organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­phenyl­sulfon­yl)-5-cyclo­hexyl-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 26 December 2011; accepted 15 January 2012; online 21 January 2012)

In the title compound, C21H21BrO3S, the cyclo­hexyl ring adopts a chair conformation. The 4-bromo­phenyl ring makes a dihedral angle of 80.88 (6)° with the mean plane of the benzofuran fragment. An intra­molecular C—H⋯O hydrogen bond is formed between an O atom of the sulfonyl group and one H atom of the aromatic ring such that a five-membered ring is formed. The crystal packing is stabilized by an inter­molecular C—H⋯O hydrogen bond, which links the mol­ecules into chains with graph-set notation C(6) running parallel to the c axis, and ππ stacking inter­actions [centroid–centroid distance = 3.6129 (12) Å].

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structures of related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o767.]); Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1496.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21BrO3S

  • Mr = 433.35

  • Monoclinic, P 21 /c

  • a = 16.8264 (3) Å

  • b = 8.7627 (1) Å

  • c = 13.3545 (2) Å

  • β = 104.248 (1)°

  • V = 1908.48 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 173 K

  • 0.31 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.543, Tmax = 0.686

  • 18100 measured reflections

  • 4739 independent reflections

  • 3566 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.03

  • 4739 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2 0.98 2.40 3.125 (3) 131
C18—H18⋯O3i 0.95 2.48 3.120 (3) 125
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek,2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran derivatives have drawn much interest in view of their valuable biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing either 3-(4-fluorophenylsulfonyl) (Choi et al., 2011) or 3-phenylsulfonyl (Seo et al., 2011) substituents, we report herein the crystal structure of the title compound. In the title molecule Fig. 1, the benzofuran unit is essentially planar, with a mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form as shown by the Cremer & Pople (1975) puckering parameters: Q = 0.560 (3)Å, θ = 1.8 (3)°, and ϕ = 187 (39) °]. The dihedral angle formed by the 4-bromophenyl ring and the mean plane of the benzofurn fragment is 80.88 (6)°. An intramolecular C–H···O hydrogen bond is formed between an O atom of the sulfonyl group and one H atom of the aromatic ring such that a five-membered ring is formed. The crystal packing is stabilized by an intermolecular C—H···O hydrogen bond, which links the molecules into chains with graph-set notation C(6) (Bernstein et al., 1995) running parallel to c axis, Fig.2, Table 1 and ππ stacking interactions, Fig.3 , Table2.

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2011); Seo et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

77% 3-chloroperoxybenzoic acid (448 mg, 2 mmol) was added in small portions to a stirred solution of 3-(4-bromophenylsulfanyl)-5-cyclohexyl-2-methyl-1-benzofuran (361 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 67%, m.p. 459–460 K; Rf = 0.51 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek,2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, - y + 1/2, z - 1/2; (iii) x, - y + 1/2, z + 1/2.]
[Figure 3] Fig. 3. A view of the ππ interactions (dotted lines) in the crystal structure of the title compound. All H atoms were omitted for clarity. [Symmetry codes: (ii) - x, - y + 1, - z + 1.]
3-(4-Bromophenylsulfonyl)-5-cyclohexyl-2-methyl-1-benzofuran top
Crystal data top
C21H21BrO3SF(000) = 888
Mr = 433.35Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5934 reflections
a = 16.8264 (3) Åθ = 2.6–27.2°
b = 8.7627 (1) ŵ = 2.28 mm1
c = 13.3545 (2) ÅT = 173 K
β = 104.248 (1)°Block, colourless
V = 1908.48 (5) Å30.31 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4739 independent reflections
Radiation source: rotating anode3566 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.3°
ϕ and ω scansh = 1822
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 117
Tmin = 0.543, Tmax = 0.686l = 1717
18100 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.5992P]
where P = (Fo2 + 2Fc2)/3
4739 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C21H21BrO3SV = 1908.48 (5) Å3
Mr = 433.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8264 (3) ŵ = 2.28 mm1
b = 8.7627 (1) ÅT = 173 K
c = 13.3545 (2) Å0.31 × 0.19 × 0.18 mm
β = 104.248 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4739 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3566 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 0.686Rint = 0.031
18100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.60 e Å3
4739 reflectionsΔρmin = 0.71 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.472627 (17)0.39062 (4)0.30549 (2)0.05789 (12)
S10.15069 (3)0.28324 (5)0.47083 (4)0.02514 (12)
O10.04011 (9)0.67903 (17)0.41683 (12)0.0338 (4)
O20.09589 (10)0.18906 (17)0.39712 (12)0.0352 (4)
O30.17627 (9)0.23523 (16)0.57671 (11)0.0311 (3)
C10.11029 (12)0.4652 (2)0.46944 (15)0.0250 (4)
C20.13778 (12)0.5779 (2)0.54926 (16)0.0250 (4)
C30.19440 (13)0.5830 (2)0.64531 (17)0.0263 (4)
H30.22560.49510.67200.032*
C40.20449 (12)0.7184 (2)0.70136 (17)0.0288 (5)
C50.15718 (14)0.8459 (2)0.6599 (2)0.0368 (5)
H50.16440.93810.69850.044*
C60.10060 (14)0.8430 (2)0.5654 (2)0.0378 (5)
H60.06910.93040.53850.045*
C70.09228 (13)0.7077 (2)0.51260 (17)0.0302 (5)
C80.05259 (12)0.5303 (2)0.39189 (17)0.0299 (5)
C90.26505 (13)0.7263 (2)0.80598 (17)0.0308 (5)
H90.26460.83330.83200.037*
C100.35212 (14)0.6904 (3)0.79958 (18)0.0404 (6)
H10A0.36930.76540.75360.049*
H10B0.35340.58780.76900.049*
C110.41288 (16)0.6951 (3)0.9066 (2)0.0471 (6)
H11A0.46800.66480.89980.057*
H11B0.41660.80080.93350.057*
C120.38692 (19)0.5901 (3)0.9823 (2)0.0506 (7)
H12A0.42520.60131.05120.061*
H12B0.38950.48300.95970.061*
C130.30039 (19)0.6264 (4)0.9898 (2)0.0544 (7)
H13A0.29940.72931.02000.065*
H13B0.28350.55191.03620.065*
C140.23995 (16)0.6211 (3)0.88381 (19)0.0438 (6)
H14A0.18490.65110.89100.053*
H14B0.23630.51510.85740.053*
C150.00326 (14)0.4780 (3)0.29081 (17)0.0382 (5)
H15A0.01700.37170.27980.057*
H15B0.01510.54210.23610.057*
H15C0.05510.48550.28940.057*
C160.24026 (13)0.3119 (2)0.42616 (15)0.0249 (4)
C170.23543 (13)0.3041 (2)0.32088 (15)0.0282 (4)
H170.18460.28150.27370.034*
C180.30421 (15)0.3291 (3)0.28488 (17)0.0338 (5)
H180.30120.32530.21300.041*
C190.37760 (14)0.3597 (3)0.35501 (19)0.0336 (5)
C200.38350 (14)0.3691 (3)0.45991 (18)0.0355 (5)
H200.43460.39130.50670.043*
C210.31415 (13)0.3457 (3)0.49569 (16)0.0305 (5)
H210.31700.35270.56750.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03863 (18)0.0885 (3)0.0517 (2)0.00045 (13)0.02099 (14)0.00445 (14)
S10.0269 (3)0.0250 (2)0.0201 (2)0.0028 (2)0.0007 (2)0.00023 (19)
O10.0247 (8)0.0351 (8)0.0382 (9)0.0053 (6)0.0014 (7)0.0107 (7)
O20.0351 (9)0.0351 (8)0.0300 (8)0.0102 (7)0.0024 (7)0.0058 (7)
O30.0376 (8)0.0300 (7)0.0230 (8)0.0007 (6)0.0019 (7)0.0045 (6)
C10.0236 (10)0.0275 (10)0.0227 (10)0.0008 (8)0.0034 (8)0.0042 (8)
C20.0218 (10)0.0235 (9)0.0308 (11)0.0016 (7)0.0087 (9)0.0036 (8)
C30.0246 (11)0.0238 (9)0.0296 (11)0.0018 (8)0.0049 (9)0.0003 (8)
C40.0234 (10)0.0266 (10)0.0379 (12)0.0027 (8)0.0105 (9)0.0040 (9)
C50.0319 (12)0.0247 (10)0.0546 (15)0.0010 (9)0.0123 (12)0.0066 (10)
C60.0288 (12)0.0266 (11)0.0576 (16)0.0083 (9)0.0096 (12)0.0052 (11)
C70.0211 (10)0.0313 (11)0.0377 (12)0.0027 (8)0.0065 (9)0.0084 (9)
C80.0223 (10)0.0365 (11)0.0307 (11)0.0000 (9)0.0063 (9)0.0084 (9)
C90.0303 (11)0.0265 (10)0.0347 (12)0.0040 (9)0.0064 (10)0.0096 (9)
C100.0258 (12)0.0608 (16)0.0346 (13)0.0044 (11)0.0075 (10)0.0037 (11)
C110.0308 (13)0.0652 (18)0.0415 (15)0.0023 (12)0.0018 (11)0.0119 (13)
C120.0581 (18)0.0480 (15)0.0381 (15)0.0051 (13)0.0026 (13)0.0055 (12)
C130.064 (2)0.0674 (18)0.0335 (14)0.0088 (15)0.0159 (14)0.0057 (12)
C140.0414 (14)0.0578 (16)0.0359 (14)0.0108 (11)0.0168 (12)0.0085 (11)
C150.0276 (11)0.0559 (15)0.0262 (11)0.0029 (11)0.0026 (9)0.0109 (11)
C160.0267 (10)0.0228 (9)0.0228 (10)0.0016 (8)0.0013 (8)0.0004 (8)
C170.0287 (11)0.0316 (11)0.0191 (10)0.0009 (9)0.0041 (9)0.0041 (8)
C180.0415 (13)0.0364 (11)0.0228 (11)0.0034 (10)0.0064 (10)0.0033 (9)
C190.0289 (12)0.0365 (11)0.0363 (13)0.0022 (9)0.0095 (10)0.0014 (10)
C200.0270 (12)0.0450 (13)0.0300 (12)0.0003 (10)0.0018 (10)0.0028 (10)
C210.0314 (12)0.0366 (11)0.0195 (10)0.0009 (9)0.0015 (9)0.0001 (9)
Geometric parameters (Å, º) top
Br1—C191.894 (2)C10—H10B0.9900
S1—O21.4330 (15)C11—C121.509 (4)
S1—O31.4360 (15)C11—H11A0.9900
S1—C11.731 (2)C11—H11B0.9900
S1—C161.770 (2)C12—C131.517 (4)
O1—C81.374 (3)C12—H12A0.9900
O1—C71.385 (3)C12—H12B0.9900
C1—C81.359 (3)C13—C141.526 (4)
C1—C21.444 (3)C13—H13A0.9900
C2—C71.391 (3)C13—H13B0.9900
C2—C31.398 (3)C14—H14A0.9900
C3—C41.391 (3)C14—H14B0.9900
C3—H30.9500C15—H15A0.9800
C4—C51.405 (3)C15—H15B0.9800
C4—C91.515 (3)C15—H15C0.9800
C5—C61.381 (3)C16—C211.388 (3)
C5—H50.9500C16—C171.390 (3)
C6—C71.369 (3)C17—C181.376 (3)
C6—H60.9500C17—H170.9500
C8—C151.473 (3)C18—C191.380 (3)
C9—C101.521 (3)C18—H180.9500
C9—C141.525 (3)C19—C201.382 (3)
C9—H91.0000C20—C211.381 (3)
C10—C111.540 (3)C20—H200.9500
C10—H10A0.9900C21—H210.9500
O2—S1—O3119.59 (9)C12—C11—H11B109.3
O2—S1—C1109.78 (10)C10—C11—H11B109.3
O3—S1—C1107.58 (9)H11A—C11—H11B107.9
O2—S1—C16107.91 (10)C11—C12—C13110.9 (2)
O3—S1—C16107.43 (9)C11—C12—H12A109.5
C1—S1—C16103.33 (9)C13—C12—H12A109.5
C8—O1—C7107.22 (15)C11—C12—H12B109.5
C8—C1—C2108.29 (18)C13—C12—H12B109.5
C8—C1—S1126.89 (17)H12A—C12—H12B108.0
C2—C1—S1124.67 (15)C12—C13—C14111.3 (2)
C7—C2—C3119.29 (19)C12—C13—H13A109.4
C7—C2—C1104.56 (18)C14—C13—H13A109.4
C3—C2—C1136.16 (18)C12—C13—H13B109.4
C4—C3—C2119.09 (19)C14—C13—H13B109.4
C4—C3—H3120.5H13A—C13—H13B108.0
C2—C3—H3120.5C13—C14—C9112.3 (2)
C3—C4—C5119.0 (2)C13—C14—H14A109.1
C3—C4—C9120.07 (18)C9—C14—H14A109.1
C5—C4—C9120.93 (19)C13—C14—H14B109.1
C6—C5—C4122.8 (2)C9—C14—H14B109.1
C6—C5—H5118.6H14A—C14—H14B107.9
C4—C5—H5118.6C8—C15—H15A109.5
C7—C6—C5116.5 (2)C8—C15—H15B109.5
C7—C6—H6121.7H15A—C15—H15B109.5
C5—C6—H6121.7C8—C15—H15C109.5
C6—C7—O1126.46 (19)H15A—C15—H15C109.5
C6—C7—C2123.3 (2)H15B—C15—H15C109.5
O1—C7—C2110.23 (18)C21—C16—C17120.5 (2)
C1—C8—O1109.70 (18)C21—C16—S1120.10 (16)
C1—C8—C15134.7 (2)C17—C16—S1119.43 (16)
O1—C8—C15115.61 (18)C18—C17—C16120.06 (19)
C4—C9—C10112.16 (18)C18—C17—H17120.0
C4—C9—C14111.38 (18)C16—C17—H17120.0
C10—C9—C14110.2 (2)C17—C18—C19118.9 (2)
C4—C9—H9107.6C17—C18—H18120.6
C10—C9—H9107.6C19—C18—H18120.6
C14—C9—H9107.6C18—C19—C20121.9 (2)
C9—C10—C11111.8 (2)C18—C19—Br1118.82 (18)
C9—C10—H10A109.3C20—C19—Br1119.28 (18)
C11—C10—H10A109.3C21—C20—C19119.1 (2)
C9—C10—H10B109.3C21—C20—H20120.5
C11—C10—H10B109.3C19—C20—H20120.5
H10A—C10—H10B107.9C20—C21—C16119.6 (2)
C12—C11—C10111.7 (2)C20—C21—H21120.2
C12—C11—H11A109.3C16—C21—H21120.2
C10—C11—H11A109.3
O2—S1—C1—C821.0 (2)C7—O1—C8—C15178.98 (18)
O3—S1—C1—C8152.62 (18)C3—C4—C9—C1059.7 (3)
C16—S1—C1—C893.9 (2)C5—C4—C9—C10121.0 (2)
O2—S1—C1—C2164.01 (17)C3—C4—C9—C1464.3 (3)
O3—S1—C1—C232.4 (2)C5—C4—C9—C14115.0 (2)
C16—S1—C1—C281.09 (18)C4—C9—C10—C11178.6 (2)
C8—C1—C2—C70.4 (2)C14—C9—C10—C1153.9 (3)
S1—C1—C2—C7176.20 (16)C9—C10—C11—C1255.4 (3)
C8—C1—C2—C3179.7 (2)C10—C11—C12—C1355.3 (3)
S1—C1—C2—C33.9 (4)C11—C12—C13—C1455.3 (3)
C7—C2—C3—C40.7 (3)C12—C13—C14—C955.6 (3)
C1—C2—C3—C4179.4 (2)C4—C9—C14—C13179.6 (2)
C2—C3—C4—C50.3 (3)C10—C9—C14—C1354.5 (3)
C2—C3—C4—C9179.58 (18)O2—S1—C16—C21155.16 (16)
C3—C4—C5—C60.1 (3)O3—S1—C16—C2124.96 (19)
C9—C4—C5—C6179.2 (2)C1—S1—C16—C2188.60 (18)
C4—C5—C6—C70.0 (4)O2—S1—C16—C1726.52 (19)
C5—C6—C7—O1179.5 (2)O3—S1—C16—C17156.72 (16)
C5—C6—C7—C20.5 (3)C1—S1—C16—C1789.71 (17)
C8—O1—C7—C6178.8 (2)C21—C16—C17—C180.4 (3)
C8—O1—C7—C20.3 (2)S1—C16—C17—C18178.71 (16)
C3—C2—C7—C60.9 (3)C16—C17—C18—C190.8 (3)
C1—C2—C7—C6179.2 (2)C17—C18—C19—C201.4 (3)
C3—C2—C7—O1179.99 (18)C17—C18—C19—Br1178.92 (16)
C1—C2—C7—O10.1 (2)C18—C19—C20—C210.6 (3)
C2—C1—C8—O10.6 (2)Br1—C19—C20—C21179.67 (17)
S1—C1—C8—O1176.28 (15)C19—C20—C21—C160.6 (3)
C2—C1—C8—C15178.8 (2)C17—C16—C21—C201.2 (3)
S1—C1—C8—C153.1 (4)S1—C16—C21—C20179.45 (17)
C7—O1—C8—C10.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O20.982.403.125 (3)131
C18—H18···O3i0.952.483.120 (3)125
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H21BrO3S
Mr433.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.8264 (3), 8.7627 (1), 13.3545 (2)
β (°) 104.248 (1)
V3)1908.48 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.31 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.543, 0.686
No. of measured, independent and
observed [I > 2σ(I)] reflections
18100, 4739, 3566
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.03
No. of reflections4739
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.71

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek,2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O20.982.403.125 (3)131
C18—H18···O3i0.952.483.120 (3)125
Symmetry code: (i) x, y+1/2, z1/2.
π-π stacking interaction in (I) top
Cg1 is the centroid of the O1/C7/C2/C1/C8 ring, ϕ is the dihedral angle (°) between the planes of the rings, d is the distance (Å) between the ring centroids and Δ is the displacement (Å) of the centroid of ring 2 relative to the intersection point of the normal to the centroid of ring 1 and the least-squares plane of ring 2
Ring 1Ring 2ϕdΔ
O1/C7/C2/C1/C8(O1/C7/C2/C1/C8)ii0.03.6129 (12)0.938
Symmetry code: (ii)-x,1-y,1-z
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds