metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Anilino-1-ferrocenylpropan-1-one

aFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, b'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Serbia, and cDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me

(Received 18 January 2012; accepted 26 January 2012; online 31 January 2012)

In the title ferrocene derivative, [Fe(C5H5)(C14H14NO)], the dihedral angle between the mean planes of the phenyl ring and the substituted cyclo­penta­dienyl ring is 84.4 (1)°. The mol­ecules are connected into centrosymmetric dimers via N—H⋯O hydrogen bonds. In addition, C—H⋯O and C—H⋯N contacts stabilize the crystal packing.

Related literature

For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science. New York: VCH.]). For related crystal structures and details of the synthesis, see: Damljanović et al. (2011[Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703—3713.]); Stevanović et al. (2012[Stevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37-m40.]); Leka, Novaković, Stevanović et al. (2012[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012). Acta Cryst. E68, m231.]); Leka, Novaković, Pejović et al. (2012[Leka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012). Acta Cryst. E68, m230.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H14NO)]

  • Mr = 333.20

  • Triclinic, [P \overline 1]

  • a = 7.605 (3) Å

  • b = 9.748 (3) Å

  • c = 12.098 (4) Å

  • α = 86.036 (4)°

  • β = 73.869 (4)°

  • γ = 68.684 (3)°

  • V = 802.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 K

  • 0.26 × 0.25 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3395 measured reflections

  • 3143 independent reflections

  • 2449 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.05

  • 3143 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.80 (3) 2.30 (3) 3.082 (3) 164 (2)
C19—H19⋯O1i 0.93 2.65 3.425 (3) 141
C4—H4⋯N1ii 0.93 2.63 3.489 (3) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). POV-RAY. Persistence of Vision Pty Ltd, Williamstown, Victoria, Australia, http://www.povray.org/ .]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Derivatives of ferrocene have attracted great interest due to their physical, chemical and biological properties. The ease of functionalization of the ferrocene (Fc) unit led to structurally diverse compounds with numerous applications. In that context Mannich bases (Mannich ketones; β-aminoketones) containing a Fc unit might be very useful synthetic components as they can be converted into a range of other derivatives, such as 1,3-aminoalcohols. Here we report the crystal structure of the Mannich base, 1-Ferrocenyl-3-(phenylamino)propan-1- one (I), synthesized according to the previously reported procedure (Damljanović et al., 2011).

In the title compound (Figure 1) the cyclopentadienyl rings (Cp) within the Fc unit take an almost eclipsed geometry, where the smallest C—Cg1—Cg2—C torsion angle has the value of 5.1° (Cg1 and Cg2 are centroids of the corresponding Cp rings). Bond lengths of the Fc unit have the expected values and the Cp rings show only a small mutual tilting of 1.5 (2)°. The distances of Fe1 to the centroids of the two Cp rings are 1.65 and 1.66 Å, respectively. The C1—O1 carbonyl group lies approximately in the plane of the substituted Cp1 ring with the O1—C11—C1—C5 torsion angle of 3.9 (3)°. Similarly, the atoms of phenylamino moiety are approximately co-planar as evidenced from the N1—C14—C15—C16 torsion angle of 175.5 (2)°. The torsion angle C11—C12—C13—N1 of 72.3 (2)°, on the other hand, indicates a significant twisting between two aromatic parts of the molecule, eventually the phenylamino moiety takes an almost orthogonal position with respect to the substituted Cp ring. The dihedral angle between the best planes of the two rings, phenyl and substituted Cp is 84.4 (1)°.

Molecules are organized into centrosymmetric dimers via the N—H···O and C19—H19···O1 hydrogen bonds. These dimers further arrange into the chain trough the C4—H4···N1 interaction (Figure 2).

Related literature top

For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995). For related crystal structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Leka, Novaković, Stevanović et al. (2012); Leka, Novaković, Pejović et al. (2012).

Experimental top

The compound was obtained by an aza-Michael addition of the corresponding arylamine to acryloylferrocene. The reaction was performed by microwave (MW) irradiation (500 W/5 min) of a mixture of reactants and montmorillonite K-10, without a solvent as described by Damljanović et al. (2011).

Refinement top

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93 and 0.97 Å from aromatic and methylene C atoms, respectively. The Uiso(H) values were equal to 1.2 times Ueq of the corresponding parent atom. H atom attached to N atom was isotropically refined.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal packing showing the interconnection of dimers into a chain.
3-Anilino-1-ferrocenylpropan-1-one top
Crystal data top
[Fe(C5H5)(C14H14NO)]Z = 2
Mr = 333.20F(000) = 348
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.605 (3) ÅCell parameters from 25 reflections
b = 9.748 (3) Åθ = 10.3–15.4°
c = 12.098 (4) ŵ = 0.94 mm1
α = 86.036 (4)°T = 293 K
β = 73.869 (4)°Prismatic, orange
γ = 68.684 (3)°0.26 × 0.25 × 0.18 mm
V = 802.1 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.8°
Graphite monochromatorh = 09
ω/2θ scansk = 1111
3395 measured reflectionsl = 1414
3143 independent reflections3 standard reflections every 60 min
2449 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.0454P]
where P = (Fo2 + 2Fc2)/3
3143 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Fe(C5H5)(C14H14NO)]γ = 68.684 (3)°
Mr = 333.20V = 802.1 (5) Å3
Triclinic, P1Z = 2
a = 7.605 (3) ÅMo Kα radiation
b = 9.748 (3) ŵ = 0.94 mm1
c = 12.098 (4) ÅT = 293 K
α = 86.036 (4)°0.26 × 0.25 × 0.18 mm
β = 73.869 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
3395 measured reflections3 standard reflections every 60 min
3143 independent reflections intensity decay: none
2449 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
3143 reflectionsΔρmin = 0.21 e Å3
203 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe010.00076 (5)0.31825 (3)0.71233 (3)0.04475 (12)
O10.2742 (2)0.01729 (17)0.48442 (13)0.0510 (4)
N10.4975 (3)0.2119 (2)0.64319 (17)0.0458 (4)
C10.0181 (3)0.1691 (2)0.61151 (18)0.0394 (5)
C20.1759 (3)0.2006 (2)0.7152 (2)0.0461 (5)
H20.20000.13260.76950.055*
C30.2883 (3)0.3525 (3)0.7207 (2)0.0546 (6)
H30.39920.40200.77920.065*
C40.2033 (4)0.4165 (3)0.6219 (2)0.0569 (6)
H40.24930.51550.60460.068*
C50.0372 (4)0.3057 (2)0.5537 (2)0.0480 (5)
H50.04490.31870.48410.058*
C60.2740 (5)0.2429 (4)0.7347 (4)0.0846 (10)
H60.37570.15680.70170.102*
C70.1301 (8)0.2555 (5)0.8412 (4)0.1119 (16)
H70.11890.17960.89040.134*
C80.0069 (6)0.4060 (5)0.8582 (3)0.0975 (13)
H80.09970.44770.92140.117*
C90.0746 (5)0.4800 (4)0.7630 (3)0.0807 (9)
H90.01990.58010.75120.097*
C100.2371 (4)0.3796 (4)0.6889 (3)0.0771 (9)
H100.30960.40160.61910.093*
C110.1447 (3)0.0293 (2)0.57366 (17)0.0373 (4)
C120.1448 (3)0.1032 (2)0.64668 (18)0.0402 (5)
H12B0.03980.13340.64020.048*
H12A0.11880.07520.72670.048*
C130.3384 (3)0.2331 (2)0.61176 (19)0.0451 (5)
H13A0.31960.32060.64780.054*
H13B0.37520.25010.52900.054*
C140.5038 (3)0.2122 (2)0.75672 (19)0.0414 (5)
C150.3963 (4)0.2745 (3)0.8440 (2)0.0554 (6)
H150.30920.31210.82830.066*
C160.4193 (4)0.2805 (4)0.9544 (2)0.0714 (8)
H160.34760.32321.01160.086*
C170.5448 (5)0.2254 (4)0.9813 (2)0.0772 (9)
H170.56020.23171.05530.093*
C180.6488 (4)0.1596 (3)0.8953 (2)0.0681 (7)
H180.73270.11970.91220.082*
C190.6284 (3)0.1532 (3)0.7854 (2)0.0519 (6)
H190.69890.10880.72910.062*
H1N0.546 (3)0.161 (3)0.600 (2)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe010.04078 (19)0.04572 (19)0.0522 (2)0.01795 (14)0.01521 (14)0.00289 (13)
O10.0527 (10)0.0508 (9)0.0448 (9)0.0228 (8)0.0013 (7)0.0055 (7)
N10.0391 (10)0.0494 (11)0.0490 (11)0.0190 (9)0.0103 (9)0.0123 (9)
C10.0382 (11)0.0417 (11)0.0448 (11)0.0191 (9)0.0152 (9)0.0021 (9)
C20.0380 (11)0.0497 (13)0.0538 (13)0.0216 (10)0.0096 (10)0.0024 (10)
C30.0386 (12)0.0520 (13)0.0711 (16)0.0138 (11)0.0136 (11)0.0048 (12)
C40.0558 (15)0.0407 (12)0.0758 (17)0.0088 (11)0.0326 (13)0.0045 (11)
C50.0562 (14)0.0460 (12)0.0485 (12)0.0222 (11)0.0214 (11)0.0097 (10)
C60.0646 (19)0.077 (2)0.124 (3)0.0120 (16)0.056 (2)0.018 (2)
C70.167 (4)0.134 (4)0.114 (3)0.103 (4)0.109 (3)0.056 (3)
C80.095 (3)0.155 (4)0.068 (2)0.074 (3)0.0120 (18)0.038 (2)
C90.0660 (19)0.0687 (18)0.117 (3)0.0305 (16)0.0230 (18)0.0293 (18)
C100.0559 (17)0.091 (2)0.096 (2)0.0390 (17)0.0160 (16)0.0179 (18)
C110.0383 (11)0.0425 (11)0.0383 (11)0.0211 (9)0.0133 (9)0.0044 (8)
C120.0367 (11)0.0430 (11)0.0446 (11)0.0193 (9)0.0110 (9)0.0064 (9)
C130.0473 (13)0.0392 (11)0.0501 (12)0.0178 (10)0.0124 (10)0.0022 (9)
C140.0320 (10)0.0373 (10)0.0487 (12)0.0079 (9)0.0080 (9)0.0049 (9)
C150.0509 (14)0.0659 (15)0.0574 (14)0.0319 (12)0.0152 (11)0.0138 (12)
C160.0685 (19)0.100 (2)0.0539 (15)0.0450 (17)0.0138 (13)0.0213 (15)
C170.074 (2)0.111 (3)0.0522 (15)0.0374 (18)0.0210 (14)0.0063 (16)
C180.0594 (17)0.086 (2)0.0691 (17)0.0334 (15)0.0214 (14)0.0047 (15)
C190.0422 (13)0.0558 (14)0.0596 (14)0.0232 (11)0.0099 (11)0.0051 (11)
Geometric parameters (Å, º) top
Fe01—C72.021 (3)C6—H60.9300
Fe01—C12.023 (2)C7—C81.417 (6)
Fe01—C52.031 (2)C7—H70.9300
Fe01—C62.037 (3)C8—C91.392 (5)
Fe01—C82.038 (3)C8—H80.9300
Fe01—C22.042 (2)C9—C101.383 (4)
Fe01—C92.043 (3)C9—H90.9300
Fe01—C102.046 (3)C10—H100.9300
Fe01—C42.051 (2)C11—C121.513 (3)
Fe01—C32.063 (3)C12—C131.524 (3)
O1—C111.221 (2)C12—H12B0.9700
N1—C141.387 (3)C12—H12A0.9700
N1—C131.449 (3)C13—H13A0.9700
N1—H1N0.80 (2)C13—H13B0.9700
C1—C21.434 (3)C14—C151.394 (3)
C1—C51.439 (3)C14—C191.399 (3)
C1—C111.464 (3)C15—C161.390 (4)
C2—C31.410 (3)C15—H150.9300
C2—H20.9300C16—C171.369 (4)
C3—C41.413 (4)C16—H160.9300
C3—H30.9300C17—C181.393 (4)
C4—C51.413 (3)C17—H170.9300
C4—H40.9300C18—C191.375 (4)
C5—H50.9300C18—H180.9300
C6—C101.369 (5)C19—H190.9300
C6—C71.420 (6)
C7—Fe01—C1121.56 (15)Fe01—C4—H4126.7
C7—Fe01—C5156.29 (18)C4—C5—C1107.5 (2)
C1—Fe01—C541.58 (9)C4—C5—Fe0170.49 (14)
C7—Fe01—C640.95 (17)C1—C5—Fe0168.90 (12)
C1—Fe01—C6108.24 (11)C4—C5—H5126.2
C5—Fe01—C6119.96 (13)C1—C5—H5126.2
C7—Fe01—C840.86 (17)Fe01—C5—H5125.9
C1—Fe01—C8157.53 (15)C10—C6—C7108.1 (3)
C5—Fe01—C8160.08 (16)C10—C6—Fe0170.77 (17)
C6—Fe01—C867.93 (15)C7—C6—Fe0168.91 (19)
C7—Fe01—C2109.56 (13)C10—C6—H6126.0
C1—Fe01—C241.32 (9)C7—C6—H6126.0
C5—Fe01—C269.15 (9)Fe01—C6—H6125.9
C6—Fe01—C2127.82 (13)C8—C7—C6106.8 (3)
C8—Fe01—C2122.33 (13)C8—C7—Fe0170.2 (2)
C7—Fe01—C967.70 (16)C6—C7—Fe0170.15 (19)
C1—Fe01—C9160.84 (12)C8—C7—H7126.6
C5—Fe01—C9123.30 (13)C6—C7—H7126.6
C6—Fe01—C966.68 (13)Fe01—C7—H7124.7
C8—Fe01—C939.90 (15)C9—C8—C7107.4 (3)
C2—Fe01—C9156.23 (12)C9—C8—Fe0170.27 (17)
C7—Fe01—C1067.42 (16)C7—C8—Fe0168.94 (18)
C1—Fe01—C10124.95 (11)C9—C8—H8126.3
C5—Fe01—C10106.64 (12)C7—C8—H8126.3
C6—Fe01—C1039.17 (14)Fe01—C8—H8126.1
C8—Fe01—C1066.99 (14)C10—C9—C8108.6 (3)
C2—Fe01—C10163.30 (11)C10—C9—Fe0170.35 (16)
C9—Fe01—C1039.54 (12)C8—C9—Fe0169.84 (17)
C7—Fe01—C4162.65 (19)C10—C9—H9125.7
C1—Fe01—C468.75 (9)C8—C9—H9125.7
C5—Fe01—C440.49 (10)Fe01—C9—H9125.7
C6—Fe01—C4154.06 (15)C6—C10—C9109.2 (3)
C8—Fe01—C4124.72 (16)C6—C10—Fe0170.06 (18)
C2—Fe01—C467.94 (10)C9—C10—Fe0170.11 (17)
C9—Fe01—C4107.24 (13)C6—C10—H10125.4
C10—Fe01—C4120.04 (14)C9—C10—H10125.4
C7—Fe01—C3126.91 (17)Fe01—C10—H10126.0
C1—Fe01—C368.67 (9)O1—C11—C1121.74 (18)
C5—Fe01—C368.33 (10)O1—C11—C12120.34 (18)
C6—Fe01—C3164.78 (15)C1—C11—C12117.89 (17)
C8—Fe01—C3108.87 (13)C11—C12—C13112.81 (17)
C2—Fe01—C340.18 (9)C11—C12—H12B109.0
C9—Fe01—C3121.15 (12)C13—C12—H12B109.0
C10—Fe01—C3154.80 (13)C11—C12—H12A109.0
C4—Fe01—C340.17 (10)C13—C12—H12A109.0
C14—N1—C13122.08 (19)H12B—C12—H12A107.8
C14—N1—H1N117.2 (17)N1—C13—C12113.66 (18)
C13—N1—H1N113.7 (17)N1—C13—H13A108.8
C2—C1—C5107.12 (19)C12—C13—H13A108.8
C2—C1—C11127.89 (19)N1—C13—H13B108.8
C5—C1—C11124.78 (19)C12—C13—H13B108.8
C2—C1—Fe0170.05 (12)H13A—C13—H13B107.7
C5—C1—Fe0169.52 (12)N1—C14—C15122.8 (2)
C11—C1—Fe01121.47 (14)N1—C14—C19119.3 (2)
C3—C2—C1108.2 (2)C15—C14—C19117.8 (2)
C3—C2—Fe0170.69 (14)C16—C15—C14120.0 (2)
C1—C2—Fe0168.63 (12)C16—C15—H15120.0
C3—C2—H2125.9C14—C15—H15120.0
C1—C2—H2125.9C17—C16—C15121.8 (3)
Fe01—C2—H2126.4C17—C16—H16119.1
C2—C3—C4108.2 (2)C15—C16—H16119.1
C2—C3—Fe0169.13 (13)C16—C17—C18118.5 (3)
C4—C3—Fe0169.46 (14)C16—C17—H17120.8
C2—C3—H3125.9C18—C17—H17120.8
C4—C3—H3125.9C19—C18—C17120.5 (3)
Fe01—C3—H3127.1C19—C18—H18119.7
C5—C4—C3108.9 (2)C17—C18—H18119.7
C5—C4—Fe0169.02 (13)C18—C19—C14121.3 (2)
C3—C4—Fe0170.36 (14)C18—C19—H19119.3
C5—C4—H4125.5C14—C19—H19119.3
C3—C4—H4125.5
C7—Fe01—C1—C284.1 (2)C2—Fe01—C6—C10165.22 (17)
C5—Fe01—C1—C2118.02 (18)C9—Fe01—C6—C1036.8 (2)
C6—Fe01—C1—C2127.09 (18)C4—Fe01—C6—C1044.6 (3)
C8—Fe01—C1—C250.9 (4)C3—Fe01—C6—C10161.0 (4)
C9—Fe01—C1—C2161.7 (3)C1—Fe01—C6—C7117.5 (2)
C10—Fe01—C1—C2167.13 (16)C5—Fe01—C6—C7161.5 (2)
C4—Fe01—C1—C280.32 (15)C8—Fe01—C6—C738.9 (2)
C3—Fe01—C1—C237.06 (14)C2—Fe01—C6—C775.6 (3)
C7—Fe01—C1—C5157.9 (2)C9—Fe01—C6—C782.3 (2)
C6—Fe01—C1—C5114.89 (18)C10—Fe01—C6—C7119.1 (3)
C8—Fe01—C1—C5168.9 (3)C4—Fe01—C6—C7163.8 (3)
C2—Fe01—C1—C5118.02 (18)C3—Fe01—C6—C741.8 (5)
C9—Fe01—C1—C543.7 (4)C10—C6—C7—C80.8 (3)
C10—Fe01—C1—C574.85 (19)Fe01—C6—C7—C861.0 (2)
C4—Fe01—C1—C537.70 (14)C10—C6—C7—Fe0160.2 (2)
C3—Fe01—C1—C580.96 (15)C1—Fe01—C7—C8161.36 (19)
C7—Fe01—C1—C1138.9 (3)C5—Fe01—C7—C8160.3 (3)
C5—Fe01—C1—C11119.0 (2)C6—Fe01—C7—C8117.1 (3)
C6—Fe01—C1—C114.1 (2)C2—Fe01—C7—C8117.2 (2)
C8—Fe01—C1—C1172.1 (4)C9—Fe01—C7—C837.5 (2)
C2—Fe01—C1—C11122.9 (2)C10—Fe01—C7—C880.4 (2)
C9—Fe01—C1—C1175.4 (4)C4—Fe01—C7—C838.7 (5)
C10—Fe01—C1—C1144.2 (2)C3—Fe01—C7—C875.5 (3)
C4—Fe01—C1—C11156.73 (19)C1—Fe01—C7—C681.5 (2)
C3—Fe01—C1—C11160.01 (19)C5—Fe01—C7—C643.2 (4)
C5—C1—C2—C30.1 (2)C8—Fe01—C7—C6117.1 (3)
C11—C1—C2—C3174.7 (2)C2—Fe01—C7—C6125.7 (2)
Fe01—C1—C2—C359.83 (16)C9—Fe01—C7—C679.6 (2)
C5—C1—C2—Fe0159.92 (15)C10—Fe01—C7—C636.69 (19)
C11—C1—C2—Fe01114.9 (2)C4—Fe01—C7—C6155.8 (4)
C7—Fe01—C2—C3124.5 (2)C3—Fe01—C7—C6167.35 (18)
C1—Fe01—C2—C3119.5 (2)C6—C7—C8—C90.9 (4)
C5—Fe01—C2—C380.70 (16)Fe01—C7—C8—C960.0 (2)
C6—Fe01—C2—C3166.91 (19)C6—C7—C8—Fe0161.0 (2)
C8—Fe01—C2—C381.0 (2)C7—Fe01—C8—C9118.6 (3)
C9—Fe01—C2—C345.6 (4)C1—Fe01—C8—C9164.0 (2)
C10—Fe01—C2—C3159.0 (4)C5—Fe01—C8—C938.0 (5)
C4—Fe01—C2—C337.07 (15)C6—Fe01—C8—C979.6 (2)
C7—Fe01—C2—C1115.9 (2)C2—Fe01—C8—C9158.67 (18)
C5—Fe01—C2—C138.82 (13)C10—Fe01—C8—C937.0 (2)
C6—Fe01—C2—C173.6 (2)C4—Fe01—C8—C974.5 (2)
C8—Fe01—C2—C1159.45 (19)C3—Fe01—C8—C9116.3 (2)
C9—Fe01—C2—C1165.2 (3)C1—Fe01—C8—C745.4 (4)
C10—Fe01—C2—C139.5 (5)C5—Fe01—C8—C7156.6 (3)
C4—Fe01—C2—C182.46 (14)C6—Fe01—C8—C739.0 (2)
C3—Fe01—C2—C1119.5 (2)C2—Fe01—C8—C782.8 (3)
C1—C2—C3—C40.1 (3)C9—Fe01—C8—C7118.6 (3)
Fe01—C2—C3—C458.62 (17)C10—Fe01—C8—C781.6 (3)
C1—C2—C3—Fe0158.54 (15)C4—Fe01—C8—C7166.9 (2)
C7—Fe01—C3—C276.1 (2)C3—Fe01—C8—C7125.1 (3)
C1—Fe01—C3—C238.08 (14)C7—C8—C9—C100.7 (4)
C5—Fe01—C3—C282.93 (15)Fe01—C8—C9—C1059.9 (2)
C6—Fe01—C3—C243.0 (5)C7—C8—C9—Fe0159.2 (2)
C8—Fe01—C3—C2118.1 (2)C7—Fe01—C9—C1081.1 (3)
C9—Fe01—C3—C2160.32 (17)C1—Fe01—C9—C1041.8 (5)
C10—Fe01—C3—C2166.0 (2)C5—Fe01—C9—C1075.1 (2)
C4—Fe01—C3—C2120.0 (2)C6—Fe01—C9—C1036.5 (2)
C7—Fe01—C3—C4163.9 (2)C8—Fe01—C9—C10119.5 (3)
C1—Fe01—C3—C481.92 (15)C2—Fe01—C9—C10169.2 (3)
C5—Fe01—C3—C437.07 (14)C4—Fe01—C9—C10116.6 (2)
C6—Fe01—C3—C4163.0 (4)C3—Fe01—C9—C10158.2 (2)
C8—Fe01—C3—C4121.9 (2)C7—Fe01—C9—C838.4 (3)
C2—Fe01—C3—C4120.0 (2)C1—Fe01—C9—C8161.3 (3)
C9—Fe01—C3—C479.7 (2)C5—Fe01—C9—C8165.5 (2)
C10—Fe01—C3—C446.0 (3)C6—Fe01—C9—C883.0 (3)
C2—C3—C4—C50.0 (3)C2—Fe01—C9—C849.7 (4)
Fe01—C3—C4—C558.38 (17)C10—Fe01—C9—C8119.5 (3)
C2—C3—C4—Fe0158.41 (17)C4—Fe01—C9—C8124.0 (2)
C7—Fe01—C4—C5168.4 (4)C3—Fe01—C9—C882.3 (3)
C1—Fe01—C4—C538.69 (13)C7—C6—C10—C90.4 (3)
C6—Fe01—C4—C549.5 (3)Fe01—C6—C10—C959.4 (2)
C8—Fe01—C4—C5161.79 (17)C7—C6—C10—Fe0159.0 (2)
C2—Fe01—C4—C583.30 (15)C8—C9—C10—C60.2 (4)
C9—Fe01—C4—C5121.45 (16)Fe01—C9—C10—C659.4 (2)
C10—Fe01—C4—C580.33 (17)C8—C9—C10—Fe0159.6 (2)
C3—Fe01—C4—C5120.4 (2)C7—Fe01—C10—C638.3 (2)
C7—Fe01—C4—C348.0 (5)C1—Fe01—C10—C675.3 (2)
C1—Fe01—C4—C381.69 (15)C5—Fe01—C10—C6117.3 (2)
C5—Fe01—C4—C3120.4 (2)C8—Fe01—C10—C682.8 (3)
C6—Fe01—C4—C3169.9 (2)C2—Fe01—C10—C644.5 (5)
C8—Fe01—C4—C377.8 (2)C9—Fe01—C10—C6120.2 (3)
C2—Fe01—C4—C337.08 (14)C4—Fe01—C10—C6159.2 (2)
C9—Fe01—C4—C3118.17 (17)C3—Fe01—C10—C6168.4 (3)
C10—Fe01—C4—C3159.29 (15)C7—Fe01—C10—C981.9 (3)
C3—C4—C5—C10.0 (3)C1—Fe01—C10—C9164.5 (2)
Fe01—C4—C5—C159.18 (15)C5—Fe01—C10—C9122.6 (2)
C3—C4—C5—Fe0159.20 (17)C6—Fe01—C10—C9120.2 (3)
C2—C1—C5—C40.1 (2)C8—Fe01—C10—C937.4 (2)
C11—C1—C5—C4174.96 (19)C2—Fe01—C10—C9164.7 (4)
Fe01—C1—C5—C460.18 (16)C4—Fe01—C10—C980.6 (2)
C2—C1—C5—Fe0160.26 (15)C3—Fe01—C10—C948.2 (4)
C11—C1—C5—Fe01114.8 (2)C2—C1—C11—O1177.9 (2)
C7—Fe01—C5—C4171.4 (3)C5—C1—C11—O13.9 (3)
C1—Fe01—C5—C4118.6 (2)Fe01—C1—C11—O189.6 (2)
C6—Fe01—C5—C4157.43 (17)C2—C1—C11—C124.3 (3)
C8—Fe01—C5—C448.9 (4)C5—C1—C11—C12178.23 (19)
C2—Fe01—C5—C480.04 (16)Fe01—C1—C11—C1292.5 (2)
C9—Fe01—C5—C477.10 (19)O1—C11—C12—C1313.0 (3)
C10—Fe01—C5—C4117.04 (17)C1—C11—C12—C13169.09 (17)
C3—Fe01—C5—C436.79 (15)C14—N1—C13—C1270.6 (3)
C7—Fe01—C5—C152.8 (4)C11—C12—C13—N172.3 (2)
C6—Fe01—C5—C183.95 (18)C13—N1—C14—C1519.6 (3)
C8—Fe01—C5—C1167.5 (3)C13—N1—C14—C19163.0 (2)
C2—Fe01—C5—C138.59 (13)N1—C14—C15—C16175.5 (2)
C9—Fe01—C5—C1164.27 (14)C19—C14—C15—C161.9 (4)
C10—Fe01—C5—C1124.33 (15)C14—C15—C16—C170.6 (5)
C4—Fe01—C5—C1118.6 (2)C15—C16—C17—C181.1 (5)
C3—Fe01—C5—C181.84 (14)C16—C17—C18—C191.3 (5)
C7—Fe01—C6—C10119.1 (3)C17—C18—C19—C140.1 (4)
C1—Fe01—C6—C10123.40 (19)N1—C14—C19—C18175.8 (2)
C5—Fe01—C6—C1079.4 (2)C15—C14—C19—C181.7 (4)
C8—Fe01—C6—C1080.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.80 (3)2.30 (3)3.082 (3)164 (2)
C19—H19···O1i0.932.653.425 (3)141
C4—H4···N1ii0.932.633.489 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H14NO)]
Mr333.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.605 (3), 9.748 (3), 12.098 (4)
α, β, γ (°)86.036 (4), 73.869 (4), 68.684 (3)
V3)802.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.26 × 0.25 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3395, 3143, 2449
Rint0.017
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.05
No. of reflections3143
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision, 2004), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.80 (3)2.30 (3)3.082 (3)164 (2)
C19—H19···O1i0.932.653.425 (3)141
C4—H4···N1ii0.932.633.489 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z.
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Serbia (project Nos. 172014, 172035 and 172034).

References

First citationDamljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703—3713.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012). Acta Cryst. E68, m230.  CrossRef IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012). Acta Cryst. E68, m231.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPersistence of Vision (2004). POV-RAY. Persistence of Vision Pty Ltd, Williamstown, Victoria, Australia, http://www.povray.org/Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37–m40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science. New York: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds