metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium diamminesilver(I) bis­­(5-chloro-2-hy­dr­oxy­benzene­sulfonate) trihydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 January 2012; accepted 26 January 2012; online 31 January 2012)

The reaction of silver nitrate with 5-chloro-2-hy­droxy­benzene­sulfonic acid in the presence of ammonia yielded the title salt, (NH4)[Ag(NH3)2](C6H4ClO4S)2·3H2O. The AgI ion shows linear coordination [N—Ag—N = 175.2 (1) °]. The ammonium and diamminesilver cations, the benzene­sulfonate anion and the lattice water mol­ecules inter­act through an intricate network of N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For a review of metal arene­sulfonates, see: Cai (2004[Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)[Ag(NH3)2](C6H4ClO4S)2·3H2O

  • Mr = 629.23

  • Orthorhombic, P 21 21 21

  • a = 8.8814 (8) Å

  • b = 9.8586 (10) Å

  • c = 26.434 (3) Å

  • V = 2314.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.19 × 0.16 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.785, Tmax = 0.845

  • 22666 measured reflections

  • 5278 independent reflections

  • 4959 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.04

  • 5278 reflections

  • 312 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2953 Friedel pairs

  • Flack parameter: 0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.84 2.38 2.970 (3) 127
O8—H8⋯O4 0.84 2.04 2.630 (2) 127
O1w—H11⋯O5i 0.84 (1) 2.00 (1) 2.838 (3) 174 (4)
O1w—H12⋯O3w 0.85 (1) 1.95 (1) 2.794 (3) 173 (4)
O2w—H21⋯O3 0.83 (1) 2.45 (4) 2.974 (3) 122 (4)
O2w—H21⋯O4 0.83 (1) 2.45 (3) 3.127 (3) 140 (5)
O2w—H22⋯O5ii 0.84 (1) 2.05 (2) 2.851 (3) 159 (5)
O3w—H31⋯O2iii 0.85 (1) 2.08 (1) 2.927 (3) 177 (5)
O3w—H32⋯O7iv 0.85 (1) 2.02 (2) 2.843 (3) 163 (5)
N1—H1a⋯O5 0.88 2.32 3.11 (1) 148
N1—H1c⋯O1v 0.88 2.11 2.95 (1) 158
N2—H2a⋯O1wvi 0.88 2.30 3.15 (1) 163
N2—H2b⋯O7vii 0.88 2.25 3.07 (1) 153
N2—H2c⋯O3 0.88 2.14 3.02 (1) 171
N3—H3a⋯O3vi 0.88 (1) 2.19 (1) 3.018 (3) 158 (3)
N3—H3b⋯O6iv 0.88 (1) 2.02 (1) 2.893 (3) 173 (3)
N3—H3c⋯O8 0.88 (1) 1.99 (1) 2.820 (3) 159 (3)
N3—H3d⋯O2w 0.88 (1) 1.94 (1) 2.826 (4) 177 (3)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x, y+1, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal arenesulfonates are commonly crystalline materials; their coordination chemistry has been reviewed (Cai, 2004). In this study, the attempt to synthesize the silver(I) derivative of 5-chloro-2-hydroxybenzenesulfonic acid in the presence of ammonia gave instead the ammine-coordinated salt (Scheme I) in which the diamminesilver cation interacts indirectly with the 2-hydrox-5-chlorobenzenesulfonate anion through the coordinated ammine ligands in an outer-sphere type of coordination. In the salt, [Ag(NH3)2][NH4](C6H4ClO4S)2.3H2O (Fig. 1), the AgII atom shows linear coordination [N–Ag–N 175.2 (1) °]. The ammonium and diamminesilver cations, the benzenesulfonate anion and the lattice water molecules interact through N–H···O and O–H···O hydrogen bonds to form a three-dimensional network (Table 1).

Related literature top

For a review of metal arenesulfonates, see: Cai (2004).

Experimental top

Silver nitrate (1 mmol) and and 5-chloro-2-hydroxy-benzenesulfonic acid (1 mmol) were mixed in water (15 ml). The pH of the solution was adjusted to ca 6 by the addition of drops of ammonium hydroxide. The solution was filtered; colorless crystals were isolated after several days. The solution was shielded from light during the crystallization.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The hydroxy H atoms were assumed to be co-planar with the aromatic ring, and these were similarly constrained (O–H 0.84 Å) and their displacement factors were set to 1.5Ueq(O). The amino H atoms were similarly constrained (N–H 0.88 Å) and their displacement factors were set to 1.5Ueq(N).

The water H-atoms were located in a difference Fourier map, and were refined with distance restraints O–H 0.84±0.01 Å and H···H 1.37±0.01 Å; their temperature factors were tied by a factor of 1.5 times.

The four ammonium H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88±0.01 Å and H···H 1.43±0.01 Å; their temperature factors were displacement factors were set to 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of [Ag(NH3)2][NH4](C6H4ClO4S)2.3H2O at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Ammonium diamminesilver(I) bis(5-chloro-2-hydroxybenzenesulfonate) trihydrate top
Crystal data top
(NH4)[Ag(NH3)2](C6H4ClO4S)2·3H2OF(000) = 1272
Mr = 629.23Dx = 1.806 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16668 reflections
a = 8.8814 (8) Åθ = 3.1–27.4°
b = 9.8586 (10) ŵ = 1.34 mm1
c = 26.434 (3) ÅT = 293 K
V = 2314.5 (4) Å3Prism, colorless
Z = 40.19 × 0.16 × 0.13 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5278 independent reflections
Radiation source: fine-focus sealed tube4959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scanθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.785, Tmax = 0.845k = 1212
22666 measured reflectionsl = 3234
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1112P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5278 reflectionsΔρmax = 0.78 e Å3
312 parametersΔρmin = 0.46 e Å3
19 restraintsAbsolute structure: Flack (1983), with 2953 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
(NH4)[Ag(NH3)2](C6H4ClO4S)2·3H2OV = 2314.5 (4) Å3
Mr = 629.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8814 (8) ŵ = 1.34 mm1
b = 9.8586 (10) ÅT = 293 K
c = 26.434 (3) Å0.19 × 0.16 × 0.13 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5278 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4959 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.845Rint = 0.038
22666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.78 e Å3
S = 1.04Δρmin = 0.46 e Å3
5278 reflectionsAbsolute structure: Flack (1983), with 2953 Friedel pairs
312 parametersAbsolute structure parameter: 0.02 (2)
19 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.37725 (3)0.63955 (3)0.851526 (11)0.06155 (10)
Cl10.26926 (8)0.39184 (8)1.06066 (2)0.04433 (17)
Cl21.22944 (8)0.75917 (9)0.98804 (3)0.04893 (18)
S10.30723 (6)0.15274 (7)0.87729 (2)0.03079 (13)
S20.91696 (6)0.76351 (6)0.81204 (2)0.02806 (12)
O10.4208 (2)0.0468 (2)0.87427 (9)0.0498 (5)
O20.1652 (2)0.1060 (2)0.89819 (7)0.0425 (5)
O30.2877 (2)0.2202 (2)0.82846 (7)0.0422 (5)
O40.5744 (2)0.3420 (2)0.86422 (7)0.0358 (4)
H40.54220.28650.84260.054*
O50.75295 (19)0.7749 (2)0.81090 (7)0.0402 (4)
O60.9903 (2)0.8954 (2)0.81310 (8)0.0414 (4)
O70.9735 (2)0.6777 (2)0.77132 (6)0.0392 (5)
O80.8214 (2)0.48134 (19)0.84662 (7)0.0335 (4)
H80.79130.40280.85370.050*
O1w0.6740 (2)0.0537 (2)0.81430 (10)0.0506 (5)
H110.692 (4)0.0301 (11)0.8143 (19)0.076*
H120.756 (3)0.095 (3)0.8202 (18)0.076*
O2w0.5127 (3)0.2905 (3)0.74936 (9)0.0592 (6)
H210.516 (5)0.262 (6)0.7788 (8)0.089*
H220.433 (3)0.266 (6)0.7351 (14)0.089*
O3w0.9314 (3)0.2107 (3)0.83062 (9)0.0526 (6)
H310.998 (3)0.177 (4)0.8501 (11)0.079*
H320.970 (4)0.216 (5)0.8012 (7)0.079*
N10.5129 (3)0.7659 (3)0.89623 (12)0.0617 (8)
H1A0.60360.77080.88290.093*
H1B0.51910.73230.92700.093*
H1C0.47300.84750.89750.093*
N20.2539 (4)0.5159 (4)0.80167 (12)0.0650 (8)
H2A0.29360.52070.77120.098*
H2B0.15990.54380.80060.098*
H2C0.25670.43140.81230.098*
N30.7473 (3)0.4833 (3)0.74290 (9)0.0386 (5)
H3A0.714 (3)0.5551 (19)0.7267 (10)0.058*
H3B0.825 (2)0.449 (3)0.7270 (10)0.058*
H3C0.773 (3)0.505 (3)0.7738 (5)0.058*
H3D0.674 (2)0.423 (2)0.7437 (11)0.058*
C10.3775 (2)0.2748 (2)0.92047 (8)0.0273 (4)
C20.5039 (2)0.3542 (3)0.90939 (8)0.0276 (4)
C30.5558 (3)0.4449 (3)0.94605 (10)0.0328 (5)
H30.63900.49900.93900.039*
C40.4859 (3)0.4562 (3)0.99284 (10)0.0342 (5)
H4A0.52200.51631.01710.041*
C50.3610 (3)0.3760 (3)1.00269 (8)0.0316 (5)
C60.3062 (3)0.2859 (3)0.96722 (9)0.0310 (5)
H60.22230.23300.97450.037*
C70.9634 (2)0.6794 (3)0.86901 (8)0.0261 (5)
C80.9076 (3)0.5478 (3)0.87867 (9)0.0289 (5)
C90.9509 (3)0.4891 (3)0.92511 (10)0.0381 (6)
H90.91400.40370.93350.046*
C101.0459 (3)0.5539 (3)0.95862 (10)0.0393 (6)
H101.07200.51250.98900.047*
C111.1019 (3)0.6808 (3)0.94671 (9)0.0347 (5)
C121.0603 (3)0.7457 (3)0.90287 (9)0.0318 (5)
H12A1.09600.83230.89570.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.06878 (17)0.05382 (16)0.06205 (16)0.01435 (13)0.00984 (12)0.00913 (13)
Cl10.0497 (3)0.0586 (5)0.0247 (2)0.0016 (3)0.0049 (3)0.0006 (3)
Cl20.0467 (3)0.0593 (5)0.0407 (3)0.0043 (3)0.0153 (3)0.0148 (3)
S10.0335 (3)0.0301 (3)0.0288 (3)0.0049 (2)0.0004 (2)0.0032 (2)
S20.0295 (3)0.0293 (3)0.0253 (2)0.0007 (2)0.00047 (19)0.0021 (2)
O10.0501 (11)0.0354 (11)0.0638 (13)0.0047 (9)0.0003 (10)0.0095 (10)
O20.0385 (9)0.0505 (13)0.0386 (9)0.0150 (9)0.0000 (8)0.0016 (9)
O30.0535 (10)0.0453 (12)0.0278 (8)0.0144 (9)0.0047 (8)0.0002 (8)
O40.0370 (8)0.0407 (11)0.0297 (8)0.0101 (8)0.0057 (7)0.0058 (7)
O50.0310 (8)0.0476 (12)0.0420 (9)0.0022 (8)0.0026 (7)0.0069 (9)
O60.0496 (10)0.0301 (10)0.0446 (10)0.0075 (8)0.0031 (9)0.0086 (8)
O70.0467 (10)0.0459 (12)0.0249 (8)0.0035 (9)0.0055 (7)0.0006 (8)
O80.0386 (8)0.0318 (9)0.0303 (8)0.0108 (7)0.0002 (7)0.0008 (7)
O1w0.0506 (11)0.0410 (12)0.0604 (13)0.0008 (10)0.0040 (10)0.0035 (11)
O2w0.0520 (12)0.0760 (18)0.0494 (11)0.0175 (13)0.0092 (10)0.0148 (13)
O3w0.0536 (12)0.0635 (16)0.0408 (10)0.0040 (11)0.0052 (9)0.0005 (11)
N10.0641 (16)0.0554 (18)0.0655 (17)0.0117 (15)0.0119 (14)0.0201 (15)
N20.0724 (19)0.065 (2)0.0576 (17)0.0251 (17)0.0065 (15)0.0041 (15)
N30.0414 (11)0.0403 (13)0.0340 (11)0.0020 (10)0.0015 (9)0.0003 (9)
C10.0284 (9)0.0276 (11)0.0259 (10)0.0015 (9)0.0031 (8)0.0021 (9)
C20.0291 (10)0.0270 (11)0.0267 (9)0.0011 (9)0.0009 (8)0.0007 (9)
C30.0321 (11)0.0322 (13)0.0341 (12)0.0035 (10)0.0004 (9)0.0022 (10)
C40.0390 (12)0.0341 (14)0.0294 (11)0.0021 (11)0.0030 (10)0.0033 (10)
C50.0348 (11)0.0371 (14)0.0227 (10)0.0044 (11)0.0015 (9)0.0014 (9)
C60.0309 (10)0.0345 (14)0.0277 (11)0.0028 (10)0.0001 (9)0.0044 (10)
C70.0246 (9)0.0320 (13)0.0217 (9)0.0024 (9)0.0015 (8)0.0002 (8)
C80.0293 (10)0.0313 (12)0.0261 (10)0.0023 (9)0.0042 (9)0.0004 (10)
C90.0445 (14)0.0362 (14)0.0336 (12)0.0007 (11)0.0002 (11)0.0056 (11)
C100.0434 (13)0.0457 (16)0.0289 (11)0.0098 (12)0.0050 (10)0.0036 (11)
C110.0321 (11)0.0445 (15)0.0276 (11)0.0024 (10)0.0047 (9)0.0094 (10)
C120.0297 (10)0.0338 (13)0.0318 (11)0.0006 (10)0.0003 (8)0.0046 (10)
Geometric parameters (Å, º) top
Ag1—N12.097 (4)N2—H2A0.8800
Ag1—N22.103 (4)N2—H2B0.8800
Cl1—C51.743 (2)N2—H2C0.8800
Cl2—C111.753 (2)N3—H3A0.878 (9)
S1—O11.454 (2)N3—H3B0.877 (9)
S1—O21.4522 (19)N3—H3C0.875 (9)
S1—O31.462 (2)N3—H3D0.883 (9)
S1—C11.772 (2)C1—C21.400 (3)
S2—O61.454 (2)C1—C61.393 (3)
S2—O71.4580 (19)C2—C31.397 (4)
S2—O51.4613 (18)C3—C41.388 (4)
S2—C71.768 (2)C3—H30.9300
O4—C21.353 (3)C4—C51.387 (4)
O4—H40.8400C4—H4A0.9300
O8—C81.316 (3)C5—C61.380 (4)
O8—H80.8400C6—H60.9300
O1w—H110.841 (10)C7—C121.403 (3)
O1w—H120.849 (10)C7—C81.413 (4)
O2w—H210.828 (10)C8—C91.410 (4)
O2w—H220.839 (10)C9—C101.380 (4)
O3w—H310.849 (10)C9—H90.9300
O3w—H320.852 (10)C10—C111.382 (4)
N1—H1A0.8800C10—H100.9300
N1—H1B0.8800C11—C121.374 (4)
N1—H1C0.8800C12—H12A0.9300
N1—Ag1—N2175.18 (13)C2—C1—C6120.4 (2)
O1—S1—O2113.33 (13)C2—C1—S1121.83 (17)
O1—S1—O3111.12 (14)C6—C1—S1117.72 (18)
O2—S1—O3112.13 (12)O4—C2—C1120.4 (2)
O1—S1—C1106.19 (12)O4—C2—C3121.1 (2)
O2—S1—C1106.03 (11)C1—C2—C3118.5 (2)
O3—S1—C1107.56 (12)C4—C3—C2121.4 (2)
O6—S2—O7112.24 (12)C4—C3—H3119.3
O6—S2—O5112.22 (13)C2—C3—H3119.3
O7—S2—O5111.88 (12)C3—C4—C5118.7 (2)
O6—S2—C7107.34 (12)C3—C4—H4A120.7
O7—S2—C7106.06 (11)C5—C4—H4A120.7
O5—S2—C7106.62 (11)C4—C5—C6121.4 (2)
C2—O4—H4120.0C4—C5—Cl1119.20 (19)
C8—O8—H8120.0C6—C5—Cl1119.37 (19)
H11—O1w—H12108 (2)C5—C6—C1119.6 (2)
H21—O2w—H22111 (2)C5—C6—H6120.2
H31—O3w—H32107 (2)C1—C6—H6120.2
Ag1—N1—H1A109.5C12—C7—C8121.8 (2)
Ag1—N1—H1B109.5C12—C7—S2117.93 (19)
H1A—N1—H1B109.5C8—C7—S2120.21 (17)
Ag1—N1—H1C109.5O8—C8—C9121.0 (2)
H1A—N1—H1C109.5O8—C8—C7123.0 (2)
H1B—N1—H1C109.5C9—C8—C7116.0 (2)
Ag1—N2—H2A109.5C10—C9—C8122.4 (3)
Ag1—N2—H2B109.5C10—C9—H9118.8
H2A—N2—H2B109.5C8—C9—H9118.8
Ag1—N2—H2C109.5C9—C10—C11119.5 (2)
H2A—N2—H2C109.5C9—C10—H10120.2
H2B—N2—H2C109.5C11—C10—H10120.2
H3A—N3—H3B110 (1)C12—C11—C10121.1 (2)
H3A—N3—H3C110 (1)C12—C11—Cl2119.6 (2)
H3B—N3—H3C110 (1)C10—C11—Cl2119.3 (2)
H3A—N3—H3D108 (1)C11—C12—C7119.1 (2)
H3B—N3—H3D110 (1)C11—C12—H12A120.5
H3C—N3—H3D110 (1)C7—C12—H12A120.5
O1—S1—C1—C267.4 (2)O6—S2—C7—C122.1 (2)
O2—S1—C1—C2171.8 (2)O7—S2—C7—C12118.10 (19)
O3—S1—C1—C251.6 (2)O5—S2—C7—C12122.51 (19)
O1—S1—C1—C6110.0 (2)O6—S2—C7—C8179.93 (18)
O2—S1—C1—C610.8 (2)O7—S2—C7—C859.8 (2)
O3—S1—C1—C6130.9 (2)O5—S2—C7—C859.6 (2)
C6—C1—C2—O4179.1 (2)C12—C7—C8—O8177.2 (2)
S1—C1—C2—O41.7 (3)S2—C7—C8—O80.6 (3)
C6—C1—C2—C30.4 (4)C12—C7—C8—C92.2 (3)
S1—C1—C2—C3177.78 (19)S2—C7—C8—C9179.98 (18)
O4—C2—C3—C4178.8 (2)O8—C8—C9—C10177.4 (2)
C1—C2—C3—C40.8 (4)C7—C8—C9—C102.0 (4)
C2—C3—C4—C50.7 (4)C8—C9—C10—C110.2 (4)
C3—C4—C5—C60.2 (4)C9—C10—C11—C122.3 (4)
C3—C4—C5—Cl1178.5 (2)C9—C10—C11—Cl2177.0 (2)
C4—C5—C6—C10.1 (4)C10—C11—C12—C72.2 (4)
Cl1—C5—C6—C1178.78 (19)Cl2—C11—C12—C7177.22 (18)
C2—C1—C6—C50.0 (4)C8—C7—C12—C110.2 (3)
S1—C1—C6—C5177.48 (19)S2—C7—C12—C11178.01 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.842.382.970 (3)127
O8—H8···O40.842.042.630 (2)127
O1w—H11···O5i0.84 (1)2.00 (1)2.838 (3)174 (4)
O1w—H12···O3w0.85 (1)1.95 (1)2.794 (3)173 (4)
O2w—H21···O30.83 (1)2.45 (4)2.974 (3)122 (4)
O2w—H21···O40.83 (1)2.45 (3)3.127 (3)140 (5)
O2w—H22···O5ii0.84 (1)2.05 (2)2.851 (3)159 (5)
O3w—H31···O2iii0.85 (1)2.08 (1)2.927 (3)177 (5)
O3w—H32···O7iv0.85 (1)2.02 (2)2.843 (3)163 (5)
N1—H1a···O50.882.323.11 (1)148
N1—H1c···O1v0.882.112.95 (1)158
N2—H2a···O1wvi0.882.303.15 (1)163
N2—H2b···O7vii0.882.253.07 (1)153
N2—H2c···O30.882.143.02 (1)171
N3—H3a···O3vi0.88 (1)2.19 (1)3.018 (3)158 (3)
N3—H3b···O6iv0.88 (1)2.02 (1)2.893 (3)173 (3)
N3—H3c···O80.88 (1)1.99 (1)2.820 (3)159 (3)
N3—H3d···O2w0.88 (1)1.94 (1)2.826 (4)177 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z; (iv) x+2, y1/2, z+3/2; (v) x, y+1, z; (vi) x+1, y+1/2, z+3/2; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula(NH4)[Ag(NH3)2](C6H4ClO4S)2·3H2O
Mr629.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.8814 (8), 9.8586 (10), 26.434 (3)
V3)2314.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.19 × 0.16 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.785, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
22666, 5278, 4959
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.04
No. of reflections5278
No. of parameters312
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.46
Absolute structureFlack (1983), with 2953 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.842.382.970 (3)127
O8—H8···O40.842.042.630 (2)127
O1w—H11···O5i0.84 (1)2.00 (1)2.838 (3)174 (4)
O1w—H12···O3w0.85 (1)1.95 (1)2.794 (3)173 (4)
O2w—H21···O30.83 (1)2.45 (4)2.974 (3)122 (4)
O2w—H21···O40.83 (1)2.45 (3)3.127 (3)140 (5)
O2w—H22···O5ii0.84 (1)2.05 (2)2.851 (3)159 (5)
O3w—H31···O2iii0.85 (1)2.08 (1)2.927 (3)177 (5)
O3w—H32···O7iv0.85 (1)2.02 (2)2.843 (3)163 (5)
N1—H1a···O50.882.323.11 (1)148
N1—H1c···O1v0.882.112.95 (1)158
N2—H2a···O1wvi0.882.303.15 (1)163
N2—H2b···O7vii0.882.253.07 (1)153
N2—H2c···O30.882.143.02 (1)171
N3—H3a···O3vi0.88 (1)2.19 (1)3.018 (3)158 (3)
N3—H3b···O6iv0.88 (1)2.02 (1)2.893 (3)173 (3)
N3—H3c···O80.88 (1)1.99 (1)2.820 (3)159 (3)
N3—H3d···O2w0.88 (1)1.94 (1)2.826 (4)177 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z; (iv) x+2, y1/2, z+3/2; (v) x, y+1, z; (vi) x+1, y+1/2, z+3/2; (vii) x1, y, z.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (grant Nos. 12511z023, 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010 t d03), Heilongjiang University (grant No. Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCai, J. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds