metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ferrocenyl-3-(3-fluoro­anilino)propan-1-one

aFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, b'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Serbia, and cDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me

(Received 18 January 2012; accepted 26 January 2012; online 31 January 2012)

The title ferrocene derivative, [Fe(C5H5)(C14H13FNO)], crystallizes in the same space group with similar unit-cell parameters as the derivatives 3-anilino-1-ferrocenylpropan-1-one [Leka et al. (2012[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.]). Acta Cryst. E68, m229] and 1-ferrocenyl-3-(4-methyl­anilino)propan-1-one [Leka et al. (2012[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230.]). Acta Cryst. E68, m230]. The dihedral angle between the best planes of the benzene ring and the substituted cyclo­penta­dienyl ring is 83.4 (1)°. The presence of the electronegative fluoro substituent in the meta position of the aniline group does not alter the crystal packing compared to the other two derivatives. The molecules are connected into centrosymmetric dimers via N—H⋯O hydrogen bonds. In addition, C—H⋯O and C—H⋯N contacts stabilize the crystal packing.

Related literature

For the physico-chemical properties of ferrocene-based compounds see: Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: VCH.]). For related crystal structures and details of the synthesis see: Damljanović et al. (2011[Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703-3713.]); Stevanović et al. (2012[Stevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37-m40.]); Leka et al. (2012a[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.],b[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H13FNO)]

  • Mr = 351.19

  • Triclinic, [P \overline 1]

  • a = 7.6602 (4) Å

  • b = 9.6438 (4) Å

  • c = 12.0626 (6) Å

  • α = 86.548 (4)°

  • β = 73.590 (4)°

  • γ = 69.138 (4)°

  • V = 797.95 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.892, Tmax = 1.000

  • 6470 measured reflections

  • 3637 independent reflections

  • 2733 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.102

  • S = 1.06

  • 3637 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (3) 2.24 (3) 3.049 (3) 165 (3)
C19—H19⋯O1i 0.93 2.57 3.342 (3) 141
C4—H4⋯N1ii 0.93 2.66 3.517 (3) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). POV-RAY. Persistence of Vision Pty Ltd, Williamstown, Victoria, Australia. URL: http://www.povray.org/ .]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

As a continuation of our research related to ferrocene containing Mannich bases, we analyzed the crystal structure of 1-Ferrocenyl-3-(3-fluorophenylamino)propan-1-one (I). The present compound (Figure 1) exhibits the pronounced similarity to the previous ones, either in bond lengths and angles as well as in molecular conformation. The mutual orientation of the cyclopentadienyl (Cp) rings within the Fc unit, given by the smallest torsion angle C—Cg1—Cg2—C of 4.5° is close to eclipsed one, with small mutual twisting as in the case of 1-Ferrocenyl-3-(phenylamino)propan-1-one (Leka et al., 2012a) and 1- Ferrocenyl-3-(p-tolylamino)propan-1-one (Leka et al., 2012b).

The Cp rings are almost parallel forming the dihedral angle between the Cp ring planes of 1.3 (2)°, while the distances of Fe1 to Cg1 and Cg2 centroids are 1.64 and 1.65 Å, respectively. In accordance with previously observed trend the Fe1···Cg distances toward the substituted Cp ring are 0.01 Å shorter than those toward the unsubstituted ring. The torsion angles within the most flexible, aliphatic part of the molecule (C1—C11—C12—C13—N1) indicate a molecular conformation similar to the previously reported derivatives. The dihedral angle between the best planes of Cp1 and phenyl ring is 83.4 (1)°. It is worth noticing that the presence of the electronegative fuloro substituent on the phenylamino moiety has no influence on the molecule arrangement (Fig. 2), in fact F atom do not participate in any interaction. The closest donor, the cyclopentadienyl C7—H fragment is placed at the distance of 2.69 Å. Molecules exhibit arrangement which is very similar to those observed in phenylamino (Leka et al., 2012a) and tolylamino (Leka et al., 2012b) derivatives.

Related literature top

For the physico-chemical properties of ferrocene-based compounds see: Togni & Hayashi (1995). For related crystal structures and details of the synthesis see: Damljanović et al. (2011); Stevanović et al. (2012); Leka et al. (2012a,b).

Experimental top

The compound was obtained by an aza-Michael addition of the corresponding arylamine to acryloylferrocene. The reaction was performed by microwave (MW) irradiation (500 W/5 min) of a mixture of reactants and montmorillonite K-10, without a solvent as described by Damljanović et al. (2011).

Refinement top

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93 and 0.97 Å from aromatic and methylene C atoms respectively. The Uiso(H) values were equal to 1.2 times Ueq of the corresponding parent atom. H atom attached to N atom was isotropically refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The segment of crystal packing showing the interconnection of the dimers into a chain.
1-Ferrocenyl-3-(3-fluoroanilino)propan-1-one top
Crystal data top
[Fe(C5H5)(C14H13FNO)]Z = 2
Mr = 351.19F(000) = 364
Triclinic, P1Dx = 1.462 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6602 (4) ÅCell parameters from 2586 reflections
b = 9.6438 (4) Åθ = 3.0–29.0°
c = 12.0626 (6) ŵ = 0.96 mm1
α = 86.548 (4)°T = 293 K
β = 73.590 (4)°Prismatic, orange
γ = 69.138 (4)°0.30 × 0.24 × 0.22 mm
V = 797.95 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
3637 independent reflections
Radiation source: Enhance (Mo) X-ray Source2733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.3280 pixels mm-1θmax = 29.0°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1213
Tmin = 0.892, Tmax = 1.000l = 1616
6470 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.0409P]
where P = (Fo2 + 2Fc2)/3
3637 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Fe(C5H5)(C14H13FNO)]γ = 69.138 (4)°
Mr = 351.19V = 797.95 (7) Å3
Triclinic, P1Z = 2
a = 7.6602 (4) ÅMo Kα radiation
b = 9.6438 (4) ŵ = 0.96 mm1
c = 12.0626 (6) ÅT = 293 K
α = 86.548 (4)°0.30 × 0.24 × 0.22 mm
β = 73.590 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
3637 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2733 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 1.000Rint = 0.039
6470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
3637 reflectionsΔρmin = 0.42 e Å3
212 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.00273 (5)0.82243 (4)0.71263 (3)0.04303 (14)
F10.7892 (3)0.3862 (3)0.90812 (18)0.0882 (7)
O10.2719 (2)0.5199 (2)0.48403 (16)0.0499 (5)
N10.4911 (3)0.2934 (3)0.6422 (2)0.0449 (6)
C10.0198 (3)0.6710 (3)0.6119 (2)0.0372 (6)
C20.1753 (3)0.7020 (3)0.7169 (2)0.0448 (7)
H20.19830.63350.77140.054*
C30.2873 (4)0.8550 (3)0.7229 (3)0.0536 (8)
H30.39700.90510.78230.064*
C40.2040 (4)0.9184 (3)0.6233 (3)0.0560 (8)
H40.25041.01780.60570.067*
C50.0400 (4)0.8082 (3)0.5550 (2)0.0473 (7)
H50.04130.82160.48500.057*
C60.2666 (5)0.7445 (4)0.7374 (4)0.0795 (12)
H60.36570.65610.70550.095*
C70.1231 (8)0.7621 (6)0.8431 (4)0.0967 (15)
H70.10920.68790.89410.116*
C80.0042 (6)0.9130 (6)0.8577 (4)0.0878 (12)
H80.10300.95610.92060.105*
C90.0721 (5)0.9861 (4)0.7643 (4)0.0719 (10)
H90.01921.08710.75330.086*
C100.2342 (4)0.8836 (4)0.6881 (3)0.0671 (9)
H100.30740.90400.61760.081*
C110.1432 (3)0.5307 (3)0.5732 (2)0.0363 (6)
C120.1427 (3)0.3981 (3)0.6467 (2)0.0404 (6)
H12A0.03910.36640.64030.048*
H12B0.11580.42750.72700.048*
C130.3347 (3)0.2684 (3)0.6115 (2)0.0443 (7)
H13A0.31680.18030.64830.053*
H13B0.37180.24960.52850.053*
C140.5010 (3)0.2932 (3)0.7547 (2)0.0397 (6)
C150.3909 (4)0.2347 (3)0.8445 (3)0.0551 (8)
H150.29880.20080.83110.066*
C160.4193 (4)0.2273 (4)0.9534 (3)0.0674 (10)
H160.34640.18701.01230.081*
C170.5519 (4)0.2778 (4)0.9769 (3)0.0672 (9)
H170.57060.27231.05020.081*
C180.6549 (4)0.3361 (4)0.8883 (3)0.0553 (8)
C190.6334 (3)0.3462 (3)0.7795 (2)0.0458 (7)
H190.70660.38820.72220.055*
H1N0.541 (4)0.349 (3)0.601 (2)0.044 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0435 (2)0.0423 (2)0.0477 (3)0.01725 (18)0.01646 (18)0.00022 (17)
F10.0864 (13)0.1340 (19)0.0769 (15)0.0679 (14)0.0380 (11)0.0171 (13)
O10.0517 (11)0.0520 (11)0.0418 (12)0.0225 (9)0.0014 (9)0.0042 (9)
N10.0368 (12)0.0494 (14)0.0487 (16)0.0169 (11)0.0119 (11)0.0105 (12)
C10.0404 (13)0.0377 (13)0.0416 (16)0.0184 (11)0.0182 (12)0.0036 (11)
C20.0397 (13)0.0473 (16)0.0511 (18)0.0210 (13)0.0116 (12)0.0060 (13)
C30.0384 (14)0.0529 (18)0.065 (2)0.0101 (14)0.0133 (14)0.0049 (15)
C40.0571 (17)0.0424 (16)0.071 (2)0.0112 (15)0.0320 (16)0.0091 (15)
C50.0583 (16)0.0459 (15)0.0442 (17)0.0215 (14)0.0224 (14)0.0122 (13)
C60.066 (2)0.065 (2)0.123 (4)0.0124 (19)0.061 (2)0.011 (2)
C70.143 (4)0.124 (4)0.089 (3)0.090 (3)0.087 (3)0.050 (3)
C80.086 (3)0.131 (4)0.062 (3)0.058 (3)0.013 (2)0.030 (3)
C90.0600 (19)0.061 (2)0.100 (3)0.0257 (17)0.0199 (19)0.023 (2)
C100.0514 (17)0.078 (2)0.081 (3)0.0330 (18)0.0153 (17)0.0121 (19)
C110.0393 (13)0.0392 (14)0.0380 (15)0.0202 (11)0.0145 (12)0.0032 (11)
C120.0373 (13)0.0434 (15)0.0432 (16)0.0184 (12)0.0109 (11)0.0063 (12)
C130.0461 (14)0.0382 (14)0.0502 (18)0.0169 (12)0.0136 (13)0.0034 (12)
C140.0323 (12)0.0375 (14)0.0425 (16)0.0076 (11)0.0070 (11)0.0054 (11)
C150.0498 (16)0.066 (2)0.059 (2)0.0323 (15)0.0171 (15)0.0151 (16)
C160.0664 (19)0.092 (3)0.050 (2)0.0414 (19)0.0132 (16)0.0199 (18)
C170.070 (2)0.096 (3)0.044 (2)0.037 (2)0.0199 (16)0.0094 (18)
C180.0460 (15)0.069 (2)0.057 (2)0.0261 (15)0.0169 (14)0.0030 (16)
C190.0372 (13)0.0527 (17)0.0475 (18)0.0185 (13)0.0098 (12)0.0090 (13)
Geometric parameters (Å, º) top
Fe—C12.015 (3)C6—C71.402 (5)
Fe—C52.021 (3)C6—H60.9300
Fe—C72.023 (3)C7—C81.405 (6)
Fe—C82.024 (4)C7—H70.9300
Fe—C62.031 (3)C8—C91.368 (5)
Fe—C22.036 (3)C8—H80.9300
Fe—C102.042 (3)C9—C101.398 (4)
Fe—C92.042 (3)C9—H90.9300
Fe—C42.048 (3)C10—H100.9300
Fe—C32.057 (3)C11—C121.511 (3)
F1—C181.362 (3)C12—C131.520 (3)
O1—C111.217 (3)C12—H12A0.9700
N1—C141.380 (4)C12—H12B0.9700
N1—C131.448 (3)C13—H13A0.9700
N1—H1N0.83 (3)C13—H13B0.9700
C1—C51.432 (3)C14—C191.392 (4)
C1—C21.432 (3)C14—C151.397 (4)
C1—C111.467 (3)C15—C161.385 (4)
C2—C31.412 (4)C15—H150.9300
C2—H20.9300C16—C171.371 (4)
C3—C41.408 (4)C16—H160.9300
C3—H30.9300C17—C181.359 (4)
C4—C51.399 (4)C17—H170.9300
C4—H40.9300C18—C191.362 (4)
C5—H50.9300C19—H190.9300
C6—C101.401 (5)
C1—Fe—C541.55 (10)Fe—C4—H4127.0
C1—Fe—C7121.77 (16)C4—C5—C1107.9 (2)
C5—Fe—C7157.2 (2)C4—C5—Fe70.97 (17)
C1—Fe—C8157.73 (16)C1—C5—Fe69.04 (15)
C5—Fe—C8159.81 (17)C4—C5—H5126.1
C7—Fe—C840.61 (17)C1—C5—H5126.1
C1—Fe—C6107.95 (13)Fe—C5—H5125.5
C5—Fe—C6121.21 (15)C10—C6—C7108.0 (3)
C7—Fe—C640.47 (16)C10—C6—Fe70.29 (17)
C8—Fe—C667.65 (16)C7—C6—Fe69.46 (19)
C1—Fe—C241.40 (10)C10—C6—H6126.0
C5—Fe—C269.20 (11)C7—C6—H6126.0
C7—Fe—C2108.79 (14)Fe—C6—H6125.8
C8—Fe—C2122.24 (15)C6—C7—C8107.1 (3)
C6—Fe—C2126.19 (13)C6—C7—Fe70.07 (19)
C1—Fe—C10124.64 (12)C8—C7—Fe69.7 (2)
C5—Fe—C10106.96 (13)C6—C7—H7126.5
C7—Fe—C1067.81 (16)C8—C7—H7126.5
C8—Fe—C1067.08 (15)Fe—C7—H7125.3
C6—Fe—C1040.25 (13)C9—C8—C7108.8 (4)
C2—Fe—C10162.67 (12)C9—C8—Fe71.0 (2)
C1—Fe—C9161.18 (13)C7—C8—Fe69.6 (2)
C5—Fe—C9123.84 (14)C9—C8—H8125.6
C7—Fe—C967.37 (16)C7—C8—H8125.6
C8—Fe—C939.32 (15)Fe—C8—H8125.3
C6—Fe—C967.32 (14)C8—C9—C10108.6 (4)
C2—Fe—C9156.06 (13)C8—C9—Fe69.6 (2)
C10—Fe—C940.02 (13)C10—C9—Fe69.97 (19)
C1—Fe—C468.51 (11)C8—C9—H9125.7
C5—Fe—C440.20 (11)C10—C9—H9125.7
C7—Fe—C4161.8 (2)Fe—C9—H9126.3
C8—Fe—C4124.67 (16)C9—C10—C6107.5 (3)
C6—Fe—C4155.86 (16)C9—C10—Fe70.01 (18)
C2—Fe—C467.94 (11)C6—C10—Fe69.46 (19)
C10—Fe—C4120.74 (14)C9—C10—H10126.2
C9—Fe—C4107.89 (14)C6—C10—H10126.2
C1—Fe—C368.74 (11)Fe—C10—H10125.9
C5—Fe—C368.21 (12)O1—C11—C1121.5 (2)
C7—Fe—C3125.88 (17)O1—C11—C12121.0 (2)
C8—Fe—C3108.67 (14)C1—C11—C12117.5 (2)
C6—Fe—C3162.91 (15)C11—C12—C13112.7 (2)
C2—Fe—C340.37 (10)C11—C12—H12A109.1
C10—Fe—C3155.42 (13)C13—C12—H12A109.1
C9—Fe—C3121.22 (12)C11—C12—H12B109.1
C4—Fe—C340.10 (11)C13—C12—H12B109.1
C14—N1—C13122.9 (2)H12A—C12—H12B107.8
C14—N1—H1N114 (2)N1—C13—C12113.3 (2)
C13—N1—H1N116.5 (18)N1—C13—H13A108.9
C5—C1—C2107.1 (2)C12—C13—H13A108.9
C5—C1—C11125.0 (2)N1—C13—H13B108.9
C2—C1—C11127.6 (2)C12—C13—H13B108.9
C5—C1—Fe69.42 (16)H13A—C13—H13B107.7
C2—C1—Fe70.07 (15)N1—C14—C19119.0 (2)
C11—C1—Fe121.02 (16)N1—C14—C15122.8 (3)
C3—C2—C1107.8 (2)C19—C14—C15118.1 (3)
C3—C2—Fe70.61 (16)C16—C15—C14119.8 (3)
C1—C2—Fe68.53 (14)C16—C15—H15120.1
C3—C2—H2126.1C14—C15—H15120.1
C1—C2—H2126.1C17—C16—C15121.9 (3)
Fe—C2—H2126.3C17—C16—H16119.1
C4—C3—C2108.0 (2)C15—C16—H16119.1
C4—C3—Fe69.62 (15)C18—C17—C16117.0 (3)
C2—C3—Fe69.02 (14)C18—C17—H17121.5
C4—C3—H3126.0C16—C17—H17121.5
C2—C3—H3126.0C17—C18—F1118.7 (3)
Fe—C3—H3127.0C17—C18—C19123.7 (3)
C5—C4—C3109.1 (2)F1—C18—C19117.5 (3)
C5—C4—Fe68.83 (15)C18—C19—C14119.5 (3)
C3—C4—Fe70.28 (15)C18—C19—H19120.3
C5—C4—H4125.4C14—C19—H19120.3
C3—C4—H4125.4
C7—Fe—C1—C5159.4 (2)C9—Fe—C6—C1037.7 (2)
C8—Fe—C1—C5168.2 (3)C4—Fe—C6—C1045.5 (4)
C6—Fe—C1—C5117.1 (2)C3—Fe—C6—C10161.3 (4)
C2—Fe—C1—C5118.1 (2)C1—Fe—C6—C7118.2 (3)
C10—Fe—C1—C575.8 (2)C5—Fe—C6—C7161.9 (2)
C9—Fe—C1—C544.9 (4)C8—Fe—C6—C738.5 (2)
C4—Fe—C1—C537.50 (16)C2—Fe—C6—C776.0 (3)
C3—Fe—C1—C580.70 (16)C10—Fe—C6—C7118.9 (3)
C5—Fe—C1—C2118.1 (2)C9—Fe—C6—C781.2 (3)
C7—Fe—C1—C282.6 (2)C4—Fe—C6—C7164.4 (3)
C8—Fe—C1—C250.1 (4)C3—Fe—C6—C742.3 (6)
C6—Fe—C1—C2124.83 (19)C10—C6—C7—C80.2 (4)
C10—Fe—C1—C2166.12 (17)Fe—C6—C7—C860.2 (2)
C9—Fe—C1—C2163.0 (3)C10—C6—C7—Fe60.0 (2)
C4—Fe—C1—C280.57 (16)C1—Fe—C7—C680.4 (2)
C3—Fe—C1—C237.36 (15)C5—Fe—C7—C643.3 (5)
C5—Fe—C1—C11119.3 (3)C8—Fe—C7—C6117.8 (3)
C7—Fe—C1—C1140.1 (3)C2—Fe—C7—C6124.2 (2)
C8—Fe—C1—C1172.6 (4)C10—Fe—C7—C637.6 (2)
C6—Fe—C1—C112.1 (3)C9—Fe—C7—C681.1 (2)
C2—Fe—C1—C11122.7 (3)C4—Fe—C7—C6159.4 (4)
C10—Fe—C1—C1143.4 (3)C3—Fe—C7—C6165.9 (2)
C9—Fe—C1—C1174.3 (4)C1—Fe—C7—C8161.8 (2)
C4—Fe—C1—C11156.7 (2)C5—Fe—C7—C8161.1 (3)
C3—Fe—C1—C11160.0 (2)C6—Fe—C7—C8117.8 (3)
C5—C1—C2—C30.1 (3)C2—Fe—C7—C8118.0 (2)
C11—C1—C2—C3174.3 (2)C10—Fe—C7—C880.2 (3)
Fe—C1—C2—C359.91 (19)C9—Fe—C7—C836.7 (2)
C5—C1—C2—Fe59.81 (18)C4—Fe—C7—C841.6 (6)
C11—C1—C2—Fe114.4 (3)C3—Fe—C7—C876.3 (3)
C1—Fe—C2—C3119.2 (2)C6—C7—C8—C90.1 (4)
C5—Fe—C2—C380.42 (18)Fe—C7—C8—C960.5 (3)
C7—Fe—C2—C3123.8 (2)C6—C7—C8—Fe60.4 (2)
C8—Fe—C2—C380.9 (2)C1—Fe—C8—C9163.9 (3)
C6—Fe—C2—C3165.4 (2)C5—Fe—C8—C939.3 (5)
C10—Fe—C2—C3160.7 (4)C7—Fe—C8—C9119.4 (3)
C9—Fe—C2—C347.4 (4)C6—Fe—C8—C981.0 (2)
C4—Fe—C2—C337.11 (17)C2—Fe—C8—C9159.27 (18)
C5—Fe—C2—C138.76 (14)C10—Fe—C8—C937.3 (2)
C7—Fe—C2—C1117.1 (2)C4—Fe—C8—C975.2 (3)
C8—Fe—C2—C1159.89 (19)C3—Fe—C8—C9116.8 (2)
C6—Fe—C2—C175.4 (2)C1—Fe—C8—C744.5 (5)
C10—Fe—C2—C141.5 (5)C5—Fe—C8—C7158.7 (4)
C9—Fe—C2—C1166.5 (3)C6—Fe—C8—C738.4 (2)
C4—Fe—C2—C182.07 (16)C2—Fe—C8—C781.3 (3)
C3—Fe—C2—C1119.2 (2)C10—Fe—C8—C782.1 (3)
C1—C2—C3—C40.2 (3)C9—Fe—C8—C7119.4 (3)
Fe—C2—C3—C458.9 (2)C4—Fe—C8—C7165.4 (2)
C1—C2—C3—Fe58.60 (18)C3—Fe—C8—C7123.8 (3)
C1—Fe—C3—C481.48 (19)C7—C8—C9—C100.4 (4)
C5—Fe—C3—C436.66 (18)Fe—C8—C9—C1059.3 (2)
C7—Fe—C3—C4164.0 (2)C7—C8—C9—Fe59.6 (3)
C8—Fe—C3—C4122.1 (2)C1—Fe—C9—C8160.9 (3)
C6—Fe—C3—C4163.4 (5)C5—Fe—C9—C8164.7 (2)
C2—Fe—C3—C4119.8 (3)C7—Fe—C9—C837.9 (2)
C10—Fe—C3—C446.5 (4)C6—Fe—C9—C881.9 (3)
C9—Fe—C3—C480.7 (2)C2—Fe—C9—C847.5 (4)
C1—Fe—C3—C238.28 (16)C10—Fe—C9—C8119.9 (3)
C5—Fe—C3—C283.11 (18)C4—Fe—C9—C8123.3 (2)
C7—Fe—C3—C276.3 (3)C3—Fe—C9—C881.4 (3)
C8—Fe—C3—C2118.2 (2)C1—Fe—C9—C1041.1 (5)
C6—Fe—C3—C243.6 (5)C5—Fe—C9—C1075.4 (3)
C10—Fe—C3—C2166.3 (3)C7—Fe—C9—C1082.0 (3)
C9—Fe—C3—C2159.6 (2)C8—Fe—C9—C10119.9 (3)
C4—Fe—C3—C2119.8 (3)C6—Fe—C9—C1037.9 (2)
C2—C3—C4—C50.5 (3)C2—Fe—C9—C10167.4 (3)
Fe—C3—C4—C558.0 (2)C4—Fe—C9—C10116.8 (2)
C2—C3—C4—Fe58.5 (2)C3—Fe—C9—C10158.7 (2)
C1—Fe—C4—C538.72 (16)C8—C9—C10—C60.5 (4)
C7—Fe—C4—C5166.6 (4)Fe—C9—C10—C659.6 (2)
C8—Fe—C4—C5161.7 (2)C8—C9—C10—Fe59.1 (2)
C6—Fe—C4—C547.3 (4)C7—C6—C10—C90.4 (4)
C2—Fe—C4—C583.46 (18)Fe—C6—C10—C959.9 (2)
C10—Fe—C4—C579.8 (2)C7—C6—C10—Fe59.5 (2)
C9—Fe—C4—C5121.65 (19)C1—Fe—C10—C9165.1 (2)
C3—Fe—C4—C5120.8 (3)C5—Fe—C10—C9122.8 (2)
C1—Fe—C4—C382.09 (18)C7—Fe—C10—C980.8 (3)
C5—Fe—C4—C3120.8 (3)C8—Fe—C10—C936.6 (2)
C7—Fe—C4—C345.8 (5)C6—Fe—C10—C9118.6 (3)
C8—Fe—C4—C377.5 (2)C2—Fe—C10—C9162.7 (4)
C6—Fe—C4—C3168.2 (3)C4—Fe—C10—C981.2 (3)
C2—Fe—C4—C337.35 (18)C3—Fe—C10—C948.3 (4)
C10—Fe—C4—C3159.44 (18)C1—Fe—C10—C676.3 (3)
C9—Fe—C4—C3117.5 (2)C5—Fe—C10—C6118.6 (2)
C3—C4—C5—C10.6 (3)C7—Fe—C10—C637.8 (2)
Fe—C4—C5—C159.42 (18)C8—Fe—C10—C682.0 (3)
C3—C4—C5—Fe58.8 (2)C2—Fe—C10—C644.1 (5)
C2—C1—C5—C40.4 (3)C9—Fe—C10—C6118.6 (3)
C11—C1—C5—C4174.8 (2)C4—Fe—C10—C6160.2 (2)
Fe—C1—C5—C460.6 (2)C3—Fe—C10—C6166.9 (3)
C2—C1—C5—Fe60.22 (18)C5—C1—C11—O13.5 (4)
C11—C1—C5—Fe114.1 (2)C2—C1—C11—O1176.7 (3)
C1—Fe—C5—C4118.7 (2)Fe—C1—C11—O188.9 (3)
C7—Fe—C5—C4169.2 (3)C5—C1—C11—C12178.2 (2)
C8—Fe—C5—C448.4 (4)C2—C1—C11—C125.0 (4)
C6—Fe—C5—C4159.41 (19)Fe—C1—C11—C1292.8 (2)
C2—Fe—C5—C480.03 (18)O1—C11—C12—C1312.5 (4)
C10—Fe—C5—C4117.84 (19)C1—C11—C12—C13169.1 (2)
C9—Fe—C5—C477.3 (2)C14—N1—C13—C1272.1 (3)
C3—Fe—C5—C436.57 (17)C11—C12—C13—N171.8 (3)
C7—Fe—C5—C150.6 (4)C13—N1—C14—C19167.6 (2)
C8—Fe—C5—C1167.0 (3)C13—N1—C14—C1515.9 (4)
C6—Fe—C5—C181.9 (2)N1—C14—C15—C16174.8 (3)
C2—Fe—C5—C138.62 (14)C19—C14—C15—C161.7 (4)
C10—Fe—C5—C1123.50 (17)C14—C15—C16—C170.8 (5)
C9—Fe—C5—C1164.08 (15)C15—C16—C17—C180.2 (5)
C4—Fe—C5—C1118.7 (2)C16—C17—C18—F1179.4 (3)
C3—Fe—C5—C182.09 (16)C16—C17—C18—C190.2 (5)
C1—Fe—C6—C10122.8 (2)C17—C18—C19—C140.7 (5)
C5—Fe—C6—C1079.2 (2)F1—C18—C19—C14178.5 (3)
C7—Fe—C6—C10118.9 (3)N1—C14—C19—C18175.0 (2)
C8—Fe—C6—C1080.4 (3)C15—C14—C19—C181.6 (4)
C2—Fe—C6—C10165.10 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (3)2.24 (3)3.049 (3)165 (3)
C19—H19···O1i0.932.573.342 (3)141
C4—H4···N1ii0.932.663.517 (3)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H13FNO)]
Mr351.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6602 (4), 9.6438 (4), 12.0626 (6)
α, β, γ (°)86.548 (4), 73.590 (4), 69.138 (4)
V3)797.95 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.892, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6470, 3637, 2733
Rint0.039
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.102, 1.06
No. of reflections3637
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.42

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision, 2004), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (3)2.24 (3)3.049 (3)165 (3)
C19—H19···O1i0.932.573.342 (3)141
C4—H4···N1ii0.932.663.517 (3)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z.
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Serbia (project Nos. 172014, 172035 and 172034). We thank Dr Vladimir Divjaković for help with the X-ray data collection.

References

First citationDamljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703–3713.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPersistence of Vision (2004). POV-RAY. Persistence of Vision Pty Ltd, Williamstown, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37–m40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds