metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m223-m224

Poly[tri­aqua­[μ4-3-(4-carboxyl­atophen­­oxy)propionato-κ4O:O′:O′′:O′′′][μ3-3-(4-carboxyl­atophen­­oxy)propionato-κ3O:O′:O′′]dizinc]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 January 2012; accepted 25 January 2012; online 31 January 2012)

The coordination polymer [Zn2(C10H8O5)2(H2O)3]n adopts a layer structure in which the two independent ZnII ions exist in trigonal–bipyramidal coordination geometries. One carboxyl­ate dianion binds to a monoaqua-coordinated metal ion through the aliphatic carboxyl­ate end and to the diaqua-coordinated metal ion through the aromatic carboxyl­ate end; the other dianion binds in the reverse manner. Three of the four carboxyl­ate ends of the two dianions are also engaged in bridging inter­actions; these lead to a layer structure parallel to (100). Adjacent layers are linked by O—Hwater⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the cobalt(II) derivative of 3-(4-carb­oxy­phen­oxy)­propionic acid, see: Xiao et al. (2006[Xiao, Y.-H., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m2274-m2276.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C10H8O5)2(H2O)3]

  • Mr = 601.12

  • Triclinic, [P \overline 1]

  • a = 7.6518 (3) Å

  • b = 11.3553 (5) Å

  • c = 13.5294 (6) Å

  • α = 77.2436 (14)°

  • β = 85.6236 (13)°

  • γ = 73.3105 (13)°

  • V = 1098.13 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 293 K

  • 0.17 × 0.13 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.700, Tmax = 0.790

  • 10809 measured reflections

  • 4954 independent reflections

  • 4160 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.04

  • 4954 reflections

  • 334 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O4i 0.83 (1) 1.99 (1) 2.781 (2) 159 (2)
O1W—H12⋯O4ii 0.83 (1) 1.94 (1) 2.768 (2) 173 (2)
O2W—H21⋯O4iii 0.83 (1) 2.13 (2) 2.854 (2) 145 (2)
O2W—H22⋯O7iv 0.84 (1) 1.98 (1) 2.776 (2) 158 (2)
O3W—H31⋯O2v 0.83 (1) 1.91 (2) 2.700 (2) 158 (3)
O3W—H32⋯O9vi 0.84 (1) 2.31 (2) 3.026 (2) 143 (3)
Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+2, -z+1; (iii) x, y, z-1; (iv) -x+1, -y+1, -z+1; (v) -x, -y+2, -z+1; (vi) x-1, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We reported the crystal structure of 3-(4-carboxyphenoxy)propropionic acid. We also reported the crystal structures of some metal derivatives. In the water-coordinated cobalt(II) derivative, two tetraaquacobalt cations are bridged by two 3-(4-carboxylatophenoxy)propionate dianions across a center of inversion to form a dinuclear molecule (Xiao et al., 2006). The title coordination polymer (Scheme I) adopts a layer structure in which the two independent ZnII atoms exist in trigonal bipyramidal geometries. One carboxylate dianion binds to a mono-aqua coordinated metal atom through the aliphatic carboxyl end and to the di-aqua coordinated metal atom through the aromatic carboxyl end; the other dianion binds in the reverse manner (Fig.1). Three of the four carboxyl ends of the two dianions are also engaged in bridging interactions; these lead to a layer structure. Adjacent layers are linked by O–Hwater···O hydrogen bonds into a three-dimensional network (Table 1).

Related literature top

For the cobalt(II) derivative of 3-(4-carboxyphenoxy)propionic acid, see: Xiao et al. (2006).

Experimental top

Zinc acetate (1 mmol) and 3-(4-carboxyphenoxy)propionic acid (1 mmol) were dissolved in water (10 ml). Sodium hydroxide (1 M) was added in drops until the solution registered a pH of 7. The solution was then set aside for the growth of colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2–1.5U(C). The water H-atoms were located in a difference Fouier map, and were refined with distance restraints of O–H 0.84±0.01 and H···H 1.37±0.01 Å; their displacement factors were set to 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of a portion of polymeric [Zn2(H2O)3(C10H8O5)2]n at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Poly[triaqua[µ4-3-(4-carboxylatophenoxy)propionato- κ4O:O':O'':O'''][µ3-3-(4- carboxylatophenoxy)propionato-κ3O:O':O'']dizinc] top
Crystal data top
[Zn2(C10H8O5)2(H2O)3]Z = 2
Mr = 601.12F(000) = 612
Triclinic, P1Dx = 1.818 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6518 (3) ÅCell parameters from 8993 reflections
b = 11.3553 (5) Åθ = 3.1–27.5°
c = 13.5294 (6) ŵ = 2.26 mm1
α = 77.2436 (14)°T = 293 K
β = 85.6236 (13)°Prism, colorless
γ = 73.3105 (13)°0.17 × 0.13 × 0.11 mm
V = 1098.13 (8) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4954 independent reflections
Radiation source: fine-focus sealed tube4160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.700, Tmax = 0.790k = 1414
10809 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.4093P]
where P = (Fo2 + 2Fc2)/3
4954 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.45 e Å3
9 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn2(C10H8O5)2(H2O)3]γ = 73.3105 (13)°
Mr = 601.12V = 1098.13 (8) Å3
Triclinic, P1Z = 2
a = 7.6518 (3) ÅMo Kα radiation
b = 11.3553 (5) ŵ = 2.26 mm1
c = 13.5294 (6) ÅT = 293 K
α = 77.2436 (14)°0.17 × 0.13 × 0.11 mm
β = 85.6236 (13)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4954 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4160 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.790Rint = 0.019
10809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0269 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.45 e Å3
4954 reflectionsΔρmin = 0.45 e Å3
334 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.63992 (3)0.83763 (2)0.070119 (16)0.02491 (8)
Zn20.26901 (4)0.60896 (2)0.918931 (17)0.03034 (8)
O10.54606 (19)0.99522 (13)0.12262 (11)0.0303 (3)
O20.3096 (2)1.16123 (14)0.07830 (10)0.0327 (3)
O30.1731 (2)1.04925 (14)0.55209 (10)0.0362 (4)
O40.1231 (2)0.89307 (14)0.90191 (11)0.0338 (3)
O50.2209 (2)0.75470 (14)0.80329 (11)0.0367 (4)
O60.5517 (2)0.57863 (14)0.89038 (11)0.0354 (4)
O70.7337 (2)0.38375 (14)0.93679 (10)0.0340 (3)
O80.8141 (2)0.43774 (14)0.46231 (10)0.0385 (4)
O90.7217 (2)0.55924 (13)0.10884 (11)0.0329 (3)
O100.7013 (2)0.70540 (13)0.19529 (11)0.0324 (3)
O1W0.9003 (2)0.86744 (15)0.07296 (12)0.0335 (3)
H110.959 (3)0.860 (2)0.0192 (13)0.050*
H120.888 (4)0.9382 (14)0.0853 (18)0.050*
O2W0.3716 (2)0.83032 (16)0.06475 (12)0.0380 (4)
H210.328 (4)0.870 (2)0.0085 (12)0.057*
H220.361 (4)0.7572 (12)0.077 (2)0.057*
O3W0.0265 (2)0.62923 (17)0.93647 (14)0.0452 (4)
H310.105 (3)0.6968 (18)0.9157 (19)0.068*
H320.048 (4)0.600 (3)0.9969 (10)0.068*
C10.4045 (3)1.07348 (18)0.14434 (14)0.0234 (4)
C20.3465 (3)1.06585 (18)0.25246 (14)0.0245 (4)
C30.2374 (3)1.17051 (19)0.28675 (15)0.0279 (4)
H30.19991.24720.24130.033*
C40.1841 (3)1.16205 (19)0.38719 (15)0.0298 (4)
H40.11331.23320.40920.036*
C50.2360 (3)1.0472 (2)0.45583 (15)0.0281 (4)
C60.3438 (3)0.9416 (2)0.42285 (16)0.0341 (5)
H60.37810.86460.46810.041*
C70.4005 (3)0.9514 (2)0.32176 (16)0.0312 (5)
H70.47510.88100.30020.037*
C80.2217 (3)0.93520 (19)0.62779 (15)0.0296 (4)
H8A0.35310.90330.63430.036*
H8B0.17500.87130.61080.036*
C90.1340 (3)0.97182 (19)0.72457 (15)0.0286 (4)
H9A0.18241.03650.73860.034*
H9B0.00401.00820.71390.034*
C100.1618 (3)0.86549 (19)0.81669 (14)0.0246 (4)
C110.6559 (3)0.4798 (2)0.86980 (15)0.0275 (4)
C120.6964 (3)0.46932 (19)0.76157 (14)0.0267 (4)
C130.6249 (3)0.57192 (19)0.68433 (15)0.0288 (4)
H130.55070.64580.70070.035*
C140.6621 (3)0.5661 (2)0.58321 (15)0.0325 (5)
H140.61530.63610.53240.039*
C150.7701 (3)0.4548 (2)0.55855 (15)0.0288 (4)
C160.8419 (3)0.3509 (2)0.63521 (16)0.0335 (5)
H160.91310.27620.61870.040*
C170.8074 (3)0.3587 (2)0.73571 (15)0.0318 (5)
H170.85840.28990.78660.038*
C180.7454 (3)0.54209 (19)0.38040 (14)0.0294 (4)
H18A0.79400.61140.38310.035*
H18B0.61330.57080.38380.035*
C190.8078 (3)0.49400 (19)0.28414 (14)0.0278 (4)
H19A0.94010.46770.28150.033*
H19B0.76530.42100.28540.033*
C200.7379 (3)0.59226 (18)0.18999 (14)0.0226 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03290 (14)0.02110 (12)0.01676 (12)0.00311 (9)0.00282 (9)0.00263 (9)
Zn20.04902 (16)0.02167 (13)0.01550 (12)0.00240 (10)0.00106 (10)0.00351 (9)
O10.0326 (8)0.0254 (7)0.0311 (8)0.0037 (6)0.0074 (6)0.0105 (6)
O20.0363 (8)0.0361 (8)0.0169 (7)0.0019 (6)0.0014 (6)0.0039 (6)
O30.0516 (10)0.0296 (8)0.0173 (7)0.0020 (7)0.0065 (6)0.0012 (6)
O40.0487 (9)0.0341 (8)0.0196 (7)0.0153 (7)0.0066 (6)0.0047 (6)
O50.0563 (10)0.0235 (7)0.0211 (7)0.0011 (7)0.0014 (7)0.0002 (6)
O60.0450 (9)0.0317 (8)0.0274 (8)0.0068 (7)0.0057 (7)0.0088 (6)
O70.0493 (9)0.0333 (8)0.0146 (7)0.0046 (7)0.0004 (6)0.0044 (6)
O80.0595 (10)0.0306 (8)0.0141 (7)0.0012 (7)0.0011 (7)0.0001 (6)
O90.0518 (9)0.0240 (7)0.0197 (7)0.0048 (7)0.0053 (6)0.0037 (6)
O100.0538 (9)0.0205 (7)0.0219 (7)0.0101 (6)0.0048 (7)0.0007 (6)
O1W0.0325 (8)0.0375 (9)0.0313 (8)0.0102 (7)0.0100 (6)0.0117 (7)
O2W0.0416 (9)0.0407 (9)0.0327 (9)0.0189 (8)0.0044 (7)0.0014 (7)
O3W0.0379 (9)0.0383 (10)0.0460 (11)0.0004 (7)0.0048 (8)0.0038 (8)
C10.0284 (10)0.0228 (9)0.0205 (9)0.0086 (8)0.0031 (8)0.0068 (7)
C20.0279 (10)0.0259 (10)0.0179 (9)0.0056 (8)0.0015 (7)0.0036 (7)
C30.0372 (11)0.0221 (9)0.0198 (9)0.0042 (8)0.0003 (8)0.0004 (7)
C40.0398 (11)0.0230 (10)0.0214 (10)0.0017 (8)0.0026 (8)0.0039 (8)
C50.0333 (11)0.0305 (11)0.0172 (9)0.0071 (8)0.0017 (8)0.0013 (8)
C60.0440 (13)0.0238 (10)0.0244 (10)0.0011 (9)0.0019 (9)0.0041 (8)
C70.0356 (11)0.0246 (10)0.0261 (10)0.0003 (8)0.0042 (9)0.0031 (8)
C80.0382 (11)0.0270 (10)0.0181 (9)0.0056 (9)0.0010 (8)0.0016 (8)
C90.0370 (11)0.0249 (10)0.0197 (9)0.0068 (8)0.0014 (8)0.0012 (8)
C100.0265 (10)0.0272 (10)0.0187 (9)0.0083 (8)0.0011 (7)0.0009 (8)
C110.0335 (10)0.0298 (10)0.0196 (9)0.0101 (8)0.0021 (8)0.0051 (8)
C120.0338 (11)0.0292 (10)0.0164 (9)0.0092 (8)0.0012 (8)0.0033 (8)
C130.0363 (11)0.0243 (10)0.0231 (10)0.0049 (8)0.0004 (8)0.0042 (8)
C140.0469 (13)0.0271 (10)0.0183 (9)0.0057 (9)0.0013 (9)0.0003 (8)
C150.0392 (11)0.0289 (10)0.0165 (9)0.0079 (9)0.0005 (8)0.0028 (8)
C160.0436 (12)0.0276 (11)0.0218 (10)0.0006 (9)0.0022 (9)0.0027 (8)
C170.0392 (12)0.0283 (11)0.0204 (10)0.0017 (9)0.0007 (9)0.0005 (8)
C180.0416 (12)0.0264 (10)0.0158 (9)0.0068 (9)0.0003 (8)0.0005 (8)
C190.0395 (11)0.0228 (10)0.0166 (9)0.0051 (8)0.0003 (8)0.0006 (7)
C200.0267 (9)0.0236 (9)0.0155 (8)0.0071 (7)0.0032 (7)0.0010 (7)
Geometric parameters (Å, º) top
Zn1—O11.9919 (14)C2—C71.397 (3)
Zn1—O2i2.0136 (14)C3—C41.379 (3)
Zn1—O101.9840 (14)C3—H30.9300
Zn1—O1W2.1188 (15)C4—C51.395 (3)
Zn1—O2W2.0855 (16)C4—H40.9300
Zn2—O51.9791 (14)C5—C61.389 (3)
Zn2—O62.1093 (16)C6—C71.393 (3)
Zn2—O9ii2.0073 (15)C6—H60.9300
Zn2—O7iii1.9702 (14)C7—H70.9300
Zn2—O3W2.2055 (17)C8—C91.511 (3)
O1—C11.250 (2)C8—H8A0.9700
O2—C11.268 (2)C8—H8B0.9700
O2—Zn1i2.0136 (14)C9—C101.512 (3)
O3—C51.356 (2)C9—H9A0.9700
O3—C81.435 (2)C9—H9B0.9700
O4—C101.253 (2)C11—C121.497 (3)
O5—C101.258 (2)C12—C131.390 (3)
O6—C111.250 (3)C12—C171.399 (3)
O7—C111.280 (2)C13—C141.388 (3)
O7—Zn2iii1.9702 (14)C13—H130.9300
O8—C151.361 (2)C14—C151.392 (3)
O8—C181.435 (2)C14—H140.9300
O9—C201.261 (2)C15—C161.394 (3)
O9—Zn2ii2.0073 (15)C16—C171.383 (3)
O10—C201.251 (2)C16—H160.9300
O1W—H110.833 (9)C17—H170.9300
O1W—H120.834 (9)C18—C191.514 (3)
O2W—H210.832 (9)C18—H18A0.9700
O2W—H220.836 (10)C18—H18B0.9700
O3W—H310.833 (10)C19—C201.512 (2)
O3W—H320.835 (10)C19—H19A0.9700
C1—C21.487 (3)C19—H19B0.9700
C2—C31.393 (3)
O10—Zn1—O1103.22 (6)C7—C6—H6120.1
O10—Zn1—O2i133.60 (6)C6—C7—C2120.67 (19)
O1—Zn1—O2i122.33 (6)C6—C7—H7119.7
O10—Zn1—O2W95.04 (7)C2—C7—H7119.7
O1—Zn1—O2W88.80 (7)O3—C8—C9104.73 (16)
O2i—Zn1—O2W94.31 (7)O3—C8—H8A110.8
O10—Zn1—O1W89.29 (6)C9—C8—H8A110.8
O1—Zn1—O1W85.51 (6)O3—C8—H8B110.8
O2i—Zn1—O1W86.15 (6)C9—C8—H8B110.8
O2W—Zn1—O1W173.51 (6)H8A—C8—H8B108.9
O7iii—Zn2—O5126.07 (6)C10—C9—C8115.08 (17)
O7iii—Zn2—O9ii115.44 (6)C10—C9—H9A108.5
O5—Zn2—O9ii117.57 (6)C8—C9—H9A108.5
O7iii—Zn2—O698.39 (6)C10—C9—H9B108.5
O5—Zn2—O689.55 (7)C8—C9—H9B108.5
O9ii—Zn2—O691.48 (6)H9A—C9—H9B107.5
O7iii—Zn2—O3W86.84 (7)O4—C10—O5123.89 (18)
O5—Zn2—O3W89.82 (7)O4—C10—C9117.94 (18)
O9ii—Zn2—O3W83.49 (7)O5—C10—C9118.18 (17)
O6—Zn2—O3W173.95 (7)O6—C11—O7123.78 (18)
C1—O1—Zn1144.10 (14)O6—C11—C12120.02 (18)
C1—O2—Zn1i119.96 (13)O7—C11—C12116.20 (18)
C5—O3—C8118.82 (16)C13—C12—C17118.71 (18)
C10—O5—Zn2121.42 (13)C13—C12—C11119.70 (18)
C11—O6—Zn2124.43 (15)C17—C12—C11121.58 (17)
C11—O7—Zn2iii121.58 (13)C14—C13—C12121.23 (19)
C15—O8—C18117.79 (16)C14—C13—H13119.4
C20—O9—Zn2ii131.33 (13)C12—C13—H13119.4
C20—O10—Zn1119.49 (12)C13—C14—C15119.43 (18)
Zn1—O1W—H11112.2 (19)C13—C14—H14120.3
Zn1—O1W—H12109.3 (19)C15—C14—H14120.3
H11—O1W—H12111.0 (16)O8—C15—C14124.62 (18)
Zn1—O2W—H21109 (2)O8—C15—C16115.42 (18)
Zn1—O2W—H22114 (2)C14—C15—C16119.96 (19)
H21—O2W—H22110.4 (16)C17—C16—C15120.07 (19)
Zn2—O3W—H31123 (2)C17—C16—H16120.0
Zn2—O3W—H32108 (2)C15—C16—H16120.0
H31—O3W—H32110.0 (16)C16—C17—C12120.56 (18)
O1—C1—O2122.88 (18)C16—C17—H17119.7
O1—C1—C2118.88 (17)C12—C17—H17119.7
O2—C1—C2118.22 (17)O8—C18—C19105.89 (16)
C3—C2—C7118.70 (18)O8—C18—H18A110.6
C3—C2—C1121.49 (17)C19—C18—H18A110.6
C7—C2—C1119.80 (18)O8—C18—H18B110.6
C4—C3—C2120.90 (18)C19—C18—H18B110.6
C4—C3—H3119.5H18A—C18—H18B108.7
C2—C3—H3119.5C20—C19—C18112.35 (16)
C3—C4—C5120.22 (19)C20—C19—H19A109.1
C3—C4—H4119.9C18—C19—H19A109.1
C5—C4—H4119.9C20—C19—H19B109.1
O3—C5—C6125.13 (18)C18—C19—H19B109.1
O3—C5—C4115.20 (18)H19A—C19—H19B107.9
C6—C5—C4119.68 (18)O10—C20—O9122.00 (17)
C5—C6—C7119.81 (18)O10—C20—C19117.89 (17)
C5—C6—H6120.1O9—C20—C19120.09 (17)
O10—Zn1—O1—C197.8 (2)C5—O3—C8—C9178.69 (18)
O2i—Zn1—O1—C191.4 (2)O3—C8—C9—C10178.60 (17)
O2W—Zn1—O1—C13.0 (2)Zn2—O5—C10—O42.4 (3)
O1W—Zn1—O1—C1173.9 (2)Zn2—O5—C10—C9178.16 (14)
O7iii—Zn2—O5—C109.1 (2)C8—C9—C10—O4166.79 (19)
O9ii—Zn2—O5—C10159.36 (15)C8—C9—C10—O513.7 (3)
O6—Zn2—O5—C10109.21 (17)Zn2—O6—C11—O786.4 (2)
O3W—Zn2—O5—C1076.81 (17)Zn2—O6—C11—C1293.8 (2)
O7iii—Zn2—O6—C11113.26 (16)Zn2iii—O7—C11—O610.7 (3)
O5—Zn2—O6—C11120.30 (16)Zn2iii—O7—C11—C12169.15 (14)
O9ii—Zn2—O6—C112.73 (16)O6—C11—C12—C133.2 (3)
O1—Zn1—O10—C20168.90 (15)O7—C11—C12—C13176.66 (19)
O2i—Zn1—O10—C2021.89 (19)O6—C11—C12—C17177.8 (2)
O2W—Zn1—O10—C2078.96 (16)O7—C11—C12—C172.4 (3)
O1W—Zn1—O10—C20105.88 (16)C17—C12—C13—C140.2 (3)
Zn1—O1—C1—O280.4 (3)C11—C12—C13—C14178.9 (2)
Zn1—O1—C1—C2101.1 (2)C12—C13—C14—C151.3 (3)
Zn1i—O2—C1—O110.1 (3)C18—O8—C15—C140.4 (3)
Zn1i—O2—C1—C2171.43 (13)C18—O8—C15—C16179.35 (19)
O1—C1—C2—C3155.8 (2)C13—C14—C15—O8179.3 (2)
O2—C1—C2—C322.7 (3)C13—C14—C15—C160.9 (3)
O1—C1—C2—C724.7 (3)O8—C15—C16—C17179.2 (2)
O2—C1—C2—C7156.8 (2)C14—C15—C16—C170.6 (4)
C7—C2—C3—C40.3 (3)C15—C16—C17—C121.8 (4)
C1—C2—C3—C4179.79 (19)C13—C12—C17—C161.4 (3)
C2—C3—C4—C51.3 (3)C11—C12—C17—C16179.6 (2)
C8—O3—C5—C60.9 (3)C15—O8—C18—C19177.33 (19)
C8—O3—C5—C4179.40 (19)O8—C18—C19—C20177.22 (17)
C3—C4—C5—O3178.8 (2)Zn1—O10—C20—O96.3 (3)
C3—C4—C5—C60.9 (3)Zn1—O10—C20—C19172.15 (13)
O3—C5—C6—C7179.8 (2)Zn2ii—O9—C20—O10169.17 (15)
C4—C5—C6—C70.5 (3)Zn2ii—O9—C20—C1912.4 (3)
C5—C6—C7—C21.5 (3)C18—C19—C20—O1025.9 (3)
C3—C2—C7—C61.1 (3)C18—C19—C20—O9155.68 (19)
C1—C2—C7—C6178.4 (2)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O4iv0.83 (1)1.99 (1)2.781 (2)159 (2)
O1W—H12···O4v0.83 (1)1.94 (1)2.768 (2)173 (2)
O2W—H21···O4vi0.83 (1)2.13 (2)2.854 (2)145 (2)
O2W—H22···O7ii0.84 (1)1.98 (1)2.776 (2)158 (2)
O3W—H31···O2vii0.83 (1)1.91 (2)2.700 (2)158 (3)
O3W—H32···O9viii0.84 (1)2.31 (2)3.026 (2)143 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iv) x+1, y, z1; (v) x+1, y+2, z+1; (vi) x, y, z1; (vii) x, y+2, z+1; (viii) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C10H8O5)2(H2O)3]
Mr601.12
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6518 (3), 11.3553 (5), 13.5294 (6)
α, β, γ (°)77.2436 (14), 85.6236 (13), 73.3105 (13)
V3)1098.13 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.26
Crystal size (mm)0.17 × 0.13 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.700, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
10809, 4954, 4160
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.04
No. of reflections4954
No. of parameters334
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.45

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O4i0.83 (1)1.99 (1)2.781 (2)159 (2)
O1W—H12···O4ii0.83 (1)1.94 (1)2.768 (2)173 (2)
O2W—H21···O4iii0.83 (1)2.13 (2)2.854 (2)145 (2)
O2W—H22···O7iv0.84 (1)1.98 (1)2.776 (2)158 (2)
O3W—H31···O2v0.83 (1)1.91 (2)2.700 (2)158 (3)
O3W—H32···O9vi0.84 (1)2.31 (2)3.026 (2)143 (3)
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+2, z+1; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x, y+2, z+1; (vi) x1, y, z+1.
 

Acknowledgements

This work is supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grants No. 12511z023, No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010 t d03), Heilongjiang University (grant No. Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Y.-H., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m2274–m2276.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m223-m224
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds