metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ferrocenyl-3-(4-methyl­anilino)propan-1-one

aFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, b'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Serbia, and cDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me

(Received 18 January 2012; accepted 26 January 2012; online 31 January 2012)

In the title ferrocene derivative, [Fe(C5H5)(C15H16NO)], the dihedral angle between the best planes of the benzene and the substituted cyclo­penta­dienyl ring is 83.4 (1)°. The presence of a methyl substituent in the para position of the aniline group does not alter the crystal packing compared to that of 3-anilino-1-ferrocenylpropan-1-one [Leka et al. (2012[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.]). Acta Cryst. E68, m229]. The molecules are connected into centro­symmetric dimers via N—H⋯O hydrogen bonds. In addition, C—H⋯O and C—H⋯N contacts stabilize the crystal packing.

Related literature

For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: VCH.]). For related crystal structures and details of the synthesis, see: Damljanović et al. (2011[Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703-3713.]); Stevanović et al. (2012[Stevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37-m40.]); Leka et al. (2012a[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.],b[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m231.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H16NO)]

  • Mr = 347.23

  • Triclinic, [P \overline 1]

  • a = 7.553 (2) Å

  • b = 9.778 (3) Å

  • c = 13.640 (4) Å

  • α = 86.83 (2)°

  • β = 74.62 (3)°

  • γ = 67.71 (3)°

  • V = 897.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3804 measured reflections

  • 3519 independent reflections

  • 2829 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.05

  • 3519 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (3) 2.31 (4) 3.102 (4) 161 (3)
C19—H19⋯O1i 0.93 2.69 3.455 (4) 140
C4—H4⋯N1ii 0.93 2.64 3.451 (4) 147
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). POV-RAY. Persistence of Vision Pty Ltd, Williamstown, Victoria, Australia. URL: http://www.povray.org/ .]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The present report forms a part of our wider research of the structural properties of Mannich bases. The title compound (Figure 1) crystallizes in the same space group, i.e. P1, as the derivative containing an unsubstitued phenylamino moiety and exhibits very similar unit-cell parameters. The orientation of the cyclopentadienyl (Cp) rings slightly deviates from the eclipsed conformation as defined by the smallest torsion angle C—Cg1—Cg2—C of 4.9° (Cg1 and Cg2 are centroids of the corresponding Cp rings). The distances of Fe to Cg1 and Cg2 are 1.65 and 1.66°, respectively. The Cp rings are practically coplanar with the dihedral angle of 0.5 (2)°. The torsion angle O1—C11—C1—C5 which relates Cp1 ring with the carbonyl group is here equal to -6.2 (3)°, showing the expected co-planarity. Although C1—C11—C12—C13—N1 fragment consists of single bonds which allows for free rotation, the molecule adopts a conformation very similar to the previously reported derivatives (Damljanović et al., 2011; Stevanović et al., 2012). The bent conformation of the molecule is indicated by the C11—C12—C13— N1 torsion angle [(70.6 (3)°] which is slightly smaller than in the case of the molecule containing unmodified, phenylamino moiety. Regardless the fact that molecules of the present Mannich base contain an additional methyl subsistent in the para position of the phenylamino moiety their crystal packing arrangement (Figure 2) is closely similar to the previously reported 1-ferrocenyl-3-(phenylamino)propan-1-one (Leka et al., 2012a). As previously observed, the N—H···O bonded dimers represent the main structural feature of these Mannich basis. The methyl group does not take a part in the intermolecular interactions.

Related literature top

For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995). For related crystal structures and details of the synthesis, see: Damljanović et al. (2011); Stevanović et al. (2012); Leka et al. (2012a,b).

Experimental top

The compound was obtained in the reaction of aza-Michael addition of corresponding arylamine to acryloylferrocene. The reaction was performed by microwave (MW) irradiation (500 W/5 min) of a mixture of reactants and montmorillonite K-10, without a solvent as described by Damljanović et al. (2011).

Refinement top

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93, 0.97 and 0.96 Å from aromatic, methylene and methyl C atoms, respectively. The Uiso(H) values were equal to 1.2 times Ueq of the corresponding aromatic C(sp2) and methylene C(sp3). The Uiso(H) values of the H atoms attached to methyl C(sp3) were equal to 1.5 times Ueq of the parent atom. H atom attached to N atom was refined isotropically.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal packing showing the interconnection of dimers into a chain.
1-Ferrocenyl-3-(4-methylanilino)propan-1-one top
Crystal data top
[Fe(C5H5)(C15H16NO)]Z = 2
Mr = 347.23F(000) = 364
Triclinic, P1Dx = 1.285 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.553 (2) ÅCell parameters from 25 reflections
b = 9.778 (3) Åθ = 11.2–15.5°
c = 13.640 (4) ŵ = 0.84 mm1
α = 86.83 (2)°T = 293 K
β = 74.62 (3)°Prismatic, orange
γ = 67.71 (3)°0.22 × 0.18 × 0.16 mm
V = 897.6 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.6°
Graphite monochromatorh = 09
ω/2θ scansk = 1112
3804 measured reflectionsl = 1616
3519 independent reflections3 standard reflections every 60 min
2829 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.065P)2 + 0.2205P]
where P = (Fo2 + 2Fc2)/3
3519 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Fe(C5H5)(C15H16NO)]γ = 67.71 (3)°
Mr = 347.23V = 897.6 (5) Å3
Triclinic, P1Z = 2
a = 7.553 (2) ÅMo Kα radiation
b = 9.778 (3) ŵ = 0.84 mm1
c = 13.640 (4) ÅT = 293 K
α = 86.83 (2)°0.22 × 0.18 × 0.16 mm
β = 74.62 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
3804 measured reflections3 standard reflections every 60 min
3519 independent reflections intensity decay: none
2829 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
3519 reflectionsΔρmin = 0.41 e Å3
213 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.82439 (5)0.29783 (4)0.68484 (3)0.04989 (14)
O10.7296 (3)0.01261 (19)0.48727 (13)0.0550 (4)
N10.3609 (3)0.2268 (2)0.63329 (17)0.0487 (5)
C10.9228 (3)0.1577 (2)0.59236 (17)0.0434 (5)
C21.0021 (4)0.1826 (3)0.6791 (2)0.0522 (6)
H20.98300.11050.72690.063*
C31.1144 (4)0.3355 (3)0.6796 (2)0.0626 (7)
H31.18170.38140.72780.075*
C41.1072 (4)0.4068 (3)0.5945 (2)0.0619 (7)
H41.16890.50760.57710.074*
C50.9901 (4)0.2987 (3)0.5400 (2)0.0525 (6)
H50.96170.31610.48070.063*
C60.5242 (5)0.2197 (5)0.7206 (5)0.119 (2)
H60.44370.13400.69680.142*
C70.5913 (10)0.2274 (8)0.8092 (5)0.154 (3)
H70.56610.15040.85450.185*
C80.7072 (8)0.3819 (7)0.8128 (3)0.1120 (17)
H80.77200.42500.86250.134*
C90.7059 (5)0.4533 (4)0.7321 (3)0.0885 (11)
H90.77120.55460.71690.106*
C100.5963 (5)0.3570 (5)0.6763 (3)0.0930 (12)
H100.57390.38120.61690.112*
C110.7851 (3)0.0189 (2)0.56467 (17)0.0416 (5)
C120.7182 (3)0.1184 (2)0.63237 (18)0.0452 (5)
H12B0.82980.14770.62600.054*
H12A0.67560.09550.70270.054*
C130.5489 (4)0.2475 (3)0.6063 (2)0.0497 (5)
H13B0.53160.33700.64160.060*
H13A0.58480.26130.53370.060*
C140.2552 (4)0.2300 (3)0.73370 (19)0.0466 (5)
C150.2798 (5)0.2977 (3)0.8142 (2)0.0643 (7)
H150.37640.33820.80200.077*
C160.1612 (6)0.3046 (4)0.9115 (2)0.0861 (10)
H160.18050.35030.96360.103*
C170.0152 (6)0.2468 (4)0.9352 (3)0.0878 (10)
C180.0069 (5)0.1779 (4)0.8545 (3)0.0789 (9)
H180.10290.13670.86730.095*
C190.1089 (4)0.1693 (3)0.7571 (2)0.0575 (6)
H190.09010.12230.70550.069*
C200.1148 (9)0.2559 (7)1.0428 (3)0.154 (2)
H20A0.06320.28991.08950.230*
H20B0.11570.15971.06050.230*
H20C0.24770.32371.04640.230*
H1N0.366 (4)0.163 (3)0.595 (2)0.047 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0419 (2)0.0508 (2)0.0630 (2)0.02310 (15)0.01730 (16)0.01293 (16)
O10.0657 (11)0.0563 (10)0.0499 (9)0.0244 (9)0.0245 (8)0.0024 (8)
N10.0461 (11)0.0494 (11)0.0521 (12)0.0159 (9)0.0168 (9)0.0059 (9)
C10.0377 (11)0.0467 (12)0.0505 (12)0.0219 (9)0.0105 (9)0.0024 (10)
C20.0483 (13)0.0542 (14)0.0653 (15)0.0255 (11)0.0246 (12)0.0070 (12)
C30.0440 (13)0.0614 (16)0.090 (2)0.0211 (12)0.0318 (13)0.0194 (14)
C40.0434 (13)0.0440 (13)0.093 (2)0.0129 (11)0.0158 (13)0.0033 (13)
C50.0456 (13)0.0493 (13)0.0637 (15)0.0210 (11)0.0105 (11)0.0018 (11)
C60.0384 (16)0.082 (3)0.202 (6)0.0174 (17)0.005 (2)0.052 (3)
C70.138 (5)0.176 (6)0.143 (5)0.121 (5)0.084 (4)0.089 (4)
C80.116 (3)0.182 (5)0.082 (3)0.103 (4)0.036 (2)0.053 (3)
C90.074 (2)0.081 (2)0.127 (3)0.0502 (19)0.029 (2)0.037 (2)
C100.067 (2)0.133 (4)0.110 (3)0.067 (2)0.034 (2)0.036 (3)
C110.0382 (11)0.0468 (12)0.0458 (12)0.0232 (9)0.0104 (9)0.0030 (9)
C120.0429 (12)0.0456 (12)0.0517 (13)0.0192 (10)0.0159 (10)0.0001 (10)
C130.0518 (13)0.0409 (12)0.0584 (14)0.0187 (10)0.0163 (11)0.0043 (10)
C140.0454 (12)0.0420 (12)0.0518 (13)0.0117 (10)0.0190 (11)0.0020 (10)
C150.0695 (18)0.0727 (18)0.0577 (16)0.0324 (14)0.0173 (13)0.0090 (13)
C160.110 (3)0.098 (3)0.0526 (17)0.040 (2)0.0206 (18)0.0092 (16)
C170.094 (3)0.092 (2)0.0623 (19)0.033 (2)0.0009 (18)0.0047 (17)
C180.070 (2)0.084 (2)0.082 (2)0.0381 (17)0.0089 (17)0.0137 (17)
C190.0534 (14)0.0577 (15)0.0657 (16)0.0227 (12)0.0196 (12)0.0005 (12)
C200.172 (6)0.180 (6)0.074 (3)0.069 (5)0.028 (3)0.001 (3)
Geometric parameters (Å, º) top
Fe1—C72.019 (4)C7—C81.436 (8)
Fe1—C82.020 (4)C7—H70.9300
Fe1—C62.025 (3)C8—C91.339 (6)
Fe1—C12.026 (2)C8—H80.9300
Fe1—C92.036 (3)C9—C101.347 (5)
Fe1—C52.037 (3)C9—H90.9300
Fe1—C22.040 (2)C10—H100.9300
Fe1—C102.046 (3)C11—C121.512 (3)
Fe1—C42.059 (3)C12—C131.524 (3)
Fe1—C32.061 (3)C12—H12B0.9700
O1—C111.225 (3)C12—H12A0.9700
N1—C141.386 (3)C13—H13B0.9700
N1—C131.458 (3)C13—H13A0.9700
N1—H1N0.82 (3)C14—C151.400 (4)
C1—C21.433 (3)C14—C191.401 (4)
C1—C51.433 (3)C15—C161.380 (5)
C1—C111.466 (3)C15—H150.9300
C2—C31.413 (4)C16—C171.379 (6)
C2—H20.9300C16—H160.9300
C3—C41.410 (4)C17—C181.400 (5)
C3—H30.9300C17—C201.520 (5)
C4—C51.416 (4)C18—C191.370 (4)
C4—H40.9300C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C101.351 (7)C20—H20A0.9600
C6—C71.417 (8)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C7—Fe1—C841.7 (2)C1—C5—Fe168.92 (14)
C7—Fe1—C641.0 (2)C4—C5—H5126.0
C8—Fe1—C667.5 (2)C1—C5—H5126.0
C7—Fe1—C1122.9 (2)Fe1—C5—H5126.1
C8—Fe1—C1160.1 (2)C10—C6—C7108.9 (4)
C6—Fe1—C1109.62 (13)C10—C6—Fe171.4 (2)
C7—Fe1—C967.37 (19)C7—C6—Fe169.3 (2)
C8—Fe1—C938.55 (19)C10—C6—H6125.5
C6—Fe1—C965.48 (16)C7—C6—H6125.5
C1—Fe1—C9159.90 (15)Fe1—C6—H6125.3
C7—Fe1—C5158.2 (3)C6—C7—C8103.8 (4)
C8—Fe1—C5157.6 (2)C6—C7—Fe169.7 (2)
C6—Fe1—C5121.7 (2)C8—C7—Fe169.2 (2)
C1—Fe1—C541.30 (10)C6—C7—H7128.1
C9—Fe1—C5122.86 (15)C8—C7—H7128.1
C7—Fe1—C2109.55 (16)Fe1—C7—H7124.7
C8—Fe1—C2123.88 (17)C9—C8—C7108.2 (4)
C6—Fe1—C2128.16 (18)C9—C8—Fe171.4 (2)
C1—Fe1—C241.26 (10)C7—C8—Fe169.2 (2)
C9—Fe1—C2157.13 (14)C9—C8—H8125.9
C5—Fe1—C268.80 (11)C7—C8—H8125.9
C7—Fe1—C1067.3 (2)Fe1—C8—H8125.1
C8—Fe1—C1065.57 (17)C8—C9—C10110.1 (4)
C6—Fe1—C1038.8 (2)C8—C9—Fe170.1 (2)
C1—Fe1—C10125.38 (13)C10—C9—Fe171.1 (2)
C9—Fe1—C1038.54 (15)C8—C9—H9125.0
C5—Fe1—C10107.63 (15)C10—C9—H9125.0
C2—Fe1—C10163.31 (14)Fe1—C9—H9125.4
C7—Fe1—C4160.8 (3)C9—C10—C6109.0 (5)
C8—Fe1—C4122.6 (2)C9—C10—Fe170.33 (19)
C6—Fe1—C4155.2 (2)C6—C10—Fe169.8 (2)
C1—Fe1—C468.69 (10)C9—C10—H10125.5
C9—Fe1—C4107.10 (14)C6—C10—H10125.5
C5—Fe1—C440.44 (11)Fe1—C10—H10125.9
C2—Fe1—C467.92 (11)O1—C11—C1121.2 (2)
C10—Fe1—C4120.67 (17)O1—C11—C12120.6 (2)
C7—Fe1—C3125.8 (3)C1—C11—C12118.20 (19)
C8—Fe1—C3108.53 (16)C11—C12—C13112.77 (19)
C6—Fe1—C3164.3 (2)C11—C12—H12B109.0
C1—Fe1—C368.62 (10)C13—C12—H12B109.0
C9—Fe1—C3121.62 (14)C11—C12—H12A109.0
C5—Fe1—C367.99 (12)C13—C12—H12A109.0
C2—Fe1—C340.30 (11)H12B—C12—H12A107.8
C10—Fe1—C3155.02 (16)N1—C13—C12113.48 (19)
C4—Fe1—C340.02 (12)N1—C13—H13B108.9
C14—N1—C13121.9 (2)C12—C13—H13B108.9
C14—N1—H1N116.2 (19)N1—C13—H13A108.9
C13—N1—H1N109.9 (19)C12—C13—H13A108.9
C2—C1—C5107.0 (2)H13B—C13—H13A107.7
C2—C1—C11127.8 (2)N1—C14—C15123.3 (2)
C5—C1—C11125.0 (2)N1—C14—C19119.4 (2)
C2—C1—Fe169.89 (13)C15—C14—C19117.2 (2)
C5—C1—Fe169.78 (14)C16—C15—C14120.3 (3)
C11—C1—Fe1121.59 (15)C16—C15—H15119.9
C3—C2—C1108.1 (2)C14—C15—H15119.9
C3—C2—Fe170.65 (14)C17—C16—C15123.0 (3)
C1—C2—Fe168.85 (13)C17—C16—H16118.5
C3—C2—H2125.9C15—C16—H16118.5
C1—C2—H2125.9C16—C17—C18116.4 (3)
Fe1—C2—H2126.1C16—C17—C20122.3 (4)
C4—C3—C2108.5 (2)C18—C17—C20121.3 (4)
C4—C3—Fe169.92 (15)C19—C18—C17121.9 (3)
C2—C3—Fe169.06 (14)C19—C18—H18119.1
C4—C3—H3125.8C17—C18—H18119.1
C2—C3—H3125.8C18—C19—C14121.3 (3)
Fe1—C3—H3126.8C18—C19—H19119.4
C3—C4—C5108.4 (2)C14—C19—H19119.4
C3—C4—Fe170.06 (16)C17—C20—H20A109.5
C5—C4—Fe168.96 (15)C17—C20—H20B109.5
C3—C4—H4125.8H20A—C20—H20B109.5
C5—C4—H4125.8C17—C20—H20C109.5
Fe1—C4—H4126.7H20A—C20—H20C109.5
C4—C5—C1108.0 (2)H20B—C20—H20C109.5
C4—C5—Fe170.60 (17)
C7—Fe1—C1—C282.4 (3)C2—Fe1—C6—C10165.2 (2)
C8—Fe1—C1—C248.2 (5)C4—Fe1—C6—C1041.1 (5)
C6—Fe1—C1—C2126.0 (3)C3—Fe1—C6—C10156.8 (4)
C9—Fe1—C1—C2161.9 (4)C8—Fe1—C6—C741.0 (3)
C5—Fe1—C1—C2117.8 (2)C1—Fe1—C6—C7118.0 (3)
C10—Fe1—C1—C2166.4 (2)C9—Fe1—C6—C783.1 (3)
C4—Fe1—C1—C280.38 (17)C5—Fe1—C6—C7162.1 (3)
C3—Fe1—C1—C237.27 (16)C2—Fe1—C6—C775.2 (3)
C7—Fe1—C1—C5159.8 (3)C10—Fe1—C6—C7119.5 (4)
C8—Fe1—C1—C5166.0 (5)C4—Fe1—C6—C7160.6 (4)
C6—Fe1—C1—C5116.1 (3)C3—Fe1—C6—C737.3 (6)
C9—Fe1—C1—C544.1 (4)C10—C6—C7—C80.5 (4)
C2—Fe1—C1—C5117.8 (2)Fe1—C6—C7—C861.2 (3)
C10—Fe1—C1—C575.8 (2)C10—C6—C7—Fe160.7 (3)
C4—Fe1—C1—C537.45 (16)C8—Fe1—C7—C6114.4 (4)
C3—Fe1—C1—C580.56 (17)C1—Fe1—C7—C682.3 (3)
C7—Fe1—C1—C1140.4 (4)C9—Fe1—C7—C678.1 (3)
C8—Fe1—C1—C1174.6 (5)C5—Fe1—C7—C644.6 (5)
C6—Fe1—C1—C113.2 (3)C2—Fe1—C7—C6126.2 (3)
C9—Fe1—C1—C1175.3 (4)C10—Fe1—C7—C636.2 (3)
C5—Fe1—C1—C11119.4 (2)C4—Fe1—C7—C6154.9 (4)
C2—Fe1—C1—C11122.8 (2)C3—Fe1—C7—C6168.3 (2)
C10—Fe1—C1—C1143.6 (3)C6—Fe1—C7—C8114.4 (4)
C4—Fe1—C1—C11156.8 (2)C1—Fe1—C7—C8163.3 (2)
C3—Fe1—C1—C11160.1 (2)C9—Fe1—C7—C836.3 (3)
C5—C1—C2—C30.2 (3)C5—Fe1—C7—C8159.0 (3)
C11—C1—C2—C3174.9 (2)C2—Fe1—C7—C8119.4 (3)
Fe1—C1—C2—C359.96 (18)C10—Fe1—C7—C878.2 (3)
C5—C1—C2—Fe160.20 (16)C4—Fe1—C7—C840.5 (6)
C11—C1—C2—Fe1115.0 (2)C3—Fe1—C7—C877.3 (3)
C7—Fe1—C2—C3122.7 (4)C6—C7—C8—C90.6 (4)
C8—Fe1—C2—C378.5 (3)Fe1—C7—C8—C961.0 (3)
C6—Fe1—C2—C3165.0 (3)C6—C7—C8—Fe161.6 (3)
C1—Fe1—C2—C3119.3 (2)C7—Fe1—C8—C9118.8 (4)
C9—Fe1—C2—C344.8 (4)C6—Fe1—C8—C978.4 (3)
C5—Fe1—C2—C380.56 (19)C1—Fe1—C8—C9163.9 (3)
C10—Fe1—C2—C3161.2 (5)C5—Fe1—C8—C940.7 (5)
C4—Fe1—C2—C336.92 (18)C2—Fe1—C8—C9159.8 (2)
C7—Fe1—C2—C1118.0 (3)C10—Fe1—C8—C936.1 (3)
C8—Fe1—C2—C1162.2 (2)C4—Fe1—C8—C975.9 (3)
C6—Fe1—C2—C175.6 (3)C3—Fe1—C8—C9117.8 (3)
C9—Fe1—C2—C1164.1 (4)C6—Fe1—C8—C740.3 (3)
C5—Fe1—C2—C138.75 (14)C1—Fe1—C8—C745.2 (6)
C10—Fe1—C2—C141.9 (5)C9—Fe1—C8—C7118.8 (4)
C4—Fe1—C2—C182.40 (16)C5—Fe1—C8—C7159.5 (4)
C3—Fe1—C2—C1119.3 (2)C2—Fe1—C8—C781.5 (4)
C1—C2—C3—C40.1 (3)C10—Fe1—C8—C782.7 (4)
Fe1—C2—C3—C458.98 (19)C4—Fe1—C8—C7165.3 (3)
C1—C2—C3—Fe158.84 (17)C3—Fe1—C8—C7123.4 (3)
C7—Fe1—C3—C4162.2 (3)C7—C8—C9—C100.5 (4)
C8—Fe1—C3—C4119.0 (3)Fe1—C8—C9—C1060.1 (3)
C6—Fe1—C3—C4168.5 (5)C7—C8—C9—Fe159.6 (3)
C1—Fe1—C3—C481.91 (17)C7—Fe1—C9—C839.1 (4)
C9—Fe1—C3—C478.7 (2)C6—Fe1—C9—C884.1 (4)
C5—Fe1—C3—C437.31 (16)C1—Fe1—C9—C8164.1 (4)
C2—Fe1—C3—C4120.1 (2)C5—Fe1—C9—C8162.7 (3)
C10—Fe1—C3—C447.3 (4)C2—Fe1—C9—C847.7 (5)
C7—Fe1—C3—C277.8 (3)C10—Fe1—C9—C8120.7 (4)
C8—Fe1—C3—C2120.9 (3)C4—Fe1—C9—C8121.3 (3)
C6—Fe1—C3—C248.4 (6)C3—Fe1—C9—C880.0 (3)
C1—Fe1—C3—C238.14 (16)C7—Fe1—C9—C1081.5 (4)
C9—Fe1—C3—C2161.3 (2)C8—Fe1—C9—C10120.7 (4)
C5—Fe1—C3—C282.74 (18)C6—Fe1—C9—C1036.6 (3)
C10—Fe1—C3—C2167.4 (3)C1—Fe1—C9—C1043.4 (5)
C4—Fe1—C3—C2120.1 (2)C5—Fe1—C9—C1076.6 (3)
C2—C3—C4—C50.0 (3)C2—Fe1—C9—C10168.3 (3)
Fe1—C3—C4—C558.46 (18)C4—Fe1—C9—C10118.0 (3)
C2—C3—C4—Fe158.45 (19)C3—Fe1—C9—C10159.3 (3)
C7—Fe1—C4—C349.0 (5)C8—C9—C10—C60.1 (4)
C8—Fe1—C4—C379.9 (2)Fe1—C9—C10—C659.3 (2)
C6—Fe1—C4—C3172.6 (3)C8—C9—C10—Fe159.4 (3)
C1—Fe1—C4—C381.73 (16)C7—C6—C10—C90.3 (4)
C9—Fe1—C4—C3119.1 (2)Fe1—C6—C10—C959.6 (3)
C5—Fe1—C4—C3119.9 (2)C7—C6—C10—Fe159.3 (3)
C2—Fe1—C4—C337.16 (16)C7—Fe1—C10—C981.7 (4)
C10—Fe1—C4—C3158.85 (19)C8—Fe1—C10—C936.1 (3)
C7—Fe1—C4—C5169.0 (4)C6—Fe1—C10—C9119.9 (4)
C8—Fe1—C4—C5160.2 (2)C1—Fe1—C10—C9163.2 (2)
C6—Fe1—C4—C552.6 (4)C5—Fe1—C10—C9121.0 (3)
C1—Fe1—C4—C538.22 (15)C2—Fe1—C10—C9164.1 (4)
C9—Fe1—C4—C5120.94 (19)C4—Fe1—C10—C978.7 (3)
C2—Fe1—C4—C582.78 (16)C3—Fe1—C10—C945.4 (5)
C10—Fe1—C4—C581.2 (2)C7—Fe1—C10—C638.3 (3)
C3—Fe1—C4—C5119.9 (2)C8—Fe1—C10—C683.9 (4)
C3—C4—C5—C10.2 (3)C1—Fe1—C10—C676.9 (3)
Fe1—C4—C5—C158.98 (17)C9—Fe1—C10—C6119.9 (4)
C3—C4—C5—Fe159.1 (2)C5—Fe1—C10—C6119.1 (3)
C2—C1—C5—C40.2 (3)C2—Fe1—C10—C644.2 (6)
C11—C1—C5—C4175.1 (2)C4—Fe1—C10—C6161.3 (3)
Fe1—C1—C5—C460.03 (18)C3—Fe1—C10—C6165.3 (4)
C2—C1—C5—Fe160.27 (16)C2—C1—C11—O1179.4 (2)
C11—C1—C5—Fe1115.1 (2)C5—C1—C11—O16.2 (3)
C7—Fe1—C5—C4170.3 (4)Fe1—C1—C11—O192.5 (2)
C8—Fe1—C5—C448.4 (4)C2—C1—C11—C121.5 (3)
C6—Fe1—C5—C4156.9 (2)C5—C1—C11—C12175.9 (2)
C1—Fe1—C5—C4119.1 (2)Fe1—C1—C11—C1289.6 (2)
C9—Fe1—C5—C477.4 (2)O1—C11—C12—C1312.3 (3)
C2—Fe1—C5—C480.42 (17)C1—C11—C12—C13169.82 (19)
C10—Fe1—C5—C4116.9 (2)C14—N1—C13—C1269.9 (3)
C3—Fe1—C5—C436.94 (16)C11—C12—C13—N170.6 (3)
C7—Fe1—C5—C151.1 (5)C13—N1—C14—C1521.2 (4)
C8—Fe1—C5—C1167.6 (4)C13—N1—C14—C19162.0 (2)
C6—Fe1—C5—C183.9 (2)N1—C14—C15—C16176.1 (3)
C9—Fe1—C5—C1163.46 (17)C19—C14—C15—C160.8 (4)
C2—Fe1—C5—C138.73 (14)C14—C15—C16—C170.0 (6)
C10—Fe1—C5—C1123.97 (19)C15—C16—C17—C180.6 (6)
C4—Fe1—C5—C1119.1 (2)C15—C16—C17—C20179.8 (4)
C3—Fe1—C5—C182.20 (16)C16—C17—C18—C190.6 (6)
C7—Fe1—C6—C10119.5 (4)C20—C17—C18—C19179.8 (4)
C8—Fe1—C6—C1078.6 (3)C17—C18—C19—C140.2 (5)
C1—Fe1—C6—C10122.5 (3)N1—C14—C19—C18176.1 (3)
C9—Fe1—C6—C1036.4 (3)C15—C14—C19—C180.9 (4)
C5—Fe1—C6—C1078.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (3)2.31 (4)3.102 (4)161 (3)
C19—H19···O1i0.932.693.455 (4)140
C4—H4···N1ii0.932.643.451 (4)147
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H16NO)]
Mr347.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.553 (2), 9.778 (3), 13.640 (4)
α, β, γ (°)86.83 (2), 74.62 (3), 67.71 (3)
V3)897.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3804, 3519, 2829
Rint0.016
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.05
No. of reflections3519
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision, 2004), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (3)2.31 (4)3.102 (4)161 (3)
C19—H19···O1i0.932.693.455 (4)140
C4—H4···N1ii0.932.643.451 (4)147
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z.
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Serbia (project Nos. 172014, 172035 and 172034).

References

First citationDamljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703–3713.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m231.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPersistence of Vision (2004). POV-RAY. Persistence of Vision Pty Ltd, Williamstown, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37–m40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds