organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-tert-Butyl-6-[(naphthalen-1-yl)imino­meth­yl]phenol

aIran Polymer and Petrochemical Institute (IPPI), PO Box 14965/115, Tehran, Iran, bChemistry Group, Amirkabir University of Technology, PO Box 15875-4413, Tehran, Iran, cDepartment of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, PO Box 1436, Mashhad, Iran, dDepartment of Polymer Engineering, Amirkabir University, PO Box 15875-4413, Tehran, Iran, and eDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: r.jamjah@ippi.ac.ir, m.nekoomanesh@ippi.ac.ir

(Received 15 January 2012; accepted 19 January 2012; online 25 January 2012)

The asymmetric unit of the title Schiff base compound, C21H21NO, contains two crystallographicaly independent mol­ecules. The dihedral angles between the naphthalene mean plane and the benzene ring are 29.28 (8) and 26.92.(8)° in the two mol­ecules. An intra­molecular O—H⋯N hydrogen bond and weak intra­molecular C—H⋯O hydrogen bonds stabilize the structure of each independent mol­ecule.

Related literature

For general background to the synthesis and catalytic activity of FI catalysts, see: Matsui & Fujita (2001[Matsui, S. & Fujita, T. (2001). Catal. Today, 66, 63-73.]); Matsui et al. (1999[Matsui, S., Tohi, S., Mitani, M., Saito, J., Makio, H., Tanaka, H., Nitabaru, M., Nakano, T. & Fujita, T. (1999). Chem. Lett. pp. 1065-1066.], 2001[Matsui, S., Mitani, M., Saito, J., Tohi, Y., Makio, H., Matsukawa, N., Takagi, Y., Tsuru, K., Nitabaru, M., Nakano, T., Tanaka, H., Kashiwa, N. & Fujita, T. (2001). J. Am. Chem. Soc. 123, 6847-6856.]). For related structures, see: Hiller et al. (1993[Hiller, W., Nishinaga, A., Tsutsui, T. & Rieker, A. (1993). Acta Cryst. C49, 1357-1359.]); Darensbourg et al. (2005[Darensbourg, D. J., Mackiewicz, R. M. & Billodeaux, D. R. (2005). Organometallics, 24, 144-148.]); Jamjah et al. (2011[Jamjah, R., Nekoomanesh, M., Pourjafar, T., Zohuri, G. H., Afshartaromi, F. & Notash, B. (2011). Acta Cryst. E67, o1775-o1776.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21NO

  • Mr = 303.39

  • Orthorhombic, P b c a

  • a = 9.4770 (19) Å

  • b = 20.109 (4) Å

  • c = 34.595 (7) Å

  • V = 6593 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Stoe IPDS II diffractometer

  • 28480 measured reflections

  • 8840 independent reflections

  • 5781 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.155

  • S = 1.05

  • 8840 reflections

  • 424 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.81 2.552 (2) 150
O2—H2A⋯N2 0.82 1.89 2.631 (2) 150
C20—H20B⋯O1 0.96 2.38 2.998 (3) 121
C21—H21B⋯O1 0.96 2.35 2.987 (3) 124
C41—H41C⋯O2 0.96 2.33 2.979 (3) 124
C42—H42B⋯O2 0.96 2.41 3.056 (3) 124

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since the discovery of post metallocene catalysts systems such as salicylaldimine (phenoxy-imine, FI catalysts) in late 1990's by Fujita group, there have been many researches concerning these catalysts (Matsui & Fujita, 2001; Matsui et al., 2001). In general, they have found that some phenoxy-imine-based complexes of the group IV metals have very high activity, versatility and polymerization capabilities in olefin polymerization (Matsui et al., 1999).

In FI catalysts, the ligand systems can be produced by using condensation reaction of salicylaldehydes and primary amines, under standard conditions. These reactions produce Schiff bases with high selectivity, in high yield. Amines and some salicylaldehyde derivatives are commercially available. The presence of salicylaldimine unit allows for easy variation of the system on both the phenol and amine functionalities, for instance the variations of the mentioned compounds lead to profound effects on polymers.

X-ray crystallographic analysis reveals that there are two molecules in the asymmetric unit of the title Schiff base compound (Fig. 1). In both molecules, the CN bond distances are 1.289 (3) and 1.290 (3) Å, respectively. The angle between naphthalene mean plane and phenyl rings are equal to 29.28 (8) and 26.92.(8)°, respectively. Bond distances and angles are in the normal ranges reported for Schiff base compounds (Hiller et al., 1993; Darensbourg et al., 2005; Jamjah et al., 2011). There are intramolecular O—H···N hydrogen bonding between hydroxyl and imine groups. There are also weak intramolecular C—H···O hydrogen bonding which play important role in the stabilization of the crystal structure of the title compound (Fig. 1 & Table 1).

Related literature top

For general background to the synthesis and catalytic activity of FI catalysts, see: Matsui & Fujita (2001); Matsui et al. (1999, 2001). For related structures, see: Hiller et al. (1993); Darensbourg et al. (2005); Jamjah et al. (2011).

Experimental top

Synthesis of 3-tert-butyl-2-hydroxybenzaldehyde

2,6-dimethylpyridine (50.0 mmol, 5.4 g) and SnCl4 (10.0 mmol, 2.6 g) were added into 2-tert-butylphenol (40.0 mmol, 6 g) in toluene (125 ml) into a 250 ml round-bottom flask which had been already dried and purged with nitrogen and equipped with a stirrer bar. White fumes appeared immediately during the addition and stirring was continued at room temperature for 30 min. The mixture turned yellow, and then dry paraformaldehyde (160.0 mmol, 4.8 g) was added into the reaction solution and stirred at 100°C for 12 hrs. After cooling to room temperature, the yellow reaction mixture was poured into a mixed solution of water (3×100) and diethyl ether (3×50). The yellow precipitate was removed via filtration. The filtrate was extracted with diethyl ether (2×100 ml) and the organic layer was washed further with saturated NaCl(aq) (brine) (50 ml). The solution was then dried over anhydrous sodium sulfate. After that, it was concentrated under reduced pressure (in a rotary evaporator) and the residue was purified via column chromatography on silica gel, using a mixed solvent of ethylacetate/hexane (v/v, 5/100) as the mobile phase. The product was isolated as pale yellow oil and characterized by 1H-NMR, 13C-NMR and FTIR as follows.

1H-NMR (400 MHz, in CDCl3): δ (p.p.m.) 1.43 (s, 9H C(CH3)3), 6.95 (s,1H, Ar—H), 7.39 (s,1H, Ar—H), 7.53 (s,1H, Ar—H), 9.85 (s, 1H, CHO), 11.82 (s, 1H, OH).

13C-NMR (400 MHz, in CDCl3): δ (p.p.m.) 30.04 (t-Bu—CH3), 35.66 (t-Bu—C), 120.06 (Aryl-C-5), 121.83 (Aryl-C-1), 132.81 (Aryl-C-4), 134.24 (Aryl-C-6), 162.38 (Aryl-C-2), 197.28 (CHO).

FTIR (KBr): 2958.49 (OH), 1650.66 (CHO) cm-1. CHN (Calcd. (Anal): C, 74.05 (74.15); H, 7.87(7.80), (yield: 85%).

Synthesis of (E)-2-tert-butyl-6-((naphthalen-1-ylimino)methyl)phenol:

Into a 100 ml round-bottom flask which had been dried and purged with nitrogen, ethanol (30 ml), α-naphthylamine (9.99 mmol, 1.34 g), 3- tert -butyl-2-hydroxybenzaldehyde (7.86 mmol, 1.40 g) and molecular sieve 3Å (5 g) were added. This mixture was refluxed at 78°C for 8 hrs and then stirred at ambient temperature for another 12 hrs. The reaction solution was concentrated under reduced pressure (in a rotary evaporator). The residue was purified via column chromatography on silica gel, using a mixed solvent of ethylacetate/hexane (v/v, 2/98) as the mobile phase to obtain a yellow-orange crystalline solid (yield: 98%). 1H-NMR (400 MHz, in CDCl3): δ (p.p.m.) 1.54 (s, 9H C(CH3)3), 6.93–7.79 (m, 11H), 8.30–8.71 (m, 1H), 11.81(s, 1H).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms with O—H = 0.82, Uiso(H) = 1.5Ueq(O) and C—H = 0.93 to 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. The intramolecular O—H···N and C—H···O hydrogen bonds are shown as dashed lines.
(E)-2-tert-Butyl-6-[(naphthalen-1-yl)iminomethyl]phenol top
Crystal data top
C21H21NOF(000) = 2592
Mr = 303.39Dx = 1.223 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8840 reflections
a = 9.4770 (19) Åθ = 2.5–29.2°
b = 20.109 (4) ŵ = 0.07 mm1
c = 34.595 (7) ÅT = 120 K
V = 6593 (2) Å3Block, orange
Z = 160.5 × 0.4 × 0.3 mm
Data collection top
Stoe IPDS II
diffractometer
5781 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 29.2°, θmin = 2.5°
Detector resolution: 0.15 mm pixels mm-1h = 1012
rotation method scansk = 2723
28480 measured reflectionsl = 3947
8840 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0561P)2 + 2.5641P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8840 reflectionsΔρmax = 0.24 e Å3
424 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (3)
Crystal data top
C21H21NOV = 6593 (2) Å3
Mr = 303.39Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 9.4770 (19) ŵ = 0.07 mm1
b = 20.109 (4) ÅT = 120 K
c = 34.595 (7) Å0.5 × 0.4 × 0.3 mm
Data collection top
Stoe IPDS II
diffractometer
5781 reflections with I > 2σ(I)
28480 measured reflectionsRint = 0.071
8840 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
8840 reflectionsΔρmin = 0.23 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37905 (15)0.43850 (7)0.17017 (4)0.0338 (3)
H1A0.40510.47270.18100.051*
N10.39654 (18)0.52936 (9)0.22143 (5)0.0332 (4)
C140.2144 (2)0.34967 (10)0.17797 (6)0.0307 (4)
C130.2750 (2)0.40972 (10)0.19115 (6)0.0300 (4)
C120.2293 (2)0.44053 (10)0.22547 (6)0.0315 (4)
C90.5443 (2)0.61773 (11)0.17089 (6)0.0366 (5)
H90.48670.58520.16010.044*
C150.1068 (2)0.32295 (11)0.20058 (6)0.0334 (4)
H150.06420.28370.19250.040*
C10.4731 (2)0.58316 (11)0.23768 (6)0.0345 (4)
C20.4857 (2)0.59221 (11)0.27685 (6)0.0388 (5)
H20.43670.56440.29360.047*
C160.0602 (2)0.35241 (11)0.23474 (6)0.0367 (5)
H160.01180.33280.24900.044*
C170.1212 (2)0.41069 (11)0.24727 (6)0.0367 (5)
H170.09100.43030.27020.044*
C50.6381 (2)0.67555 (11)0.22723 (7)0.0364 (5)
C180.2653 (2)0.31619 (10)0.14061 (6)0.0324 (4)
C110.2939 (2)0.50132 (11)0.23963 (6)0.0349 (5)
H110.26040.52040.26230.042*
C100.5499 (2)0.62500 (10)0.21151 (6)0.0336 (4)
C40.6460 (2)0.68339 (12)0.26778 (7)0.0416 (5)
H40.70280.71660.27810.050*
C80.6230 (2)0.65808 (12)0.14724 (7)0.0413 (5)
H80.61840.65240.12060.050*
C60.7170 (2)0.71633 (12)0.20179 (7)0.0410 (5)
H60.77450.74950.21190.049*
C70.7101 (2)0.70772 (12)0.16279 (7)0.0436 (5)
H70.76310.73470.14650.052*
C30.5715 (3)0.64292 (12)0.29195 (7)0.0424 (5)
H30.57760.64890.31860.051*
O21.00404 (15)0.13532 (7)0.03168 (5)0.0366 (3)
H2A0.94680.11660.04570.055*
N20.89339 (17)0.04113 (9)0.07488 (5)0.0322 (4)
C341.1074 (2)0.09186 (10)0.02161 (6)0.0297 (4)
C220.7909 (2)0.01274 (10)0.10001 (6)0.0303 (4)
C310.6520 (2)0.04053 (10)0.09993 (6)0.0306 (4)
C351.2155 (2)0.11257 (10)0.00385 (6)0.0308 (4)
C331.1031 (2)0.02646 (10)0.03615 (6)0.0296 (4)
C371.3157 (2)0.00065 (11)0.00143 (6)0.0324 (4)
H371.38660.02920.00520.039*
C381.2083 (2)0.01867 (10)0.02546 (6)0.0313 (4)
H381.20530.06210.03470.038*
C320.9909 (2)0.00304 (11)0.06118 (6)0.0314 (4)
H320.98910.04180.06770.038*
C290.4784 (2)0.11944 (11)0.07694 (6)0.0370 (5)
H290.45510.15580.06160.044*
C391.2191 (2)0.18265 (11)0.02143 (6)0.0342 (4)
C230.8228 (2)0.03859 (11)0.12478 (6)0.0349 (4)
H230.91420.05530.12540.042*
C260.5478 (2)0.01151 (11)0.12424 (6)0.0329 (4)
C361.3179 (2)0.06532 (11)0.01294 (6)0.0323 (4)
H361.39110.07760.02940.039*
C250.5844 (2)0.04207 (11)0.14872 (6)0.0375 (5)
H250.51610.06110.16460.045*
C300.6139 (2)0.09558 (10)0.07665 (6)0.0333 (4)
H300.68140.11570.06100.040*
C240.7194 (2)0.06625 (11)0.14925 (6)0.0377 (5)
H240.74290.10100.16580.045*
C280.3743 (2)0.08973 (11)0.10011 (7)0.0391 (5)
H280.28230.10580.09960.047*
C270.4082 (2)0.03728 (11)0.12329 (7)0.0377 (5)
H270.33890.01810.13870.045*
C200.4227 (2)0.29752 (11)0.14468 (6)0.0372 (5)
H20A0.43570.27100.16750.056*
H20B0.47820.33730.14670.056*
H20C0.45210.27270.12240.056*
C190.1829 (3)0.25239 (11)0.13220 (7)0.0413 (5)
H19A0.19500.22170.15320.062*
H19B0.21750.23270.10880.062*
H19C0.08460.26270.12930.062*
C411.2218 (2)0.23574 (11)0.01050 (7)0.0419 (5)
H41A1.22480.27910.00100.063*
H41B1.30380.22940.02640.063*
H41C1.13850.23180.02610.063*
C421.0883 (2)0.19260 (12)0.04681 (7)0.0426 (5)
H42A1.08880.23680.05730.064*
H42B1.00480.18640.03150.064*
H42C1.08920.16080.06750.064*
C401.3494 (3)0.19301 (13)0.04700 (8)0.0484 (6)
H40A1.34690.16230.06820.073*
H40B1.43320.18560.03200.073*
H40C1.34980.23770.05680.073*
C210.2438 (3)0.36255 (11)0.10589 (6)0.0392 (5)
H21A0.27530.34070.08280.059*
H21B0.29720.40260.10970.059*
H21C0.14550.37330.10350.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0327 (7)0.0332 (8)0.0354 (8)0.0053 (6)0.0035 (6)0.0012 (6)
N10.0321 (9)0.0290 (9)0.0386 (9)0.0032 (7)0.0038 (7)0.0008 (7)
C140.0268 (9)0.0322 (11)0.0331 (10)0.0016 (8)0.0010 (8)0.0044 (8)
C130.0265 (9)0.0304 (10)0.0331 (10)0.0026 (8)0.0003 (8)0.0051 (8)
C120.0280 (9)0.0320 (11)0.0344 (10)0.0052 (8)0.0004 (8)0.0003 (8)
C90.0374 (11)0.0305 (11)0.0418 (12)0.0031 (9)0.0029 (9)0.0054 (9)
C150.0322 (10)0.0300 (10)0.0380 (11)0.0003 (8)0.0009 (8)0.0014 (9)
C10.0333 (10)0.0282 (10)0.0420 (11)0.0056 (8)0.0053 (9)0.0050 (9)
C20.0436 (12)0.0350 (12)0.0378 (11)0.0016 (9)0.0043 (9)0.0020 (9)
C160.0303 (10)0.0393 (12)0.0404 (11)0.0023 (9)0.0057 (8)0.0055 (9)
C170.0340 (10)0.0414 (12)0.0347 (11)0.0083 (9)0.0031 (8)0.0009 (9)
C50.0340 (10)0.0317 (11)0.0434 (12)0.0047 (8)0.0053 (9)0.0046 (9)
C180.0360 (10)0.0293 (10)0.0319 (10)0.0001 (8)0.0022 (8)0.0022 (8)
C110.0303 (10)0.0371 (11)0.0375 (11)0.0078 (9)0.0035 (8)0.0029 (9)
C100.0305 (10)0.0305 (11)0.0400 (11)0.0062 (8)0.0039 (8)0.0031 (9)
C40.0451 (12)0.0344 (12)0.0454 (12)0.0009 (10)0.0090 (10)0.0079 (10)
C80.0423 (12)0.0395 (13)0.0422 (12)0.0029 (10)0.0019 (9)0.0033 (10)
C60.0362 (11)0.0361 (12)0.0506 (13)0.0001 (9)0.0017 (10)0.0040 (10)
C70.0401 (12)0.0386 (13)0.0520 (14)0.0001 (10)0.0053 (10)0.0000 (10)
C30.0522 (14)0.0362 (12)0.0388 (12)0.0016 (10)0.0096 (10)0.0056 (10)
O20.0313 (7)0.0307 (8)0.0478 (9)0.0042 (6)0.0070 (6)0.0025 (7)
N20.0277 (8)0.0356 (9)0.0334 (9)0.0012 (7)0.0006 (7)0.0005 (7)
C340.0271 (9)0.0293 (10)0.0326 (10)0.0018 (8)0.0023 (7)0.0032 (8)
C220.0288 (9)0.0308 (11)0.0314 (10)0.0019 (8)0.0005 (8)0.0003 (8)
C310.0316 (10)0.0304 (10)0.0299 (10)0.0024 (8)0.0011 (8)0.0017 (8)
C350.0263 (9)0.0323 (11)0.0340 (10)0.0020 (8)0.0031 (8)0.0005 (8)
C330.0269 (9)0.0310 (10)0.0308 (9)0.0006 (8)0.0030 (7)0.0015 (8)
C370.0297 (9)0.0321 (10)0.0355 (10)0.0041 (8)0.0010 (8)0.0035 (8)
C380.0310 (10)0.0290 (10)0.0338 (10)0.0022 (8)0.0038 (8)0.0009 (8)
C320.0295 (9)0.0313 (10)0.0335 (10)0.0017 (8)0.0021 (8)0.0008 (8)
C290.0377 (11)0.0339 (11)0.0393 (11)0.0045 (9)0.0039 (9)0.0023 (9)
C390.0318 (10)0.0316 (11)0.0393 (11)0.0020 (8)0.0014 (8)0.0025 (9)
C230.0330 (10)0.0346 (11)0.0371 (11)0.0023 (8)0.0026 (8)0.0013 (9)
C260.0306 (10)0.0326 (11)0.0356 (10)0.0049 (8)0.0013 (8)0.0033 (8)
C360.0273 (9)0.0369 (11)0.0327 (10)0.0008 (8)0.0007 (8)0.0020 (9)
C250.0395 (11)0.0343 (11)0.0388 (11)0.0047 (9)0.0056 (9)0.0040 (9)
C300.0339 (10)0.0302 (11)0.0357 (10)0.0010 (8)0.0010 (8)0.0001 (8)
C240.0411 (11)0.0361 (12)0.0358 (11)0.0005 (9)0.0002 (9)0.0063 (9)
C280.0313 (10)0.0386 (12)0.0476 (13)0.0024 (9)0.0010 (9)0.0102 (10)
C270.0325 (10)0.0385 (12)0.0420 (12)0.0033 (9)0.0046 (9)0.0041 (10)
C200.0399 (11)0.0305 (11)0.0413 (12)0.0012 (9)0.0095 (9)0.0006 (9)
C190.0505 (13)0.0324 (11)0.0410 (12)0.0076 (10)0.0032 (10)0.0023 (10)
C410.0432 (12)0.0316 (12)0.0508 (13)0.0033 (9)0.0066 (10)0.0017 (10)
C420.0459 (12)0.0361 (12)0.0460 (13)0.0007 (10)0.0079 (10)0.0076 (10)
C400.0454 (13)0.0408 (14)0.0592 (15)0.0052 (10)0.0102 (11)0.0109 (12)
C210.0492 (13)0.0378 (12)0.0306 (10)0.0013 (10)0.0008 (9)0.0008 (9)
Geometric parameters (Å, º) top
O1—C131.354 (2)C31—C261.423 (3)
O1—H1A0.8200C35—C361.394 (3)
N1—C111.289 (3)C35—C391.535 (3)
N1—C11.419 (3)C33—C381.398 (3)
C14—C151.393 (3)C33—C321.450 (3)
C14—C131.413 (3)C37—C381.371 (3)
C14—C181.535 (3)C37—C361.393 (3)
C13—C121.408 (3)C37—H370.9300
C12—C171.406 (3)C38—H380.9300
C12—C111.452 (3)C32—H320.9300
C9—C81.372 (3)C29—C301.371 (3)
C9—C101.414 (3)C29—C281.405 (3)
C9—H90.9300C29—H290.9300
C15—C161.394 (3)C39—C421.532 (3)
C15—H150.9300C39—C401.534 (3)
C1—C21.373 (3)C39—C411.537 (3)
C1—C101.434 (3)C23—C241.410 (3)
C2—C31.405 (3)C23—H230.9300
C2—H20.9300C26—C251.414 (3)
C16—C171.377 (3)C26—C271.421 (3)
C16—H160.9300C36—H360.9300
C17—H170.9300C25—C241.369 (3)
C5—C41.414 (3)C25—H250.9300
C5—C61.416 (3)C30—H300.9300
C5—C101.424 (3)C24—H240.9300
C18—C191.530 (3)C28—C271.364 (3)
C18—C211.534 (3)C28—H280.9300
C18—C201.545 (3)C27—H270.9300
C11—H110.9300C20—H20A0.9600
C4—C31.364 (3)C20—H20B0.9600
C4—H40.9300C20—H20C0.9600
C8—C71.403 (3)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C6—C71.362 (3)C19—H19C0.9600
C6—H60.9300C41—H41A0.9600
C7—H70.9300C41—H41B0.9600
C3—H30.9300C41—H41C0.9600
O2—C341.358 (2)C42—H42A0.9600
O2—H2A0.8200C42—H42B0.9600
N2—C321.290 (3)C42—H42C0.9600
N2—C221.423 (3)C40—H40A0.9600
C34—C331.409 (3)C40—H40B0.9600
C34—C351.414 (3)C40—H40C0.9600
C22—C231.375 (3)C21—H21A0.9600
C22—C311.430 (3)C21—H21B0.9600
C31—C301.416 (3)C21—H21C0.9600
C13—O1—H1A109.5C38—C37—H37120.2
C11—N1—C1121.75 (19)C36—C37—H37120.2
C15—C14—C13116.50 (19)C37—C38—C33120.41 (19)
C15—C14—C18122.24 (19)C37—C38—H38119.8
C13—C14—C18121.26 (17)C33—C38—H38119.8
O1—C13—C12119.22 (18)N2—C32—C33123.48 (19)
O1—C13—C14119.22 (17)N2—C32—H32118.3
C12—C13—C14121.56 (18)C33—C32—H32118.3
C17—C12—C13119.24 (19)C30—C29—C28120.9 (2)
C17—C12—C11119.04 (19)C30—C29—H29119.6
C13—C12—C11121.69 (19)C28—C29—H29119.6
C8—C9—C10120.7 (2)C42—C39—C40107.66 (19)
C8—C9—H9119.6C42—C39—C35109.20 (17)
C10—C9—H9119.6C40—C39—C35111.78 (18)
C14—C15—C16123.0 (2)C42—C39—C41109.58 (18)
C14—C15—H15118.5C40—C39—C41107.86 (19)
C16—C15—H15118.5C35—C39—C41110.68 (17)
C2—C1—N1122.5 (2)C22—C23—C24121.2 (2)
C2—C1—C10120.1 (2)C22—C23—H23119.4
N1—C1—C10117.18 (19)C24—C23—H23119.4
C1—C2—C3120.9 (2)C25—C26—C27121.36 (19)
C1—C2—H2119.5C25—C26—C31119.75 (19)
C3—C2—H2119.5C27—C26—C31118.9 (2)
C17—C16—C15119.7 (2)C37—C36—C35123.04 (19)
C17—C16—H16120.1C37—C36—H36118.5
C15—C16—H16120.1C35—C36—H36118.5
C16—C17—C12120.0 (2)C24—C25—C26120.6 (2)
C16—C17—H17120.0C24—C25—H25119.7
C12—C17—H17120.0C26—C25—H25119.7
C4—C5—C6121.6 (2)C29—C30—C31120.6 (2)
C4—C5—C10119.3 (2)C29—C30—H30119.7
C6—C5—C10119.1 (2)C31—C30—H30119.7
C19—C18—C21107.05 (18)C25—C24—C23120.1 (2)
C19—C18—C14111.58 (17)C25—C24—H24119.9
C21—C18—C14110.56 (17)C23—C24—H24119.9
C19—C18—C20107.82 (18)C27—C28—C29119.9 (2)
C21—C18—C20110.30 (17)C27—C28—H28120.0
C14—C18—C20109.47 (17)C29—C28—H28120.0
N1—C11—C12121.45 (19)C28—C27—C26121.0 (2)
N1—C11—H11119.3C28—C27—H27119.5
C12—C11—H11119.3C26—C27—H27119.5
C9—C10—C5118.4 (2)C18—C20—H20A109.5
C9—C10—C1123.20 (19)C18—C20—H20B109.5
C5—C10—C1118.4 (2)H20A—C20—H20B109.5
C3—C4—C5121.0 (2)C18—C20—H20C109.5
C3—C4—H4119.5H20A—C20—H20C109.5
C5—C4—H4119.5H20B—C20—H20C109.5
C9—C8—C7120.8 (2)C18—C19—H19A109.5
C9—C8—H8119.6C18—C19—H19B109.5
C7—C8—H8119.6H19A—C19—H19B109.5
C7—C6—C5121.1 (2)C18—C19—H19C109.5
C7—C6—H6119.4H19A—C19—H19C109.5
C5—C6—H6119.4H19B—C19—H19C109.5
C6—C7—C8119.9 (2)C39—C41—H41A109.5
C6—C7—H7120.0C39—C41—H41B109.5
C8—C7—H7120.0H41A—C41—H41B109.5
C4—C3—C2120.3 (2)C39—C41—H41C109.5
C4—C3—H3119.8H41A—C41—H41C109.5
C2—C3—H3119.8H41B—C41—H41C109.5
C34—O2—H2A109.5C39—C42—H42A109.5
C32—N2—C22118.35 (18)C39—C42—H42B109.5
O2—C34—C33119.24 (18)H42A—C42—H42B109.5
O2—C34—C35119.52 (18)C39—C42—H42C109.5
C33—C34—C35121.23 (18)H42A—C42—H42C109.5
C23—C22—N2122.13 (18)H42B—C42—H42C109.5
C23—C22—C31119.79 (18)C39—C40—H40A109.5
N2—C22—C31118.05 (18)C39—C40—H40B109.5
C30—C31—C26118.67 (19)H40A—C40—H40B109.5
C30—C31—C22122.78 (18)C39—C40—H40C109.5
C26—C31—C22118.55 (19)H40A—C40—H40C109.5
C36—C35—C34116.39 (19)H40B—C40—H40C109.5
C36—C35—C39121.37 (18)C18—C21—H21A109.5
C34—C35—C39122.23 (18)C18—C21—H21B109.5
C38—C33—C34119.41 (18)H21A—C21—H21B109.5
C38—C33—C32118.03 (19)C18—C21—H21C109.5
C34—C33—C32122.54 (18)H21A—C21—H21C109.5
C38—C37—C36119.51 (19)H21B—C21—H21C109.5
C15—C14—C13—O1179.31 (18)C32—N2—C22—C2332.8 (3)
C18—C14—C13—O10.6 (3)C32—N2—C22—C31149.19 (19)
C15—C14—C13—C120.4 (3)C23—C22—C31—C30176.7 (2)
C18—C14—C13—C12179.71 (18)N2—C22—C31—C301.4 (3)
O1—C13—C12—C17179.99 (18)C23—C22—C31—C263.4 (3)
C14—C13—C12—C170.3 (3)N2—C22—C31—C26178.49 (17)
O1—C13—C12—C112.0 (3)O2—C34—C35—C36179.94 (18)
C14—C13—C12—C11178.36 (18)C33—C34—C35—C361.3 (3)
C13—C14—C15—C160.6 (3)O2—C34—C35—C391.3 (3)
C18—C14—C15—C16179.44 (19)C33—C34—C35—C39177.37 (18)
C11—N1—C1—C226.7 (3)O2—C34—C33—C38179.19 (18)
C11—N1—C1—C10159.32 (19)C35—C34—C33—C380.5 (3)
N1—C1—C2—C3174.9 (2)O2—C34—C33—C320.9 (3)
C10—C1—C2—C31.1 (3)C35—C34—C33—C32177.72 (18)
C14—C15—C16—C170.2 (3)C36—C37—C38—C331.3 (3)
C15—C16—C17—C120.5 (3)C34—C33—C38—C370.8 (3)
C13—C12—C17—C160.8 (3)C32—C33—C38—C37179.13 (19)
C11—C12—C17—C16178.86 (19)C22—N2—C32—C33178.36 (18)
C15—C14—C18—C190.5 (3)C38—C33—C32—N2175.45 (19)
C13—C14—C18—C19179.45 (18)C34—C33—C32—N26.3 (3)
C15—C14—C18—C21119.5 (2)C36—C35—C39—C42115.9 (2)
C13—C14—C18—C2160.4 (2)C34—C35—C39—C4262.7 (3)
C15—C14—C18—C20118.8 (2)C36—C35—C39—C403.1 (3)
C13—C14—C18—C2061.3 (2)C34—C35—C39—C40178.25 (19)
C1—N1—C11—C12171.02 (18)C36—C35—C39—C41123.4 (2)
C17—C12—C11—N1177.58 (19)C34—C35—C39—C4158.0 (2)
C13—C12—C11—N10.5 (3)N2—C22—C23—C24179.59 (19)
C8—C9—C10—C50.5 (3)C31—C22—C23—C242.4 (3)
C8—C9—C10—C1178.3 (2)C30—C31—C26—C25177.89 (19)
C4—C5—C10—C9179.6 (2)C22—C31—C26—C252.2 (3)
C6—C5—C10—C90.2 (3)C30—C31—C26—C272.2 (3)
C4—C5—C10—C10.7 (3)C22—C31—C26—C27177.73 (19)
C6—C5—C10—C1178.65 (19)C38—C37—C36—C350.5 (3)
C2—C1—C10—C9178.7 (2)C34—C35—C36—C370.8 (3)
N1—C1—C10—C94.6 (3)C39—C35—C36—C37177.88 (19)
C2—C1—C10—C50.1 (3)C27—C26—C25—C24180.0 (2)
N1—C1—C10—C5174.25 (18)C31—C26—C25—C240.1 (3)
C6—C5—C4—C3178.7 (2)C28—C29—C30—C310.3 (3)
C10—C5—C4—C30.6 (3)C26—C31—C30—C291.4 (3)
C10—C9—C8—C70.4 (3)C22—C31—C30—C29178.5 (2)
C4—C5—C6—C7179.1 (2)C26—C25—C24—C231.2 (3)
C10—C5—C6—C70.3 (3)C22—C23—C24—C250.1 (3)
C5—C6—C7—C80.4 (4)C30—C29—C28—C271.3 (3)
C9—C8—C7—C60.1 (4)C29—C28—C27—C260.5 (3)
C5—C4—C3—C20.3 (4)C25—C26—C27—C28178.8 (2)
C1—C2—C3—C41.2 (4)C31—C26—C27—C281.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.812.552 (2)150
O2—H2A···N20.821.892.631 (2)150
C20—H20B···O10.962.382.998 (3)121
C21—H21B···O10.962.352.987 (3)124
C41—H41C···O20.962.332.979 (3)124
C42—H42B···O20.962.413.056 (3)124

Experimental details

Crystal data
Chemical formulaC21H21NO
Mr303.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)9.4770 (19), 20.109 (4), 34.595 (7)
V3)6593 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28480, 8840, 5781
Rint0.071
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.155, 1.05
No. of reflections8840
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.812.552 (2)150.2
O2—H2A···N20.821.892.631 (2)149.5
C20—H20B···O10.962.382.998 (3)121.3
C21—H21B···O10.962.352.987 (3)123.6
C41—H41C···O20.962.332.979 (3)124.4
C42—H42B···O20.962.413.056 (3)123.9
 

Acknowledgements

We are grateful to the Iran Polymer and Petrochemical Institute (ippi) for financial support.

References

First citationDarensbourg, D. J., Mackiewicz, R. M. & Billodeaux, D. R. (2005). Organometallics, 24, 144–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHiller, W., Nishinaga, A., Tsutsui, T. & Rieker, A. (1993). Acta Cryst. C49, 1357–1359.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJamjah, R., Nekoomanesh, M., Pourjafar, T., Zohuri, G. H., Afshartaromi, F. & Notash, B. (2011). Acta Cryst. E67, o1775–o1776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsui, S. & Fujita, T. (2001). Catal. Today, 66, 63–73.  Web of Science CrossRef CAS Google Scholar
First citationMatsui, S., Mitani, M., Saito, J., Tohi, Y., Makio, H., Matsukawa, N., Takagi, Y., Tsuru, K., Nitabaru, M., Nakano, T., Tanaka, H., Kashiwa, N. & Fujita, T. (2001). J. Am. Chem. Soc. 123, 6847–6856.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatsui, S., Tohi, S., Mitani, M., Saito, J., Makio, H., Tanaka, H., Nitabaru, M., Nakano, T. & Fujita, T. (1999). Chem. Lett. pp. 1065–1066.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds