organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-4-(4-chloro­phen­­oxy)-N-[(Z)-(5-nitro­thio­phen-2-yl)methyl­­idene]aniline

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey
*Correspondence e-mail: gozdemir@omu.edu.tr

(Received 9 January 2012; accepted 11 January 2012; online 14 January 2012)

In the title compound, C17H10Cl2N2O3S, the thio­phene ring and the central benzene ring are almost coplanar [dihedral angle = 8.44 (3)°], while the dihedral angle between the two benzene rings rings is 77.49 (9)°. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the properties and uses of Schiff bases, see: Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2. Oxford: Pergamon.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041-2051.]). For comparative bond lengths, see: Özdemir Tarı et al. (2011[Özdemir Tari, G., Işık, Ş., Özkan, R. & Alaman Ağar, A. (2011). Acta Cryst. E67, o343-o344.]); Kazak et al. (2000[Kazak, C., Aygün, M., Turgut, G., Odabaşoĝlu, M., Özbey, S. & Büyükgüngör, O. (2000). Acta Cryst. C56, 1044-1045.]); Aygün et al. (1998[Aygün, M., Işik, Ş., Öcal, N., Tahir, M. N., Kaban, Ş. & Büyükgüngör, O. (1998). Acta Cryst. C54, 527-529.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10Cl2N2O3S

  • Mr = 393.23

  • Monoclinic, P 21 /c

  • a = 16.3698 (9) Å

  • b = 6.7787 (2) Å

  • c = 15.9609 (9) Å

  • β = 105.284 (4)°

  • V = 1708.47 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.05 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe, 2002)[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.817, Tmax = 0.942

  • 10905 measured reflections

  • 3343 independent reflections

  • 2317 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.124

  • S = 1.01

  • 3343 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.38 3.278 (3) 162
C13—H13⋯O1ii 0.93 2.53 3.369 (4) 150
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe, 2002)[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]; cell refinement: X-AREA[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]; data reduction: X-RED32 (Stoe, 2002)[Stoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton et al., 1979; Layer, 1963; Ingold 1969). They show photochromism and thermochromism (Cohen et al., 1964).

In this paper, the structure of the title compound, is reported. The N2=C13 bond length of 1.269 (3)Å is typical of a double bond, which is similar to the corresponding bond length in 2-[(4-Hydroxyphenyl)iminomethyl]-thiophene [1.282 (2) Å; Kazak et al., 2000]; 3-methoxy-2-[(E)-(4-methoxyphenyl)imino)methyl)phenol [1.278 (3) Å, Özdemir Tarı et al., 2011] and N-(2,4-dinitrophenyl)-N-methylhydrozone [1.279 (2) Å, Aygün et al., 1998].

The N2—C10 bond distance is 1.419 (3) Å, which is in good agreement with the corresponding bond lengths in 2-[(4-Hydroxyphenyl)iminomethyl]-thiophene [1.422 (2) Å, Kazak et al., 2000] and 3-methoxy-2-[(E)-(4-methoxyphenyl) imino)methyl)phenol [1.419 (2) Å, Özdemir Tarı et al., 2011].

The C14—S1 and the C17—S1 distance are 1.713 (3)Å and 1.707 (2) Å, respectively. These distances are in good agreement with a related compound [1.712 (2)Å and 1.705 (3) Å; Kazak et al., 2000]. The S···N2 distance is 3.036Å agree with similar length in related compound [3.135 (2) Å; Kazak et al.,2000].

Thermochromism or photochromism depends on the planarity or non-planarity of the molecule, respectively. The title compound might have photochromic properties because of the non-planarity of the molecule. The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds.

Related literature top

For background to the properties and uses of Schiff bases, see: Barton & Ollis (1979); Layer (1963); Ingold (1969); Cohen et al. (1964). For comparative bond lengths, see: Özdemir Tarı et al. (2011); Kazak et al. (2000); Aygün et al. (1998).

Experimental top

The compound (Z)—N-[3-chloro-4-(4-chlorophenoxy)phenyl]-1-(5-nitrothiophen-2-yl) methanimine was prepared by refluxing a mixture of a solution containing 5-nitro-2-thiophene-carboxaldehyde (0.077 g 0.049 mmol) in 20 ml ethanol and a solution containing 3-Chloro-4-(4-Chloro-phenoxy)aniline (0.012 g 0.049 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (Z)—N-[3-chloro-4-(4-chlorophenoxy)phenyl]-1-(5-nitrothiophen-2-yl)methanimine suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 78; m.p 402–404K).

Computing details top

Data collection: X-AREA (Stoe, 2002); cell refinement: X-AREA (Stoe, 2002); data reduction: X-RED32 (Stoe, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability diplacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
3-Chloro-4-(4-chlorophenoxy)-N-[(Z)-(5-nitrothiophen-2- yl)methylidene]aniline top
Crystal data top
C17H10Cl2N2O3SF(000) = 800
Mr = 393.23Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14032 reflections
a = 16.3698 (9) Åθ = 1.3–28.4°
b = 6.7787 (2) ŵ = 0.52 mm1
c = 15.9609 (9) ÅT = 293 K
β = 105.284 (4)°PRISM, brown
V = 1708.47 (14) Å30.45 × 0.30 × 0.05 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
3343 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.6°
ϕ scan rotation methodh = 2020
Absorption correction: integration
(X-RED32; Stoe, 2002)
k = 78
Tmin = 0.817, Tmax = 0.942l = 1916
10905 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0716P)2]
where P = (Fo2 + 2Fc2)/3
3343 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H10Cl2N2O3SV = 1708.47 (14) Å3
Mr = 393.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.3698 (9) ŵ = 0.52 mm1
b = 6.7787 (2) ÅT = 293 K
c = 15.9609 (9) Å0.45 × 0.30 × 0.05 mm
β = 105.284 (4)°
Data collection top
Stoe IPDS II
diffractometer
3343 independent reflections
Absorption correction: integration
(X-RED32; Stoe, 2002)
2317 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.942Rint = 0.062
10905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.73 e Å3
3343 reflectionsΔρmin = 0.26 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58285 (16)0.1486 (5)0.16411 (18)0.0613 (8)
C20.63253 (18)0.2004 (5)0.2450 (2)0.0652 (8)
H20.65450.32730.25570.078*
C30.64914 (17)0.0589 (5)0.31044 (18)0.0605 (8)
H30.68240.09100.36550.073*
C40.61642 (14)0.1292 (4)0.29387 (16)0.0498 (6)
C50.56516 (16)0.1787 (5)0.21356 (17)0.0566 (7)
H50.54220.30470.20320.068*
C60.54833 (17)0.0374 (5)0.14815 (18)0.0622 (8)
H60.51370.06840.09350.075*
C70.69762 (15)0.2549 (4)0.42938 (16)0.0468 (6)
C80.68181 (17)0.2350 (5)0.50843 (18)0.0573 (7)
H80.62620.22670.51220.069*
C90.74793 (17)0.2271 (5)0.58380 (17)0.0553 (7)
H90.73620.21550.63750.066*
C100.83122 (15)0.2364 (4)0.57930 (15)0.0439 (6)
C110.84728 (16)0.2591 (4)0.49868 (16)0.0484 (6)
H110.90280.26720.49460.058*
C120.78090 (15)0.2698 (4)0.42436 (16)0.0493 (6)
C130.97201 (16)0.2199 (4)0.66068 (16)0.0497 (6)
H130.98660.21230.60830.060*
C141.03864 (15)0.2203 (4)0.74123 (16)0.0468 (6)
C151.12379 (17)0.2157 (5)0.74914 (18)0.0576 (7)
H151.14710.20890.70200.069*
C161.17241 (17)0.2224 (4)0.83561 (18)0.0553 (7)
H161.23130.22170.85320.066*
C171.12169 (16)0.2299 (4)0.88979 (17)0.0471 (6)
N11.14919 (17)0.2405 (4)0.98236 (16)0.0612 (6)
N20.89429 (13)0.2296 (3)0.65958 (13)0.0461 (5)
O11.0953 (2)0.2498 (4)1.02221 (16)0.0970 (9)
O21.22480 (16)0.2380 (4)1.01700 (15)0.0842 (8)
O30.63071 (11)0.2755 (3)0.35573 (12)0.0565 (5)
S11.01578 (4)0.22986 (10)0.83989 (4)0.0476 (2)
Cl10.56369 (6)0.32087 (18)0.08067 (6)0.0923 (3)
Cl20.80216 (5)0.30835 (18)0.32540 (4)0.0828 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (14)0.081 (2)0.0543 (16)0.0028 (14)0.0062 (12)0.0082 (16)
C20.0536 (16)0.071 (2)0.0631 (18)0.0057 (14)0.0019 (13)0.0003 (16)
C30.0503 (15)0.072 (2)0.0481 (15)0.0038 (13)0.0069 (12)0.0053 (14)
C40.0382 (12)0.0660 (18)0.0418 (13)0.0006 (12)0.0046 (10)0.0002 (13)
C50.0464 (14)0.072 (2)0.0451 (14)0.0038 (13)0.0017 (11)0.0075 (14)
C60.0513 (15)0.084 (2)0.0438 (14)0.0023 (14)0.0001 (11)0.0061 (15)
C70.0418 (12)0.0553 (17)0.0380 (12)0.0032 (11)0.0009 (10)0.0002 (11)
C80.0408 (13)0.082 (2)0.0475 (15)0.0002 (12)0.0088 (11)0.0007 (14)
C90.0497 (14)0.079 (2)0.0362 (13)0.0028 (13)0.0088 (11)0.0001 (13)
C100.0464 (13)0.0454 (15)0.0352 (12)0.0013 (10)0.0025 (10)0.0007 (10)
C110.0405 (12)0.0636 (18)0.0378 (13)0.0019 (11)0.0045 (10)0.0012 (12)
C120.0454 (13)0.0637 (18)0.0360 (12)0.0001 (11)0.0057 (10)0.0005 (12)
C130.0521 (15)0.0562 (16)0.0359 (12)0.0013 (11)0.0029 (11)0.0003 (11)
C140.0468 (13)0.0489 (15)0.0397 (12)0.0028 (11)0.0027 (10)0.0019 (11)
C150.0486 (14)0.077 (2)0.0458 (14)0.0048 (13)0.0092 (11)0.0037 (14)
C160.0419 (13)0.0652 (19)0.0530 (15)0.0026 (12)0.0020 (11)0.0035 (13)
C170.0466 (13)0.0444 (15)0.0427 (13)0.0035 (10)0.0014 (11)0.0010 (11)
N10.0716 (16)0.0571 (16)0.0431 (12)0.0040 (12)0.0055 (12)0.0017 (11)
N20.0469 (11)0.0520 (13)0.0326 (10)0.0034 (9)0.0013 (8)0.0006 (9)
O10.106 (2)0.138 (3)0.0482 (12)0.0076 (16)0.0216 (13)0.0073 (14)
O20.0833 (16)0.0886 (18)0.0569 (13)0.0110 (12)0.0239 (11)0.0014 (11)
O30.0443 (9)0.0723 (14)0.0440 (10)0.0095 (8)0.0039 (7)0.0035 (9)
S10.0430 (3)0.0539 (4)0.0422 (3)0.0016 (3)0.0049 (2)0.0008 (3)
Cl10.0864 (6)0.1102 (8)0.0710 (6)0.0071 (5)0.0042 (4)0.0307 (5)
Cl20.0535 (4)0.1552 (9)0.0373 (4)0.0077 (4)0.0079 (3)0.0114 (4)
Geometric parameters (Å, º) top
C1—C61.378 (5)C10—C111.388 (4)
C1—C21.378 (4)C10—N21.419 (3)
C1—Cl11.736 (3)C11—C121.383 (3)
C2—C31.391 (4)C11—H110.9300
C2—H20.9300C12—Cl21.725 (3)
C3—C41.381 (4)C13—N21.269 (3)
C3—H30.9300C13—C141.450 (3)
C4—O31.375 (3)C13—H130.9300
C4—C51.376 (4)C14—C151.366 (4)
C5—C61.390 (4)C14—S11.713 (3)
C5—H50.9300C15—C161.400 (4)
C6—H60.9300C15—H150.9300
C7—C81.360 (4)C16—C171.348 (4)
C7—O31.387 (3)C16—H160.9300
C7—C121.390 (4)C17—N11.428 (3)
C8—C91.391 (4)C17—S11.707 (2)
C8—H80.9300N1—O21.215 (3)
C9—C101.386 (4)N1—O11.218 (4)
C9—H90.9300
C6—C1—C2121.2 (3)C11—C10—N2124.8 (2)
C6—C1—Cl1119.4 (2)C12—C11—C10120.2 (2)
C2—C1—Cl1119.3 (3)C12—C11—H11119.9
C1—C2—C3118.5 (3)C10—C11—H11119.9
C1—C2—H2120.7C11—C12—C7120.5 (2)
C3—C2—H2120.7C11—C12—Cl2119.4 (2)
C4—C3—C2120.3 (3)C7—C12—Cl2120.10 (19)
C4—C3—H3119.9N2—C13—C14121.9 (3)
C2—C3—H3119.9N2—C13—H13119.0
O3—C4—C5116.1 (3)C14—C13—H13119.0
O3—C4—C3123.0 (2)C15—C14—C13126.3 (3)
C5—C4—C3121.0 (3)C15—C14—S1112.38 (19)
C4—C5—C6118.9 (3)C13—C14—S1121.3 (2)
C4—C5—H5120.6C14—C15—C16113.0 (3)
C6—C5—H5120.6C14—C15—H15123.5
C1—C6—C5120.1 (3)C16—C15—H15123.5
C1—C6—H6119.9C17—C16—C15110.3 (2)
C5—C6—H6119.9C17—C16—H16124.8
C8—C7—O3119.7 (2)C15—C16—H16124.8
C8—C7—C12119.3 (2)C16—C17—N1125.9 (2)
O3—C7—C12120.7 (2)C16—C17—S1115.0 (2)
C7—C8—C9120.7 (2)N1—C17—S1119.1 (2)
C7—C8—H8119.6O2—N1—O1123.7 (3)
C9—C8—H8119.6O2—N1—C17118.4 (3)
C10—C9—C8120.4 (2)O1—N1—C17118.0 (3)
C10—C9—H9119.8C13—N2—C10120.2 (2)
C8—C9—H9119.8C4—O3—C7118.9 (2)
C9—C10—C11118.9 (2)C17—S1—C1489.30 (12)
C9—C10—N2116.3 (2)
C6—C1—C2—C31.6 (5)N2—C13—C14—C15178.1 (3)
Cl1—C1—C2—C3178.2 (2)N2—C13—C14—S11.1 (4)
C1—C2—C3—C40.1 (5)C13—C14—C15—C16178.5 (3)
C2—C3—C4—O3179.9 (3)S1—C14—C15—C160.7 (3)
C2—C3—C4—C51.8 (4)C14—C15—C16—C170.6 (4)
O3—C4—C5—C6179.9 (2)C15—C16—C17—N1179.2 (3)
C3—C4—C5—C61.6 (4)C15—C16—C17—S10.1 (3)
C2—C1—C6—C51.8 (5)C16—C17—N1—O21.9 (4)
Cl1—C1—C6—C5178.1 (2)S1—C17—N1—O2179.1 (2)
C4—C5—C6—C10.1 (4)C16—C17—N1—O1178.8 (3)
O3—C7—C8—C9175.8 (3)S1—C17—N1—O10.2 (4)
C12—C7—C8—C90.8 (4)C14—C13—N2—C10177.6 (2)
C7—C8—C9—C100.9 (5)C9—C10—N2—C13173.8 (2)
C8—C9—C10—C111.7 (4)C11—C10—N2—C138.8 (4)
C8—C9—C10—N2179.3 (3)C5—C4—O3—C7163.4 (2)
C9—C10—C11—C120.7 (4)C3—C4—O3—C718.2 (4)
N2—C10—C11—C12178.1 (3)C8—C7—O3—C4114.7 (3)
C10—C11—C12—C71.0 (4)C12—C7—O3—C470.5 (3)
C10—C11—C12—Cl2177.3 (2)C16—C17—S1—C140.2 (2)
C8—C7—C12—C111.8 (4)N1—C17—S1—C14178.9 (2)
O3—C7—C12—C11176.7 (2)C15—C14—S1—C170.5 (2)
C8—C7—C12—Cl2176.5 (2)C13—C14—S1—C17178.8 (2)
O3—C7—C12—Cl21.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.383.278 (3)162
C13—H13···O1ii0.932.533.369 (4)150
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H10Cl2N2O3S
Mr393.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.3698 (9), 6.7787 (2), 15.9609 (9)
β (°) 105.284 (4)
V3)1708.47 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.45 × 0.30 × 0.05
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe, 2002)
Tmin, Tmax0.817, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
10905, 3343, 2317
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.124, 1.01
No. of reflections3343
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.26

Computer programs: X-AREA (Stoe, 2002), X-RED32 (Stoe, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.383.278 (3)162.2
C13—H13···O1ii0.932.533.369 (4)150.1
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAygün, M., Işik, Ş., Öcal, N., Tahir, M. N., Kaban, Ş. & Büyükgüngör, O. (1998). Acta Cryst. C54, 527–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2. Oxford: Pergamon.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 1041–2051.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIngold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.  Google Scholar
First citationKazak, C., Aygün, M., Turgut, G., Odabaşoĝlu, M., Özbey, S. & Büyükgüngör, O. (2000). Acta Cryst. C56, 1044–1045.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationÖzdemir Tari, G., Işık, Ş., Özkan, R. & Alaman Ağar, A. (2011). Acta Cryst. E67, o343–o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds