organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o403-o404

(9H-Fluoren-9-yl)methyl N-{(2R,3R,4S)-4-hy­dr­oxy-2-[(2S,5R)-2-iso­propyl-5-methyl­cyclo­hex­yl­oxy]-5-oxooxolan-3-yl}carbamate propan-2-ol 0.334-solvate

aCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 14 December 2011; accepted 21 December 2011; online 14 January 2012)

The title compound, C29H35NO6.0.334C3H8O, a novel chiral N-(fluoren-9-yl­methyl­oxyxcarbon­yl) precursor, crystallizes with two independent carbamate (M) mol­ecules and propan-2-ol solvent mol­ecules in the unit cell. Its crystal structure has been determined from barely adequate data obtained from a multi-fragment needle crystal. In the crystal, N—H⋯O hydrogen bonds link M mol­ecules related by translation along the a axis into two independent chains. The ordered solvent mol­ecule, having a partial occupancy of 0.334, is attached to one independent M mol­ecule through O—H⋯O hydrogen bonds. The crystal packing exhibits weak inter­molecular C—H⋯O inter­actions and voids of 270 Å3 filled with randomly disordered solvent mol­ecules which were handled using the SQUEEZE methodology.

Related literature

For details of the synthesis, see Harris et al. (2011[Harris, L., Mee, S. P. H., Furneaux, R. H., Gainsford, G. J. & Luxenburger, A. (2011). J. Org. Chem. 76, 358-372.]). For a related structure, see: Valle et al. (1988[Valle, G., Crisma, M. & Toniolo, C. (1988). Can. J. Chem. 66, 2575-2582.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C29H35NO6·0.334C3H8O

  • Mr = 513.64

  • Triclinic, P 1

  • a = 5.1786 (2) Å

  • b = 15.3176 (5) Å

  • c = 20.3554 (14) Å

  • α = 98.495 (7)°

  • β = 92.109 (7)°

  • γ = 91.120 (6)°

  • V = 1595.36 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 123 K

  • 0.67 × 0.10 × 0.04 mm

Data collection
  • Rigaku Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.667, Tmax = 1.0

  • 7392 measured reflections

  • 7392 independent reflections

  • 5189 reflections with I > 2σ(I)

  • Rint = 0.086

  • θmax = 62.4°

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.261

  • S = 1.00

  • 7392 reflections

  • 673 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.88 2.19 3.015 (9) 157
O2—H2O⋯O3 0.84 2.46 2.877 (9) 111
N101—H11N⋯O105ii 0.88 2.15 2.977 (10) 155
O102—H12O⋯N101 0.84 2.31 2.761 (10) 114
O300—H30O⋯O2i 0.86 1.95 2.707 (12) 145
C3—H3⋯O1ii 1.00 2.26 3.222 (10) 162
C12—H12⋯O105ii 0.95 2.55 3.444 (9) 158
C103—H103⋯O101i 1.00 2.29 3.250 (8) 161
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: FSProcess in PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and HYDROGEN (Nardelli, 1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

Supporting information


Comment top

The title compound was prepared as part of our current research into the applicability of 4-chlorobenzoyloxycarbamates as highly efficient nitrogen reagents for the intermolecular aminohydroxylation under base-free reaction conditions. When the target compound, (R)-5-[(1R)-menthyloxy]-2(5H)-furanone 1 was treated with the Fmoc-reagent 3 (Fig. 1) using the standard aminohydroxylation conditions that we reported previously (Harris et al., 2011) the title compound 2 was isolated in 74% yield. Formation of the corresponding regioisomer was not observed in our experiments.

The title compound crystallizes with two independent molecules in the asymmetric unit and one resolved partial (occupancy = 0.667) 2-propanol molecule (Fig. 2) as well as disordered 2-propanol solvent; the latter was handled using the SQUEEZE methodology (Spek, 2009), see Experimental. It seems highly likely that all the included solvent of crystallization was not stable to X-rays during the experiment, a further complicating factor which makes it impossible to define the total 2-propanol concentration in the crystal. Nevertheless, only confirmation of structure was required of this study, with the absolute configurations of C2,C102(S), C3,C103(R), C4,C104(R), C1',C11'(R), C2',C12'(S), C5',C15'(R) & C7,C107(S) expected from the synthesis. With only 61% Friedel coverage it is surprising that the chirality indications based on the oxygen anomalous dispersion is correct, although of very low statistical significance. Confidence in the structural solution and final dataset is gained from the self-consistency of the two independent molecules which are almost identical: they have an r.m.s. atom fit of 0.171 Å, r.m.s. bond fit of 0.034 Å and r.m.s. angle fit of 2.04 ° (Spek, 2009). The 5-oxotetrahydrofuran rings have envelope conformations with C3, C103 as the flap atoms respectively and the cyclohexyloxy rings are in chair conformations (Spek, 2009).

The two independent molecules form two stacks of molecules up the a axis (Table 1, Fig. 3) utilizing N–H···O=C hydrogen bonds with the 2-propanol bound by a O–H···O bond to one set creating a D33(13) H bonding motif (Bernstein et al., 1995). There are many N-(Fluoren-9-ylmethyloxyxcarbonyl) ("Fmoc") derivatives in the literature but only one N-(Fluoren-9-ylmethyloxyxcarbonyl)-1-aminocyclopentane-1-carboxylic acid (Valle et al., 1988) attached to a 5-membered saturated ring.

Related literature top

For details of the synthesis, see Harris et al. (2011). For a related structure, see: Valle et al. (1988). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Following the general procedure (Harris et al., 2011) (R)-5-[(1R)-menthyloxy]-2(5H)-furanone 1 (100 mg, 0.42 mmol) was treated with osmium tetroxide (4.3 mg, 0.017 mmol) and Fmoc-reagent 3 (231.4 mg, 0.5874 mmol) at room temperature overnight.

The crude product was purified by flash column chromatography (SiO2, ethyl acetate/petroleum spirit 1:4 and 3:7) to yield 153 mg (74%) of 2 as a colorless foam. [α]20D = -49 (c 0.545, CHCl3); FTIR (neat, cm-1) 3349, 2954, 1787, 1708, 1450, 1263, 1104, 909, 758, 740; 1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 7.8 Hz, 2H), 7.60–7.55 (m, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (tt, J = 1.4, 7.5 Hz, 2H), 5.73 (s, 1H), 5.43 (d, J = 3 Hz, 1H), 4.77 (d, J = 5 Hz, 1H), 4.47–4.39 (m, 2H), 4.22 (d, J = 6.9 Hz, 1H), 4.19 (dd, J = 3.5, 6.5 Hz, 1H), 3.51 (td, J = 4.2, 10.7 Hz, 1H), 3.12 (J = 2.6 Hz, 1H), 2.20–2.09 (m, 1H), 1.95 (sept/d, J = 2.7, 7 Hz, 1H), 1.69–1.61 (m, 2H), 1.43–1.31 (m, 1H), 1.28–1.20 (m, 1H), 1.03–0.80 (m, 6H), 0.87 (d, J = 7.1 Hz, 3H), 0.74 (d, J = 7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 175.82, 156.33, 143.65, 143.50, 141.33, 127.82, 127.11, 125.01, 120.05, 101.89, 78.46, 67.35, 66.60, 55.99, 47.47, 47.07, 39.48, 34.21, 31.38, 25.66, 23.02, 22.13, 20.83, 15.5; HRMS (ESI) m/z calcd for C29H35NO6Na+ 516.2362, obsd 516.2368. Anal. calcd for C29H35NO6: C, 70.57; H, 7.15; N, 2.84. Found: C, 70.39; H, 7.21; N, 2.76.

Fragile needle crystals could only be obtained by floating the 2-propanol solution onto the mounting oil.

Refinement top

All crystals mounted gave multiple crystal diffraction profiles; the largest of these was chosen. Data was then extracted by using a 30 by 30 pixel spotsize from data collected with a 5 degree scan width and redundancy 3. During processing, frames 101–127 & 408–423 were observed to be incorrectly measured with noticeable icing and so the dataset was reprocessed omitting these frames. As the compound was known to be one chiral form, space group P1 was chosen. One structural solution was achieved using SHELXS with the rather extreme parameter TREF 10000!

Analysis of the Fo/Fc data table then showed, consistent with the observed frames, that data beyond 0.87 Å was both weak and incorrectly positioned; this data was excluded using the SHEL command. The initial solution gave a best R1 of ~18% after attempts to include partial C atoms as disordered solvent had been attempted. One 2-propanol could be identified (at about 0.7 occupancy), but the remaining solvent was fully disordered. The PLATON SQUEEZE processing method (Spek, 2009) was then applied with the 5756 2σ(I) data converging to an R1 of ~13%. At this point extreme Fo>>Fc (at low angle) and Fo<<Fc (at high angle) were noted: these were consistent with multiple crystal overlap at low angle and in adequate positioning/measurement at high angle. The 824 data with Fo2/Fc2 or Fc2/Fo2 greater than 2.0 and with the |Δ(Fo2-Fc2)| > 2.0 σ(Fo2), which gave as R1 value of ~ 55%, were omitted. The new dataset with the 5223 2σ(I) data now converged with R1 ~10%.

The occupancy of partial resolved 2-propanol solvent was based on electron densities at the non-hydrogen atom sites determined by a refinement with fixed average isotropic U values of 0.08 e.Å-3. This lead to the fixed value of 0.667; the non-hydrogen atoms were then refined with one common isotropic thermal parameter.The hydrogen on the partial resolved 2-propanol oxygen was placed at its calculated position based on hydrogen bonding criteria (Nardelli, 1999).

Finally 34 individual outlier reflection were omitted to give the final convergence at R1 9.5%. There are 345 reflections missing within the final 0.87Å dataset, shell with 22 affected by backstop interactions. Although changing the relatively conservative rejection ratio criterion (of 2.0 above, for the Fo2 and Fc2 values) could improve further the R1 & wR2 values, it was considered that this systematic change was not justifiable.

In the absence of any significant anomalous scatterers in the molecule and the low fraction of Friedel pairs measured (0.46), the refinement of Flack parameter led to a formally inconclusive value of 0.1 (3). Therefore, in the final refinement, the Flack parameter was not refined, and the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (primary), 0.99 (methylene) or 0.95 (phenyl) Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998); data reduction: FSProcess in PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and HYDROGEN (Nardelli, 1999).

Figures top
[Figure 1] Fig. 1. Synthesis route to title compound 2.
[Figure 2] Fig. 2. An ORTEP (Farrugia, 1999) view of 2 showing the resolved atoms with 30% probabilility ellipsoids.
[Figure 3] Fig. 3. Mercury (Macrae et al., 2008) cell packing view showing the hydrogen bonds as dotted lines [symmetry codes: (i) 1 + x, y, z; (ii) x - 1, y, z].
(9H-Fluoren-9-yl)methyl N-{(2R,3R,4S)- 4-hydroxy-2-[(2S,5R)-2-isopropyl-5-methylcyclohexyloxy]-5- oxooxolan-3-yl}carbamate propan-2-ol 0.334-solvate top
Crystal data top
C29H35NO6·0.334C3H8OZ = 2
Mr = 513.64F(000) = 551
Triclinic, P1Dx = 1.069 Mg m3
Hall symbol: P 1Cu Kα radiation, λ = 1.54178 Å
a = 5.1786 (2) ÅCell parameters from 11033 reflections
b = 15.3176 (5) Åθ = 6.1–71.6°
c = 20.3554 (14) ŵ = 0.60 mm1
α = 98.495 (7)°T = 123 K
β = 92.109 (7)°Needle, colourless
γ = 91.120 (6)°0.67 × 0.10 × 0.04 mm
V = 1595.36 (14) Å3
Data collection top
Rigaku Spider
diffractometer
7392 independent reflections
Radiation source: Rigaku MM007 rotating anode5189 reflections with I > 2σ(I)
Rigaku VariMax-HF Confocal Optical System monochromatorRint = 0.086
Detector resolution: 10 pixels mm-1θmax = 62.4°, θmin = 8.9°
ω scansh = 55
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.667, Tmax = 1.0l = 2323
7392 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.261 w = 1/[σ2(Fo2) + (0.1783P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
7392 reflectionsΔρmax = 0.41 e Å3
673 parametersΔρmin = 0.33 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0101 (15)
Crystal data top
C29H35NO6·0.334C3H8Oγ = 91.120 (6)°
Mr = 513.64V = 1595.36 (14) Å3
Triclinic, P1Z = 2
a = 5.1786 (2) ÅCu Kα radiation
b = 15.3176 (5) ŵ = 0.60 mm1
c = 20.3554 (14) ÅT = 123 K
α = 98.495 (7)°0.67 × 0.10 × 0.04 mm
β = 92.109 (7)°
Data collection top
Rigaku Spider
diffractometer
7392 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5189 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 1.0Rint = 0.086
7392 measured reflectionsθmax = 62.4°
Refinement top
R[F2 > 2σ(F2)] = 0.0953 restraints
wR(F2) = 0.261H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
7392 reflectionsΔρmin = 0.33 e Å3
673 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7190 (10)0.8062 (3)0.0823 (2)0.0520 (12)
O20.3417 (14)0.6177 (3)0.0835 (3)0.0816 (19)
H2O0.44450.58580.06030.122*
O30.7948 (12)0.6754 (4)0.0227 (3)0.0757 (18)
O40.3936 (10)0.9052 (3)0.0773 (2)0.0492 (12)
O50.0682 (11)0.7366 (3)0.2116 (2)0.0487 (13)
O60.2298 (9)0.6847 (3)0.2774 (2)0.0502 (12)
N10.3549 (13)0.7504 (4)0.1921 (2)0.0515 (16)
H1N0.51260.75110.20980.062*
C10.6473 (16)0.7252 (5)0.0550 (3)0.054 (2)
C20.3736 (16)0.7057 (5)0.0726 (3)0.0531 (19)
H20.25940.71310.03320.064*
C30.3102 (17)0.7766 (4)0.1271 (3)0.055 (2)
H30.12920.79650.12130.066*
C40.5131 (14)0.8518 (4)0.1182 (3)0.0466 (18)
H40.57630.88590.16180.056*
C50.1583 (19)0.7259 (4)0.2241 (3)0.054 (2)
C60.0328 (16)0.6627 (5)0.3177 (3)0.056 (2)
H6A0.09570.62270.29060.068*
H6B0.05630.71680.33640.068*
C70.1403 (14)0.6186 (4)0.3730 (3)0.0408 (16)
H70.28850.65590.39510.049*
C80.0530 (14)0.6066 (5)0.4256 (3)0.0484 (18)
C90.2091 (16)0.6674 (4)0.4599 (3)0.056 (2)
H90.20810.72690.45190.067*
C100.3727 (17)0.6386 (5)0.5078 (3)0.061 (2)
H100.47690.67990.53340.073*
C110.3808 (18)0.5533 (5)0.5169 (4)0.067 (2)
H110.49230.53500.54860.080*
C120.2293 (16)0.4923 (5)0.4809 (4)0.058 (2)
H120.24070.43230.48740.070*
C130.0606 (15)0.5169 (4)0.4353 (3)0.0481 (18)
C140.1126 (15)0.4682 (4)0.3900 (3)0.0475 (18)
C150.1750 (17)0.3796 (4)0.3792 (4)0.059 (2)
H150.09640.34040.40500.071*
C160.3427 (18)0.3473 (5)0.3334 (4)0.063 (2)
H160.38040.28630.32670.076*
C170.4594 (17)0.4045 (4)0.2962 (4)0.060 (2)
H170.57450.38170.26300.072*
C180.4115 (15)0.4954 (4)0.3065 (4)0.0526 (18)
H180.49950.53430.28210.063*
C190.2358 (16)0.5269 (4)0.3523 (3)0.054 (2)
C1'0.5544 (15)0.9819 (4)0.0667 (3)0.0501 (18)
H1'0.73960.96930.07630.060*
C2'0.5251 (17)0.9996 (5)0.0026 (3)0.055 (2)
H2'0.33981.01350.01070.065*
C3'0.686 (2)1.0806 (5)0.0108 (4)0.070 (3)
H3'A0.66281.09290.05700.084*
H3'B0.87081.06900.00270.084*
C4'0.607 (2)1.1633 (6)0.0382 (4)0.074 (3)
H4'A0.72481.21380.03400.088*
H4'B0.42921.17950.02660.088*
C5'0.6218 (19)1.1445 (5)0.1094 (4)0.065 (2)
H5'0.80741.13580.12140.078*
C6'0.4748 (16)1.0615 (4)0.1169 (3)0.0480 (19)
H6'A0.28751.07090.11050.058*
H6'B0.50571.04820.16270.058*
C7'0.5880 (17)0.9166 (5)0.0545 (3)0.056 (2)
H7'0.47860.86650.04370.068*
C8'0.500 (2)0.9316 (6)0.1248 (4)0.082 (3)
H8'A0.62080.97330.14060.123*
H8'B0.32660.95580.12380.123*
H8'C0.49790.87530.15480.123*
C9'0.8581 (18)0.8887 (6)0.0505 (4)0.068 (2)
H9'A0.87430.83070.07750.102*
H9'B0.90850.88500.00410.102*
H9'C0.97110.93180.06720.102*
C10'0.532 (2)1.2233 (5)0.1556 (4)0.077 (3)
H1'A0.63841.27540.15060.115*
H1'B0.54961.21170.20160.115*
H1'C0.35091.23400.14470.115*
O1010.0834 (9)0.4245 (3)0.6774 (2)0.0511 (12)
O1020.2737 (16)0.2349 (4)0.6766 (4)0.098 (2)
H12O0.33570.22090.63900.148*
O1030.1716 (13)0.3208 (5)0.7385 (3)0.098 (2)
O1040.2707 (9)0.5213 (3)0.6859 (2)0.0481 (12)
O1050.6970 (12)0.3018 (3)0.5502 (2)0.0534 (14)
O1060.3879 (10)0.2247 (3)0.4832 (2)0.0514 (12)
N1010.2694 (14)0.3225 (4)0.5674 (3)0.0601 (17)
H11N0.11170.31470.54950.072*
C1010.0117 (19)0.3510 (6)0.7054 (4)0.072 (2)
C1020.2559 (17)0.3269 (5)0.6903 (4)0.062 (2)
H1020.37300.34990.72940.075*
C1030.3160 (14)0.3765 (4)0.6322 (3)0.0427 (16)
H1030.50000.39840.63680.051*
C1040.1408 (14)0.4531 (4)0.6425 (3)0.0453 (17)
H1040.08690.47280.59950.054*
C1050.4667 (17)0.2855 (4)0.5358 (3)0.0443 (17)
C1060.5961 (16)0.1848 (5)0.4427 (3)0.055 (2)
H16A0.71720.15520.47050.065*
H16B0.69370.23100.42410.065*
C1070.4784 (16)0.1191 (4)0.3877 (3)0.052 (2)
H1070.33280.14710.36560.063*
C1080.6698 (14)0.0873 (4)0.3370 (3)0.0468 (17)
C1090.8222 (18)0.1341 (5)0.3008 (3)0.065 (2)
H1090.81370.19660.30460.077*
C1100.9942 (18)0.0859 (5)0.2573 (3)0.065 (2)
H1101.10950.11760.23360.078*
C1111.0005 (17)0.0025 (5)0.2481 (3)0.063 (2)
H1111.10960.03240.21610.076*
C1120.8465 (18)0.0507 (5)0.2857 (3)0.064 (2)
H1120.85610.11320.28070.077*
C1130.6843 (15)0.0079 (4)0.3291 (3)0.0483 (18)
C1140.4974 (14)0.0392 (4)0.3748 (3)0.0446 (16)
C1150.4428 (17)0.1232 (4)0.3870 (4)0.058 (2)
H1150.52810.17200.36370.070*
C1160.265 (2)0.1365 (5)0.4329 (5)0.083 (3)
H1160.22450.19490.44040.099*
C1170.1432 (17)0.0657 (5)0.4688 (4)0.064 (2)
H1170.02240.07570.50110.076*
C1180.1984 (17)0.0199 (5)0.4573 (4)0.064 (2)
H1180.11660.06890.48140.077*
C1190.3777 (16)0.0321 (4)0.4093 (3)0.055 (2)
C11'0.1211 (16)0.6036 (4)0.7002 (3)0.0503 (18)
H11'0.06770.58800.69840.060*
C12'0.2030 (17)0.6474 (5)0.7706 (3)0.060 (2)
H12'0.39260.66120.77070.072*
C13'0.0658 (19)0.7362 (5)0.7842 (4)0.071 (3)
H3'C0.12270.72480.78540.086*
H3'D0.12550.76750.82840.086*
C14'0.117 (2)0.7947 (5)0.7322 (4)0.077 (3)
H4'C0.01750.84930.74190.092*
H4'D0.30290.81170.73460.092*
C15'0.0441 (18)0.7500 (5)0.6631 (3)0.061 (2)
H15'0.14700.73840.66010.073*
C16'0.1762 (17)0.6621 (5)0.6479 (3)0.0536 (19)
H6'C0.36500.67250.64650.064*
H6'D0.11390.63170.60370.064*
C17'0.1619 (19)0.5874 (5)0.8245 (4)0.066 (2)
H17'0.26630.53350.81280.079*
C18'0.255 (2)0.6314 (8)0.8924 (3)0.091 (3)
H8D'0.40230.67120.88820.137*
H8E'0.30960.58640.91930.137*
H8F'0.11530.66530.91410.137*
C19'0.1191 (18)0.5573 (6)0.8270 (4)0.070 (2)
H9D'0.12860.50670.85120.105*
H9E'0.19120.54010.78160.105*
H9F'0.21850.60570.84970.105*
C1T'0.112 (2)0.8087 (6)0.6105 (5)0.092 (3)
H1'D0.01460.86320.61810.137*
H1'E0.06630.77700.56600.137*
H1'F0.29750.82300.61400.137*
O3000.945 (2)0.5053 (6)0.0366 (5)0.0845 (17)*0.667
H30O1.01550.55440.05620.127*0.667
C3000.859 (3)0.4525 (10)0.0876 (7)0.0845 (17)*0.667
H3000.69510.41840.07350.127*0.667
C3021.088 (3)0.3928 (10)0.0916 (7)0.0845 (17)*0.667
H32A1.10290.35450.04900.127*0.667
H32B1.06320.35640.12680.127*0.667
H32C1.24720.42890.10180.127*0.667
C3010.841 (3)0.5067 (10)0.1489 (7)0.0845 (17)*0.667
H31A0.98970.49720.17810.127*0.667
H31B0.68110.49220.16950.127*0.667
H31C0.84080.56870.14200.127*0.667
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.041 (3)0.064 (3)0.054 (3)0.017 (2)0.008 (2)0.014 (2)
O20.108 (6)0.051 (3)0.088 (4)0.001 (3)0.020 (4)0.012 (3)
O30.082 (5)0.079 (4)0.066 (3)0.023 (3)0.018 (3)0.001 (3)
O40.064 (4)0.042 (2)0.043 (2)0.001 (2)0.005 (2)0.0110 (18)
O50.054 (4)0.045 (2)0.049 (3)0.011 (2)0.007 (2)0.0116 (19)
O60.047 (3)0.056 (3)0.049 (2)0.001 (2)0.015 (2)0.012 (2)
N10.062 (5)0.063 (3)0.034 (3)0.012 (3)0.010 (3)0.019 (2)
C10.065 (6)0.064 (5)0.031 (3)0.007 (4)0.007 (3)0.001 (3)
C20.053 (6)0.065 (4)0.041 (3)0.002 (4)0.010 (3)0.005 (3)
C30.080 (6)0.045 (3)0.045 (3)0.020 (4)0.019 (4)0.015 (3)
C40.055 (5)0.041 (3)0.048 (3)0.002 (3)0.018 (3)0.016 (3)
C50.085 (7)0.050 (4)0.031 (3)0.017 (4)0.023 (4)0.016 (3)
C60.080 (6)0.052 (4)0.042 (3)0.015 (4)0.020 (4)0.017 (3)
C70.038 (5)0.045 (3)0.042 (3)0.001 (3)0.015 (3)0.012 (3)
C80.043 (5)0.056 (4)0.045 (3)0.004 (3)0.007 (3)0.005 (3)
C90.074 (6)0.050 (4)0.048 (4)0.013 (4)0.021 (4)0.011 (3)
C100.076 (7)0.065 (5)0.042 (3)0.004 (4)0.013 (4)0.009 (3)
C110.080 (7)0.078 (5)0.047 (4)0.009 (5)0.008 (4)0.021 (4)
C120.053 (6)0.069 (5)0.053 (4)0.005 (4)0.007 (4)0.013 (3)
C130.057 (5)0.043 (3)0.048 (3)0.009 (3)0.010 (3)0.021 (3)
C140.049 (5)0.048 (4)0.049 (4)0.004 (3)0.005 (3)0.019 (3)
C150.079 (7)0.039 (3)0.062 (4)0.008 (4)0.002 (4)0.020 (3)
C160.071 (6)0.045 (4)0.072 (5)0.001 (4)0.005 (4)0.005 (4)
C170.080 (7)0.043 (4)0.056 (4)0.009 (4)0.015 (4)0.003 (3)
C180.041 (5)0.050 (4)0.065 (4)0.009 (3)0.011 (4)0.003 (3)
C190.074 (6)0.044 (4)0.045 (3)0.011 (4)0.013 (4)0.005 (3)
C1'0.049 (5)0.056 (4)0.046 (4)0.003 (4)0.004 (3)0.007 (3)
C2'0.066 (6)0.059 (4)0.041 (4)0.002 (4)0.020 (4)0.010 (3)
C3'0.090 (8)0.072 (5)0.051 (4)0.016 (5)0.011 (4)0.016 (4)
C4'0.086 (8)0.067 (5)0.069 (5)0.005 (5)0.006 (5)0.015 (4)
C5'0.088 (7)0.051 (4)0.057 (4)0.011 (4)0.009 (4)0.012 (3)
C6'0.072 (6)0.035 (3)0.037 (3)0.008 (3)0.009 (3)0.003 (2)
C7'0.066 (6)0.069 (4)0.033 (3)0.015 (4)0.005 (3)0.005 (3)
C8'0.104 (8)0.103 (6)0.035 (4)0.030 (6)0.009 (4)0.002 (4)
C9'0.059 (7)0.083 (6)0.057 (4)0.002 (5)0.018 (4)0.010 (4)
C10'0.105 (8)0.051 (4)0.074 (5)0.006 (5)0.003 (5)0.005 (4)
O1010.031 (3)0.062 (3)0.058 (3)0.002 (2)0.010 (2)0.004 (2)
O1020.112 (6)0.046 (3)0.142 (6)0.004 (3)0.002 (5)0.031 (4)
O1030.071 (5)0.143 (6)0.093 (4)0.000 (4)0.014 (4)0.063 (4)
O1040.053 (3)0.045 (2)0.044 (2)0.007 (2)0.003 (2)0.0040 (19)
O1050.071 (4)0.039 (2)0.052 (3)0.006 (3)0.015 (3)0.0076 (19)
O1060.054 (4)0.047 (2)0.050 (2)0.001 (2)0.006 (2)0.002 (2)
N1010.049 (5)0.061 (4)0.064 (4)0.005 (3)0.006 (3)0.009 (3)
C1010.061 (7)0.090 (6)0.071 (5)0.009 (5)0.001 (5)0.039 (5)
C1020.061 (6)0.062 (5)0.064 (5)0.012 (4)0.008 (4)0.015 (4)
C1030.035 (5)0.048 (3)0.044 (3)0.003 (3)0.008 (3)0.002 (3)
C1040.049 (5)0.055 (4)0.032 (3)0.002 (3)0.012 (3)0.005 (3)
C1050.044 (6)0.039 (3)0.049 (4)0.006 (4)0.003 (4)0.006 (3)
C1060.063 (6)0.052 (4)0.047 (4)0.005 (4)0.018 (4)0.002 (3)
C1070.074 (6)0.040 (3)0.042 (3)0.004 (4)0.011 (4)0.002 (3)
C1080.044 (5)0.051 (4)0.041 (3)0.005 (3)0.002 (3)0.007 (3)
C1090.097 (8)0.057 (4)0.040 (3)0.004 (4)0.024 (4)0.001 (3)
C1100.080 (7)0.066 (5)0.043 (4)0.007 (4)0.001 (4)0.009 (3)
C1110.078 (7)0.064 (5)0.044 (4)0.018 (4)0.010 (4)0.007 (3)
C1120.080 (7)0.061 (5)0.048 (4)0.017 (4)0.008 (4)0.009 (3)
C1130.045 (5)0.047 (4)0.049 (4)0.006 (3)0.009 (3)0.004 (3)
C1140.037 (5)0.038 (3)0.057 (4)0.004 (3)0.000 (3)0.001 (3)
C1150.073 (6)0.039 (4)0.064 (4)0.006 (4)0.001 (4)0.008 (3)
C1160.127 (9)0.039 (4)0.083 (5)0.017 (5)0.033 (6)0.003 (4)
C1170.064 (6)0.044 (4)0.084 (5)0.002 (4)0.016 (4)0.014 (4)
C1180.068 (7)0.046 (4)0.079 (5)0.005 (4)0.028 (4)0.004 (3)
C1190.078 (6)0.034 (3)0.054 (4)0.011 (3)0.013 (4)0.010 (3)
C11'0.046 (5)0.049 (4)0.054 (4)0.014 (3)0.007 (3)0.003 (3)
C12'0.067 (6)0.072 (5)0.038 (3)0.001 (4)0.019 (4)0.008 (3)
C13'0.086 (7)0.064 (5)0.060 (4)0.024 (4)0.023 (5)0.014 (4)
C14'0.118 (9)0.056 (4)0.053 (4)0.025 (5)0.008 (5)0.012 (3)
C15'0.071 (7)0.056 (4)0.051 (4)0.000 (4)0.001 (4)0.003 (3)
C16'0.055 (5)0.059 (4)0.044 (4)0.003 (4)0.009 (3)0.002 (3)
C17'0.083 (7)0.065 (4)0.047 (4)0.016 (4)0.008 (4)0.003 (3)
C18'0.094 (8)0.144 (9)0.029 (3)0.044 (6)0.014 (4)0.016 (4)
C19'0.064 (7)0.089 (6)0.058 (5)0.002 (5)0.018 (4)0.012 (4)
C1T'0.135 (10)0.064 (5)0.080 (6)0.010 (6)0.010 (6)0.019 (4)
Geometric parameters (Å, º) top
O1—C11.321 (9)O104—C11'1.489 (7)
O1—C41.448 (8)O105—C1051.230 (8)
O2—C21.406 (9)O106—C1051.357 (8)
O2—H2O0.8400O106—C1061.468 (8)
O3—C11.229 (8)N101—C1051.320 (9)
O4—C41.389 (8)N101—C1031.460 (9)
O4—C1'1.473 (8)N101—H11N0.8800
O5—C51.211 (10)C101—C1021.473 (12)
O6—C51.377 (8)C102—C1031.535 (10)
O6—C61.399 (8)C102—H1021.0000
N1—C51.307 (9)C103—C1041.492 (9)
N1—C31.451 (8)C103—H1031.0000
N1—H1N0.8800C104—H1041.0000
C1—C21.509 (11)C106—C1071.493 (10)
C2—C31.483 (9)C106—H16A0.9900
C2—H21.0000C106—H16B0.9900
C3—C41.579 (10)C107—C1081.494 (9)
C3—H31.0000C107—C1191.550 (9)
C4—H41.0000C107—H1071.0000
C6—C71.492 (9)C108—C1091.363 (10)
C6—H6A0.9900C108—C1131.447 (9)
C6—H6B0.9900C109—C1101.420 (10)
C7—C191.504 (8)C109—H1090.9500
C7—C81.521 (8)C110—C1111.340 (11)
C7—H71.0000C110—H1100.9500
C8—C91.373 (9)C111—C1121.398 (11)
C8—C131.417 (9)C111—H1110.9500
C9—C101.427 (9)C112—C1131.350 (9)
C9—H90.9500C112—H1120.9500
C10—C111.346 (10)C113—C1141.487 (9)
C10—H100.9500C114—C1151.371 (9)
C11—C121.376 (11)C114—C1191.380 (9)
C11—H110.9500C115—C1161.369 (11)
C12—C131.383 (9)C115—H1150.9500
C12—H120.9500C116—C1171.391 (10)
C13—C141.447 (9)C116—H1160.9500
C14—C151.389 (9)C117—C1181.392 (10)
C14—C191.422 (9)C117—H1170.9500
C15—C161.344 (10)C118—C1191.403 (10)
C15—H150.9500C118—H1180.9500
C16—C171.383 (11)C11'—C16'1.521 (10)
C16—H160.9500C11'—C12'1.531 (10)
C17—C181.406 (9)C11'—H11'1.0000
C17—H170.9500C12'—C13'1.539 (10)
C18—C191.370 (9)C12'—C17'1.549 (10)
C18—H180.9500C12'—H12'1.0000
C1'—C2'1.479 (9)C13'—C14'1.512 (11)
C1'—C6'1.544 (8)C13'—H3'C0.9900
C1'—H1'1.0000C13'—H3'D0.9900
C2'—C3'1.514 (11)C14'—C15'1.503 (11)
C2'—C7'1.575 (10)C14'—H4'C0.9900
C2'—H2'1.0000C14'—H4'D0.9900
C3'—C4'1.562 (12)C15'—C16'1.518 (10)
C3'—H3'A0.9900C15'—C1T'1.541 (11)
C3'—H3'B0.9900C15'—H15'1.0000
C4'—C5'1.516 (11)C16'—H6'C0.9900
C4'—H4'A0.9900C16'—H6'D0.9900
C4'—H4'B0.9900C17'—C18'1.504 (12)
C5'—C6'1.499 (10)C17'—C19'1.523 (13)
C5'—C10'1.508 (10)C17'—H17'1.0000
C5'—H5'1.0000C18'—H8D'0.9800
C6'—H6'A0.9900C18'—H8E'0.9800
C6'—H6'B0.9900C18'—H8F'0.9800
C7'—C9'1.473 (12)C19'—H9D'0.9800
C7'—C8'1.536 (10)C19'—H9E'0.9800
C7'—H7'1.0000C19'—H9F'0.9800
C8'—H8'A0.9800C1T'—H1'D0.9800
C8'—H8'B0.9800C1T'—H1'E0.9800
C8'—H8'C0.9800C1T'—H1'F0.9800
C9'—H9'A0.9800O300—C3001.483 (17)
C9'—H9'B0.9800O300—H30O0.864 (10)
C9'—H9'C0.9800C300—C3011.400 (19)
C10'—H1'A0.9800C300—C3021.52 (2)
C10'—H1'B0.9800C300—H3001.0000
C10'—H1'C0.9800C302—H32A0.9800
O101—C1011.386 (9)C302—H32B0.9800
O101—C1041.476 (8)C302—H32C0.9800
O102—C1021.401 (9)C301—H31A0.9800
O102—H12O0.8400C301—H31B0.9800
O103—C1011.213 (10)C301—H31C0.9800
O104—C1041.407 (8)
C1—O1—C4112.0 (6)O102—C102—C101110.1 (8)
C2—O2—H2O109.5O102—C102—C103115.2 (6)
C4—O4—C1'113.5 (5)C101—C102—C103103.6 (6)
C5—O6—C6117.0 (6)O102—C102—H102109.3
C5—N1—C3119.3 (7)C101—C102—H102109.3
C5—N1—H1N120.3C103—C102—H102109.3
C3—N1—H1N120.3N101—C103—C104112.3 (6)
O3—C1—O1122.1 (7)N101—C103—C102112.9 (6)
O3—C1—C2127.9 (7)C104—C103—C102102.8 (5)
O1—C1—C2109.9 (6)N101—C103—H103109.6
O2—C2—C3117.8 (6)C104—C103—H103109.6
O2—C2—C1111.4 (6)C102—C103—H103109.6
C3—C2—C1106.0 (6)O104—C104—O101107.2 (4)
O2—C2—H2107.0O104—C104—C103107.8 (6)
C3—C2—H2107.0O101—C104—C103106.6 (5)
C1—C2—H2107.0O104—C104—H104111.6
N1—C3—C2112.2 (5)O101—C104—H104111.6
N1—C3—C4108.8 (7)C103—C104—H104111.6
C2—C3—C4102.0 (5)O105—C105—N101126.3 (7)
N1—C3—H3111.2O105—C105—O106121.8 (6)
C2—C3—H3111.2N101—C105—O106111.8 (7)
C4—C3—H3111.2O106—C106—C107108.5 (6)
O4—C4—O1108.2 (5)O106—C106—H16A110.0
O4—C4—C3106.7 (6)C107—C106—H16A110.0
O1—C4—C3104.6 (5)O106—C106—H16B110.0
O4—C4—H4112.3C107—C106—H16B110.0
O1—C4—H4112.3H16A—C106—H16B108.4
C3—C4—H4112.3C106—C107—C108112.1 (7)
O5—C5—N1126.9 (6)C106—C107—C119114.9 (5)
O5—C5—O6119.8 (6)C108—C107—C119102.6 (5)
N1—C5—O6113.3 (8)C106—C107—H107109.0
O6—C6—C7110.6 (6)C108—C107—H107109.0
O6—C6—H6A109.5C119—C107—H107109.0
C7—C6—H6A109.5C109—C108—C113119.9 (6)
O6—C6—H6B109.5C109—C108—C107129.7 (6)
C7—C6—H6B109.5C113—C108—C107110.5 (6)
H6A—C6—H6B108.1C108—C109—C110117.3 (7)
C6—C7—C19115.1 (5)C108—C109—H109121.3
C6—C7—C8113.8 (6)C110—C109—H109121.3
C19—C7—C8103.6 (5)C111—C110—C109122.7 (8)
C6—C7—H7108.0C111—C110—H110118.7
C19—C7—H7108.0C109—C110—H110118.7
C8—C7—H7108.0C110—C111—C112120.0 (7)
C9—C8—C13121.2 (6)C110—C111—H111120.0
C9—C8—C7129.6 (6)C112—C111—H111120.0
C13—C8—C7109.2 (5)C113—C112—C111119.6 (7)
C8—C9—C10118.2 (6)C113—C112—H112120.2
C8—C9—H9120.9C111—C112—H112120.2
C10—C9—H9120.9C112—C113—C108120.4 (7)
C11—C10—C9120.6 (7)C112—C113—C114132.5 (6)
C11—C10—H10119.7C108—C113—C114107.1 (5)
C9—C10—H10119.7C115—C114—C119120.5 (6)
C10—C11—C12120.7 (7)C115—C114—C113129.9 (6)
C10—C11—H11119.6C119—C114—C113109.6 (5)
C12—C11—H11119.6C116—C115—C114119.8 (7)
C11—C12—C13121.2 (7)C116—C115—H115120.1
C11—C12—H12119.4C114—C115—H115120.1
C13—C12—H12119.4C115—C116—C117120.9 (7)
C12—C13—C8118.0 (6)C115—C116—H116119.6
C12—C13—C14133.3 (6)C117—C116—H116119.6
C8—C13—C14108.7 (5)C116—C117—C118119.9 (7)
C15—C14—C19118.5 (6)C116—C117—H117120.1
C15—C14—C13131.9 (6)C118—C117—H117120.1
C19—C14—C13109.6 (5)C117—C118—C119118.4 (7)
C16—C15—C14122.4 (6)C117—C118—H118120.8
C16—C15—H15118.8C119—C118—H118120.8
C14—C15—H15118.8C114—C119—C118120.5 (6)
C15—C16—C17118.9 (6)C114—C119—C107110.3 (6)
C15—C16—H16120.5C118—C119—C107129.2 (6)
C17—C16—H16120.5O104—C11'—C16'108.8 (5)
C16—C17—C18121.5 (7)O104—C11'—C12'107.3 (6)
C16—C17—H17119.3C16'—C11'—C12'112.6 (6)
C18—C17—H17119.3O104—C11'—H11'109.4
C19—C18—C17118.9 (7)C16'—C11'—H11'109.4
C19—C18—H18120.6C12'—C11'—H11'109.4
C17—C18—H18120.6C11'—C12'—C13'107.9 (7)
C18—C19—C14119.8 (6)C11'—C12'—C17'113.7 (6)
C18—C19—C7131.2 (6)C13'—C12'—C17'113.6 (6)
C14—C19—C7108.9 (5)C11'—C12'—H12'107.1
O4—C1'—C2'111.2 (6)C13'—C12'—H12'107.1
O4—C1'—C6'107.6 (5)C17'—C12'—H12'107.1
C2'—C1'—C6'111.8 (5)C14'—C13'—C12'112.4 (6)
O4—C1'—H1'108.7C14'—C13'—H3'C109.1
C2'—C1'—H1'108.7C12'—C13'—H3'C109.1
C6'—C1'—H1'108.7C14'—C13'—H3'D109.1
C1'—C2'—C3'109.6 (7)C12'—C13'—H3'D109.1
C1'—C2'—C7'112.2 (6)H3'C—C13'—H3'D107.9
C3'—C2'—C7'112.7 (6)C15'—C14'—C13'112.4 (7)
C1'—C2'—H2'107.3C15'—C14'—H4'C109.1
C3'—C2'—H2'107.3C13'—C14'—H4'C109.1
C7'—C2'—H2'107.3C15'—C14'—H4'D109.1
C2'—C3'—C4'111.7 (6)C13'—C14'—H4'D109.1
C2'—C3'—H3'A109.3H4'C—C14'—H4'D107.9
C4'—C3'—H3'A109.3C14'—C15'—C16'111.0 (7)
C2'—C3'—H3'B109.3C14'—C15'—C1T'111.6 (7)
C4'—C3'—H3'B109.3C16'—C15'—C1T'109.6 (6)
H3'A—C3'—H3'B107.9C14'—C15'—H15'108.2
C5'—C4'—C3'110.7 (7)C16'—C15'—H15'108.2
C5'—C4'—H4'A109.5C1T'—C15'—H15'108.2
C3'—C4'—H4'A109.5C15'—C16'—C11'111.0 (6)
C5'—C4'—H4'B109.5C15'—C16'—H6'C109.4
C3'—C4'—H4'B109.5C11'—C16'—H6'C109.4
H4'A—C4'—H4'B108.1C15'—C16'—H6'D109.4
C6'—C5'—C10'112.1 (6)C11'—C16'—H6'D109.4
C6'—C5'—C4'111.9 (7)H6'C—C16'—H6'D108.0
C10'—C5'—C4'110.0 (6)C18'—C17'—C19'109.4 (7)
C6'—C5'—H5'107.5C18'—C17'—C12'112.1 (8)
C10'—C5'—H5'107.5C19'—C17'—C12'112.5 (7)
C4'—C5'—H5'107.5C18'—C17'—H17'107.6
C5'—C6'—C1'112.2 (5)C19'—C17'—H17'107.6
C5'—C6'—H6'A109.2C12'—C17'—H17'107.6
C1'—C6'—H6'A109.2C17'—C18'—H8D'109.5
C5'—C6'—H6'B109.2C17'—C18'—H8E'109.5
C1'—C6'—H6'B109.2H8D'—C18'—H8E'109.5
H6'A—C6'—H6'B107.9C17'—C18'—H8F'109.5
C9'—C7'—C8'112.8 (7)H8D'—C18'—H8F'109.5
C9'—C7'—C2'114.2 (7)H8E'—C18'—H8F'109.5
C8'—C7'—C2'109.9 (7)C17'—C19'—H9D'109.5
C9'—C7'—H7'106.4C17'—C19'—H9E'109.5
C8'—C7'—H7'106.4H9D'—C19'—H9E'109.5
C2'—C7'—H7'106.4C17'—C19'—H9F'109.5
C7'—C8'—H8'A109.5H9D'—C19'—H9F'109.5
C7'—C8'—H8'B109.5H9E'—C19'—H9F'109.5
H8'A—C8'—H8'B109.5C15'—C1T'—H1'D109.5
C7'—C8'—H8'C109.5C15'—C1T'—H1'E109.5
H8'A—C8'—H8'C109.5H1'D—C1T'—H1'E109.5
H8'B—C8'—H8'C109.5C15'—C1T'—H1'F109.5
C7'—C9'—H9'A109.5H1'D—C1T'—H1'F109.5
C7'—C9'—H9'B109.5H1'E—C1T'—H1'F109.5
H9'A—C9'—H9'B109.5C300—O300—H30O109.0 (10)
C7'—C9'—H9'C109.5C301—C300—O300110.2 (12)
H9'A—C9'—H9'C109.5C301—C300—C302108.8 (14)
H9'B—C9'—H9'C109.5O300—C300—C302100.6 (11)
C5'—C10'—H1'A109.5C301—C300—H300112.2
C5'—C10'—H1'B109.5O300—C300—H300112.2
H1'A—C10'—H1'B109.5C302—C300—H300112.2
C5'—C10'—H1'C109.5C300—C302—H32A109.5
H1'A—C10'—H1'C109.5C300—C302—H32B109.5
H1'B—C10'—H1'C109.5H32A—C302—H32B109.5
C101—O101—C104107.5 (6)C300—C302—H32C109.5
C102—O102—H12O109.5H32A—C302—H32C109.5
C104—O104—C11'114.3 (5)H32B—C302—H32C109.5
C105—O106—C106115.1 (6)C300—C301—H31A109.5
C105—N101—C103119.2 (7)C300—C301—H31B109.5
C105—N101—H11N120.4H31A—C301—H31B109.5
C103—N101—H11N120.4C300—C301—H31C109.5
O103—C101—O101116.2 (8)H31A—C301—H31C109.5
O103—C101—C102132.4 (8)H31B—C301—H31C109.5
O101—C101—C102111.3 (6)
C4—O1—C1—O3179.5 (6)C104—O101—C101—O103177.1 (7)
C4—O1—C1—C21.9 (7)C104—O101—C101—C1020.7 (9)
O3—C1—C2—O234.6 (10)O103—C101—C102—O10242.4 (14)
O1—C1—C2—O2142.8 (6)O101—C101—C102—O102140.2 (7)
O3—C1—C2—C3163.9 (7)O103—C101—C102—C103166.0 (10)
O1—C1—C2—C313.5 (8)O101—C101—C102—C10316.6 (10)
C5—N1—C3—C2101.7 (8)C105—N101—C103—C104144.6 (6)
C5—N1—C3—C4146.2 (6)C105—N101—C103—C10299.7 (8)
O2—C2—C3—N130.4 (11)O102—C102—C103—N10125.6 (10)
C1—C2—C3—N195.1 (7)C101—C102—C103—N10194.7 (7)
O2—C2—C3—C4146.7 (7)O102—C102—C103—C104146.8 (7)
C1—C2—C3—C421.2 (7)C101—C102—C103—C10426.5 (8)
C1'—O4—C4—O170.8 (7)C11'—O104—C104—O10166.5 (6)
C1'—O4—C4—C3177.1 (5)C11'—O104—C104—C103179.0 (5)
C1—O1—C4—O498.0 (6)C101—O101—C104—O10496.8 (7)
C1—O1—C4—C315.5 (7)C101—O101—C104—C10318.5 (7)
N1—C3—C4—O4149.1 (5)N101—C103—C104—O104151.2 (5)
C2—C3—C4—O492.2 (6)C102—C103—C104—O10487.1 (6)
N1—C3—C4—O196.4 (6)N101—C103—C104—O10193.9 (6)
C2—C3—C4—O122.3 (7)C102—C103—C104—O10127.7 (7)
C3—N1—C5—O514.1 (10)C103—N101—C105—O10511.9 (10)
C3—N1—C5—O6166.4 (6)C103—N101—C105—O106168.3 (5)
C6—O6—C5—O54.6 (9)C106—O106—C105—O1053.8 (8)
C6—O6—C5—N1175.0 (6)C106—O106—C105—N101176.0 (5)
C5—O6—C6—C7179.9 (6)C105—O106—C106—C107179.4 (5)
O6—C6—C7—C1970.4 (8)O106—C106—C107—C108169.6 (5)
O6—C6—C7—C8170.2 (5)O106—C106—C107—C11973.8 (8)
C6—C7—C8—C951.1 (10)C106—C107—C108—C10955.7 (10)
C19—C7—C8—C9176.8 (8)C119—C107—C108—C109179.5 (8)
C6—C7—C8—C13127.4 (7)C106—C107—C108—C113123.5 (7)
C19—C7—C8—C131.7 (8)C119—C107—C108—C1130.3 (8)
C13—C8—C9—C102.4 (11)C113—C108—C109—C1101.1 (11)
C7—C8—C9—C10179.2 (7)C107—C108—C109—C110178.0 (8)
C8—C9—C10—C112.7 (12)C108—C109—C110—C1113.8 (12)
C9—C10—C11—C120.8 (13)C109—C110—C111—C1124.6 (13)
C10—C11—C12—C131.4 (13)C110—C111—C112—C1132.7 (12)
C11—C12—C13—C81.6 (12)C111—C112—C113—C1080.2 (12)
C11—C12—C13—C14177.9 (8)C111—C112—C113—C114179.2 (8)
C9—C8—C13—C120.4 (11)C109—C108—C113—C1120.5 (11)
C7—C8—C13—C12179.0 (7)C107—C108—C113—C112179.8 (7)
C9—C8—C13—C14176.8 (7)C109—C108—C113—C114179.9 (7)
C7—C8—C13—C141.9 (8)C107—C108—C113—C1140.6 (8)
C12—C13—C14—C153.0 (15)C112—C113—C114—C1152.2 (14)
C8—C13—C14—C15179.6 (8)C108—C113—C114—C115178.3 (8)
C12—C13—C14—C19177.8 (8)C112—C113—C114—C119179.8 (8)
C8—C13—C14—C191.3 (9)C108—C113—C114—C1190.7 (8)
C19—C14—C15—C161.5 (12)C119—C114—C115—C1161.1 (12)
C13—C14—C15—C16179.5 (8)C113—C114—C115—C116178.5 (8)
C14—C15—C16—C170.7 (13)C114—C115—C116—C1171.7 (15)
C15—C16—C17—C181.7 (12)C115—C116—C117—C1181.1 (15)
C16—C17—C18—C193.1 (12)C116—C117—C118—C1190.0 (14)
C17—C18—C19—C142.2 (12)C115—C114—C119—C1180.0 (12)
C17—C18—C19—C7178.5 (8)C113—C114—C119—C118177.9 (7)
C15—C14—C19—C180.0 (12)C115—C114—C119—C107178.4 (7)
C13—C14—C19—C18179.2 (7)C113—C114—C119—C1070.5 (9)
C15—C14—C19—C7179.5 (7)C117—C118—C119—C1140.6 (13)
C13—C14—C19—C70.2 (9)C117—C118—C119—C107178.6 (8)
C6—C7—C19—C1854.9 (12)C106—C107—C119—C114122.1 (7)
C8—C7—C19—C18179.8 (8)C108—C107—C119—C1140.1 (8)
C6—C7—C19—C14125.8 (7)C106—C107—C119—C11856.1 (11)
C8—C7—C19—C140.9 (8)C108—C107—C119—C118178.1 (8)
C4—O4—C1'—C2'141.2 (6)C104—O104—C11'—C16'88.5 (7)
C4—O4—C1'—C6'96.1 (6)C104—O104—C11'—C12'149.4 (5)
O4—C1'—C2'—C3'178.0 (6)O104—C11'—C12'—C13'175.7 (6)
C6'—C1'—C2'—C3'57.8 (9)C16'—C11'—C12'—C13'56.0 (9)
O4—C1'—C2'—C7'55.9 (9)O104—C11'—C12'—C17'57.4 (8)
C6'—C1'—C2'—C7'176.2 (6)C16'—C11'—C12'—C17'177.1 (7)
C1'—C2'—C3'—C4'57.9 (9)C11'—C12'—C13'—C14'55.0 (10)
C7'—C2'—C3'—C4'176.4 (7)C17'—C12'—C13'—C14'178.0 (8)
C2'—C3'—C4'—C5'54.9 (11)C12'—C13'—C14'—C15'55.9 (11)
C3'—C4'—C5'—C6'51.8 (10)C13'—C14'—C15'—C16'54.3 (10)
C3'—C4'—C5'—C10'177.1 (8)C13'—C14'—C15'—C1T'176.8 (8)
C10'—C5'—C6'—C1'176.5 (7)C14'—C15'—C16'—C11'54.4 (10)
C4'—C5'—C6'—C1'52.4 (9)C1T'—C15'—C16'—C11'178.0 (8)
O4—C1'—C6'—C5'178.3 (6)O104—C11'—C16'—C15'175.8 (6)
C2'—C1'—C6'—C5'56.0 (9)C12'—C11'—C16'—C15'57.0 (9)
C1'—C2'—C7'—C9'63.9 (9)C11'—C12'—C17'—C18'177.5 (7)
C3'—C2'—C7'—C9'60.4 (9)C13'—C12'—C17'—C18'58.6 (10)
C1'—C2'—C7'—C8'168.1 (7)C11'—C12'—C17'—C19'58.8 (8)
C3'—C2'—C7'—C8'67.6 (9)C13'—C12'—C17'—C19'65.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.882.193.015 (9)157
O2—H2O···O30.842.462.877 (9)111
N101—H11N···O105ii0.882.152.977 (10)155
O102—H12O···N1010.842.312.761 (10)114
O300—H30O···O2i0.861.952.707 (12)145
C3—H3···O1ii1.002.263.222 (10)162
C12—H12···O105ii0.952.553.444 (9)158
C103—H103···O101i1.002.293.250 (8)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC29H35NO6·0.334C3H8O
Mr513.64
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)5.1786 (2), 15.3176 (5), 20.3554 (14)
α, β, γ (°)98.495 (7), 92.109 (7), 91.120 (6)
V3)1595.36 (14)
Z2
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.67 × 0.10 × 0.04
Data collection
DiffractometerRigaku Spider
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.667, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
7392, 7392, 5189
Rint0.086
θmax (°)62.4
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.261, 1.00
No. of reflections7392
No. of parameters673
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.33

Computer programs: CrystalClear (Rigaku, 2005), FSProcess in PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and HYDROGEN (Nardelli, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.882.193.015 (9)157
O2—H2O···O30.842.462.877 (9)111
N101—H11N···O105ii0.882.152.977 (10)155
O102—H12O···N1010.842.312.761 (10)114
O300—H30O···O2i0.861.952.707 (12)145
C3—H3···O1ii1.002.263.222 (10)162
C12—H12···O105ii0.952.553.444 (9)158
C103—H103···O101i1.002.293.250 (8)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

We thank the MacDiarmid Institute for Advanced Mater­ials and Nanotechnology for funding of the diffractometer equipment and the NZ Foundation for Research, Science & Technology and New Zealand Pharmaceuticals for funding support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarris, L., Mee, S. P. H., Furneaux, R. H., Gainsford, G. J. & Luxenburger, A. (2011). J. Org. Chem. 76, 358–372.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Crisma, M. & Toniolo, C. (1988). Can. J. Chem. 66, 2575–2582.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o403-o404
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds