metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzyl­tri­methyl­ammonium) di-μ-bromido-bis­­[di­bromido­mercurate(II)]

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinlei8812@163.com

(Received 29 November 2011; accepted 27 December 2011; online 7 January 2012)

In the crystal structure of the title compound, (C10H16N)2[Hg2Br6], the condensed anion consists of two edge-sharing HgBr4 tetrahedra and is situated on a centre of symmetry. The anions are linked to the cations through weak C—H⋯Br inter­actions.

Related literature

For related structures, see: Jin & Liu (2011[Jin, L. & Liu, N. (2011). Acta Cryst. E67, m1586.]); Nockemann & Meyer (2002[Nockemann, P. & Meyer, G. (2002). Acta Cryst. E58, m529-m530.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H16N)2[Hg2Br6]

  • Mr = 1181.06

  • Triclinic, [P \overline 1]

  • a = 9.0542 (11) Å

  • b = 9.7287 (9) Å

  • c = 9.894 (1) Å

  • α = 80.78 (1)°

  • β = 71.02 (1)°

  • γ = 62.39 (1)°

  • V = 730.24 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 18.72 mm−1

  • T = 298 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.011, Tmax = 0.024

  • 6877 measured reflections

  • 2872 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 1.07

  • 2862 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3C⋯Br1 0.96 2.86 3.776 (7) 160
C2—H2B⋯Br2i 0.96 2.87 3.743 (7) 151
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to simple molecular–ionic compounds containing organic ammonium cations and anions due to the tunability of their special structural features and their ferroelectric-dielectric properties (Nockemann & Meyer, 2002; Jin et al., 2011). Herewith we present the crystal structure of the title compound.

The title compound, (C10H16N+)2.Hg2Br62-, crystallizes in the triclinic P-1 space group (Fig. 1). The rigid [Hg2Br6]2- anion situtaed on inversion center consists of two distorted tetrahedrons sharing one common edge. The terminal Hg—Br bond lengths are 2.4910 (10) and 2.4696 (8) Å, respectively, and the Br—Hg—Br bond angles are in the range 107.16 (3)° - 122.27 (3)°. The bridging Hg—Br bond lengths are 2.6039 (8) and 2.8320 (8) Å, respectively, and the bond angles of Br—Hg—Br are 102.21 (3)° - 106.41 (3)°.

In the crystal, weak intermolecular C—H···Br hydrogen bonds (Table 1) link anion and two cations into a neutral cluster (Fig. 1).

Related literature top

For related structures, see: Jin & Liu (2011); Nockemann & Meyer (2002).

Experimental top

In room temperature benzyltrimethylammoniumchlorine (10 mmol, 1.86 g) in 20 ml water, then a water solution with HgBr2 (5 mmol, 1.36 g) was dropped slowly into the previous solution with properly sirring. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after one week in air with some colorless solid blocks appeared after days.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions(C—H = 0.93Å for Csp2 atoms and C—H = 0.96 Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (A) 1-x, 1-y, 1-z]. Dashed lines denote C—H···Br interactions.
Bis(benzyltrimethylammonium) di-µ-bromido-bis[dibromidomercurate(II)] top
Crystal data top
(C10H16N)2[Hg2Br6]Z = 1
Mr = 1181.06F(000) = 536
Triclinic, P1Dx = 2.686 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0542 (11) ÅCell parameters from 6235 reflections
b = 9.7287 (9) Åθ = 6.4–26°
c = 9.894 (1) ŵ = 18.72 mm1
α = 80.78 (1)°T = 298 K
β = 71.02 (1)°Block, colourless
γ = 62.39 (1)°0.26 × 0.22 × 0.20 mm
V = 730.24 (13) Å3
Data collection top
Rigaku Mercury2
diffractometer
2872 independent reflections
Radiation source: fine-focus sealed tube2166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.2°
CCD_Profile_fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.011, Tmax = 0.024l = 1212
6877 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0524P)2 + 4.9831P]
where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 1.56 e Å3
Crystal data top
(C10H16N)2[Hg2Br6]γ = 62.39 (1)°
Mr = 1181.06V = 730.24 (13) Å3
Triclinic, P1Z = 1
a = 9.0542 (11) ÅMo Kα radiation
b = 9.7287 (9) ŵ = 18.72 mm1
c = 9.894 (1) ÅT = 298 K
α = 80.78 (1)°0.26 × 0.22 × 0.20 mm
β = 71.02 (1)°
Data collection top
Rigaku Mercury2
diffractometer
2872 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2166 reflections with I > 2σ(I)
Tmin = 0.011, Tmax = 0.024Rint = 0.048
6877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.07Δρmax = 0.97 e Å3
2862 reflectionsΔρmin = 1.56 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.58630 (9)0.70394 (8)0.72319 (8)0.0764 (2)
Br20.21880 (9)0.50624 (8)0.89596 (8)0.0674 (2)
Br30.30736 (8)0.68625 (8)0.47194 (7)0.0655 (2)
C10.9659 (8)0.6586 (7)0.3266 (8)0.064 (2)
H1A0.92200.61310.41430.095*
H1B1.07360.65600.32560.095*
H1C0.98530.60100.24730.095*
C20.6710 (7)0.8258 (7)0.3234 (7)0.062 (2)
H2A0.63340.77490.40960.094*
H2B0.68460.77400.24230.094*
H2C0.58590.93190.32340.094*
C30.8111 (8)0.9073 (7)0.4372 (7)0.061 (2)
H3A0.72921.01350.43050.092*
H3B0.91980.90290.43580.092*
H3C0.76670.86210.52480.092*
C40.8986 (6)0.8952 (6)0.1764 (6)0.0449 (16)
H4A0.93050.82820.09870.054*
H4B0.80170.99240.16430.054*
C51.0480 (6)0.9265 (6)0.1642 (5)0.0413 (16)
C61.2150 (8)0.8236 (6)0.1077 (6)0.050 (2)
H61.23900.72800.07720.059*
C71.3495 (8)0.8583 (8)0.0949 (7)0.060 (2)
H71.46410.78560.05830.072*
C81.3137 (7)1.0004 (9)0.1363 (6)0.065 (2)
H81.40471.02360.12920.078*
C91.1445 (7)1.1097 (7)0.1885 (7)0.058 (2)
H91.12011.20790.21340.069*
C101.0142 (7)1.0708 (7)0.2027 (7)0.0511 (19)
H100.89941.14310.23920.061*
Hg10.45270 (3)0.53868 (3)0.69985 (3)0.05152 (7)
N10.8382 (5)0.8208 (5)0.3156 (5)0.0421 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0961 (3)0.0828 (3)0.0710 (4)0.0584 (3)0.0195 (3)0.0032 (3)
Br20.0621 (3)0.0625 (3)0.0664 (4)0.0297 (2)0.0040 (3)0.0121 (3)
Br30.0604 (3)0.0597 (4)0.0624 (3)0.0061 (3)0.0252 (3)0.0135 (3)
C10.064 (3)0.052 (3)0.074 (4)0.023 (3)0.029 (3)0.011 (3)
C20.053 (2)0.075 (3)0.073 (4)0.037 (2)0.024 (3)0.005 (3)
C30.068 (3)0.073 (3)0.049 (3)0.038 (2)0.005 (3)0.018 (3)
C40.058 (2)0.042 (2)0.048 (3)0.0279 (18)0.029 (2)0.013 (2)
C50.041 (2)0.049 (3)0.031 (2)0.015 (2)0.0154 (19)0.005 (2)
C60.065 (3)0.034 (3)0.031 (3)0.014 (2)0.004 (2)0.001 (2)
C70.042 (3)0.072 (4)0.045 (3)0.013 (3)0.009 (3)0.010 (3)
C80.046 (2)0.119 (5)0.041 (3)0.042 (3)0.020 (2)0.011 (3)
C90.060 (3)0.067 (3)0.053 (3)0.037 (2)0.014 (3)0.006 (3)
C100.038 (2)0.053 (3)0.056 (3)0.023 (2)0.002 (2)0.008 (2)
Hg10.05128 (9)0.05610 (11)0.04991 (12)0.02925 (7)0.00626 (9)0.00723 (9)
N10.0451 (17)0.041 (2)0.048 (2)0.0216 (14)0.0197 (16)0.0010 (17)
Geometric parameters (Å, º) top
Br1—Hg12.4909 (10)C4—N11.509 (7)
Br2—Hg12.4698 (8)C4—H4A0.9700
Br3—Hg1i2.6039 (8)C4—H4B0.9700
Br3—Hg12.8318 (8)C5—C61.351 (7)
C1—N11.475 (7)C5—C101.381 (9)
C1—H1A0.9600C6—C71.371 (11)
C1—H1B0.9600C6—H60.9300
C1—H1C0.9600C7—C81.366 (11)
C2—N11.468 (8)C7—H70.9300
C2—H2A0.9600C8—C91.377 (7)
C2—H2B0.9600C8—H80.9300
C2—H2C0.9600C9—C101.359 (10)
C3—N11.469 (8)C9—H90.9300
C3—H3A0.9600C10—H100.9300
C3—H3B0.9600Hg1—Br12.4909 (10)
C3—H3C0.9600Hg1—Br3i2.6039 (8)
C4—C51.484 (9)
Hg1i—Br3—Hg191.14 (2)C5—C6—H6119.5
N1—C1—H1A109.5C7—C6—H6119.5
N1—C1—H1B109.5C8—C7—C6119.4 (5)
H1A—C1—H1B109.5C8—C7—H7120.3
N1—C1—H1C109.5C6—C7—H7120.3
H1A—C1—H1C109.5C7—C8—C9120.8 (7)
H1B—C1—H1C109.5C7—C8—H8119.6
N1—C2—H2A109.5C9—C8—H8119.6
N1—C2—H2B109.5C10—C9—C8118.4 (7)
H2A—C2—H2B109.5C10—C9—H9120.8
N1—C2—H2C109.5C8—C9—H9120.8
H2A—C2—H2C109.5C9—C10—C5121.6 (5)
H2B—C2—H2C109.5C9—C10—H10119.2
N1—C3—H3A109.5C5—C10—H10119.2
N1—C3—H3B109.5Br2—Hg1—Br1122.26 (3)
H3A—C3—H3B109.5Br2—Hg1—Br1122.26 (3)
N1—C3—H3C109.5Br2—Hg1—Br3i122.24 (3)
H3A—C3—H3C109.5Br1—Hg1—Br3i107.18 (3)
H3B—C3—H3C109.5Br1—Hg1—Br3i107.18 (3)
C5—C4—N1115.1 (5)Br2—Hg1—Br3106.40 (3)
C5—C4—H4A108.5Br1—Hg1—Br3102.23 (3)
N1—C4—H4A108.5Br1—Hg1—Br3102.23 (3)
C5—C4—H4B108.5Br3i—Hg1—Br388.86 (2)
N1—C4—H4B108.5C2—N1—C3108.1 (4)
H4A—C4—H4B107.5C2—N1—C1109.7 (5)
C6—C5—C10118.8 (6)C3—N1—C1108.7 (5)
C6—C5—C4122.6 (6)C2—N1—C4108.5 (5)
C10—C5—C4118.4 (4)C3—N1—C4110.4 (5)
C5—C6—C7121.0 (6)C1—N1—C4111.4 (4)
N1—C4—C5—C691.4 (6)C6—C5—C10—C91.7 (9)
N1—C4—C5—C1093.3 (6)C4—C5—C10—C9177.2 (6)
C10—C5—C6—C73.1 (9)Hg1i—Br3—Hg1—Br2123.39 (3)
C4—C5—C6—C7178.3 (5)Hg1i—Br3—Hg1—Br1107.33 (3)
C5—C6—C7—C81.8 (9)Hg1i—Br3—Hg1—Br1107.33 (3)
C6—C7—C8—C91.1 (10)C5—C4—N1—C2168.8 (4)
C7—C8—C9—C102.4 (10)C5—C4—N1—C350.6 (5)
C8—C9—C10—C51.0 (10)C5—C4—N1—C170.3 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···Br10.962.863.776 (7)160
C2—H2B···Br2i0.962.873.743 (7)151
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C10H16N)2[Hg2Br6]
Mr1181.06
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.0542 (11), 9.7287 (9), 9.894 (1)
α, β, γ (°)80.78 (1), 71.02 (1), 62.39 (1)
V3)730.24 (13)
Z1
Radiation typeMo Kα
µ (mm1)18.72
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.011, 0.024
No. of measured, independent and
observed [I > 2σ(I)] reflections
6877, 2872, 2166
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 1.07
No. of reflections2862
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 1.56

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···Br10.962.863.776 (7)160
C2—H2B···Br2i0.962.873.743 (7)151
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The author thanks Ordered Matter Science Research Centre, Southeast University, for support of this study.

References

First citationJin, L. & Liu, N. (2011). Acta Cryst. E67, m1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNockemann, P. & Meyer, G. (2002). Acta Cryst. E58, m529–m530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds