—S22.3045 (15)C5—C61.382 (7)
S1—C151.677 (7)C6—C71.371 (7)
S2—C161.679 (7)C6—H60.9500
N1—C41.324 (7)C7—C81.374 (8)
N1—C11.352 (7)C7—H70.9500
N2—C31.333 (7)C8—C91.377 (7)
N2—C21.336 (6)C8—H80.9500
N3—C51.347 (6)C9—H90.9500
N3—C91.356 (6)C10—C111.378 (7)
N4—C141.334 (7)C11—C121.377 (8)
N4—C101.356 (6)C11—H110.9500
N5—C151.151 (7)C12—C131.383 (8)
N6—C161.157 (8)C12—H120.9500
C1—C21.398 (7)C13—C141.369 (8)
C1—C51.488 (7)C13—H130.9500
C2—C101.499 (7)C14—H140.9500
N4—Pd1—N386.73 (16)C6—C5—C1118.9 (5)
N4—Pd1—S292.92 (12)C7—C6—C5120.0 (5)
N3—Pd1—S2177.82 (13)C7—C6—H6120.0
N4—Pd1—S1175.50 (12)C5—C6—H6120.0
N3—Pd1—S197.51 (13)C6—C7—C8119.4 (5)
S2—Pd1—S182.78 (6)C6—C7—H7120.3
C15—S1—Pd1105.1 (2)C8—C7—H7120.3
C16—S2—Pd1103.5 (2)C7—C8—C9118.6 (5)
C4—N1—C1117.4 (5)C7—C8—H8120.7
C3—N2—C2117.8 (5)C9—C8—H8120.7
C5—N3—C9118.5 (4)N3—C9—C8122.4 (5)
C5—N3—Pd1120.0 (4)N3—C9—H9118.8
C9—N3—Pd1121.5 (3)C8—C9—H9118.8
C14—N4—C10119.1 (5)N4—C10—C11120.6 (5)
C14—N4—Pd1120.2 (4)N4—C10—C2119.7 (5)
C10—N4—Pd1120.2 (4)C11—C10—C2119.8 (5)
N1—C1—C2120.4 (5)C12—C11—C10120.2 (5)
N1—C1—C5113.0 (5)C12—C11—H11119.9
C2—C1—C5126.2 (5)C10—C11—H11119.9
N2—C2—C1120.9 (5)C11—C12—C13118.5 (6)
N2—C2—C10112.2 (5)C11—C12—H12120.8
C1—C2—C10126.7 (5)C13—C12—H12120.8
N2—C3—C4121.3 (5)C14—C13—C12119.1 (5)
N2—C3—H3119.4C14—C13—H13120.4
C4—C3—H3119.4C12—C13—H13120.4
N1—C4—C3122.1 (5)N4—C14—C13122.4 (5)
N1—C4—H4118.9N4—C14—H14118.8
C3—C4—H4118.9C13—C14—H14118.8
N3—C5—C6121.0 (5)N5—C15—S1177.8 (6)
N3—C5—C1120.1 (5)N6—C16—S2178.9 (6)
N3—Pd1—S1—C1532.7 (2)N1—C1—C5—N3133.2 (5)
S2—Pd1—S1—C15149.5 (2)C2—C1—C5—N354.5 (8)
N4—Pd1—S2—C1626.8 (3)N1—C1—C5—C644.9 (7)
S1—Pd1—S2—C16151.9 (2)C2—C1—C5—C6127.3 (6)
N4—Pd1—N3—C568.5 (4)N3—C5—C6—C72.8 (8)
S1—Pd1—N3—C5110.0 (4)C1—C5—C6—C7179.1 (5)
N4—Pd1—N3—C9110.1 (4)C5—C6—C7—C80.1 (9)
S1—Pd1—N3—C971.4 (4)C6—C7—C8—C91.2 (9)
N3—Pd1—N4—C14115.9 (4)C5—N3—C9—C82.6 (8)
S2—Pd1—N4—C1466.3 (4)Pd1—N3—C9—C8178.8 (4)
N3—Pd1—N4—C1072.1 (4)C7—C8—C9—N30.0 (8)
S2—Pd1—N4—C10105.8 (4)C14—N4—C10—C110.4 (7)
C4—N1—C1—C22.5 (8)Pd1—N4—C10—C11171.7 (4)
C4—N1—C1—C5175.3 (5)C14—N4—C10—C2179.1 (4)
C3—N2—C2—C10.0 (8)Pd1—N4—C10—C27.0 (6)
C3—N2—C2—C10174.9 (5)N2—C2—C10—N4135.8 (5)
N1—C1—C2—N21.2 (8)C1—C2—C10—N449.7 (7)
C5—C1—C2—N2173.0 (5)N2—C2—C10—C1142.9 (6)
N1—C1—C2—C10172.9 (5)C1—C2—C10—C11131.6 (6)
C5—C1—C2—C101.2 (9)N4—C10—C11—C121.5 (7)
C2—N2—C3—C40.3 (8)C2—C10—C11—C12177.2 (5)
C1—N1—C4—C32.8 (8)C10—C11—C12—C131.9 (8)
N2—C3—C4—N11.7 (9)C11—C12—C13—C140.5 (8)
C9—N3—C5—C64.0 (8)C10—N4—C14—C131.9 (7)
Pd1—N3—C5—C6177.4 (4)Pd1—N4—C14—C13170.2 (4)
C9—N3—C5—C1177.9 (5)C12—C13—C14—N41.4 (8)
Pd1—N3—C5—C10.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.952.543.306 (7)138
C14—H14···N5ii0.952.493.277 (8)140
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pd(NCS)2(C14H10N4)]
Mr456.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.8236 (11), 13.5901 (9), 7.9189 (6)
β (°) 102.960 (1)
V3)1659.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.27 × 0.25 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.835, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10174, 3247, 2248
Rint0.071
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.100, 1.00
No. of reflections3247
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.66

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N32.059 (4)Pd1—S12.3090 (17)
Pd1—N42.039 (5)Pd1—S22.3045 (15)
N4—Pd1—N386.73 (16)S2—Pd1—S182.78 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.952.543.306 (7)137.7
C14—H14···N5ii0.952.493.277 (8)139.7
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Donzello, M. P., Viola, E., Rizzoli, C., Ercolani, C. & Kadish, K. M. (2009). Inorg. Chem. 48, 7086–7098.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGranifo, J., Vargas, M. E., Garland, M. T. & Baggio, R. (2000). Inorg. Chim. Acta, 305, 143–150.  Web of Science CSD CrossRef CAS Google Scholar
First citationHa, K. (2011a). Acta Cryst. E67, m1615.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011b). Acta Cryst. E67, m1896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011c). Acta Cryst. E67, m1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds