metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Decacarbon­yl[μ4-(ethane-1,2-diyl­di­nitrilo)­tetra­kis­(methane­thiol­ato)]bis­(tri­phenyl­phosphane)tetra­iron(2 FeFe)

aLaboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Graduate School of Peking University, Shenzhen, Guangdong 518055, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: gaowm@pkusz.edu.cn, ljmmarise@163.com

(Received 19 December 2011; accepted 27 December 2011; online 7 January 2012)

In the title compound, [Fe4(C6H12N2S4)(C18H15P)2(CO)10], the unit cell contains one mol­ecule, which exhibits a crystallographically imposed center of symmetry. The independent Fe2S2 fragment [Fe—Fe = 2.527 (1) Å] is in a butterfly conformation, and each Fe atom displays a pseudo-square-pyramidal coordination geometry. The phosphane group occupies an apical position [Fe—P = 2.2670 (14) Å]. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along [110].

Related literature

For background to macrocyclic complexes containing butterfly [Fe2S2] clusters, see: Gloaguen & Rauchfuss (2009[Gloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100-108.]); Yin et al. (2011[Yin, B. S., Li, T. B. & Yang, M. S. (2011). J. Coord. Chem. 64, 2066-2074.]); Zhao et al. (2009[Zhao, Z. B., Wang, M., Dong, W. B., Li, P., Yu, Z. & Sun, L. C. (2009). J. Organomet. Chem. 694, 2309-2314.]). For related structures containing butterfly [Fe2S2] clusters, see: Liu et al. (2011[Liu, X. F., Xiao, X. W. & Shen, L. J. (2011). J. Coord. Chem. 64, 1023-1031.]); Liu & Yin (2011[Liu, X. F. & Yin, B. S. (2011). Z. Anorg. Allg. Chem. 637, 377-379.]); Song et al. (2011[Song, L. C., Xie, Z. J., Liu, X. F., Ming, J. B., Ge, J. H., Zhang, X. G., Yan, T. Y. & Gao, P. (2011). Disc. Faraday Soc. 40, 837-846.]); Gao et al. (2011[Gao, W. M., Sun, J. L., Li, M. R., Åkermark, T., Romare, K., Sun, L. C. & Åkermark, B. (2011). Eur. J. Inorg. Chem. pp. 1100-1105.]). For details of the synthesis, see: Gao et al. (2011[Gao, W. M., Sun, J. L., Li, M. R., Åkermark, T., Romare, K., Sun, L. C. & Åkermark, B. (2011). Eur. J. Inorg. Chem. pp. 1100-1105.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe4(C6H12N2S4)(C18H15P)2(CO)10]

  • Mr = 1268.46

  • Triclinic, [P \overline 1]

  • a = 10.854 (2) Å

  • b = 11.995 (2) Å

  • c = 12.202 (3) Å

  • α = 63.257 (3)°

  • β = 71.881 (3)°

  • γ = 74.736 (3)°

  • V = 1334.0 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.732, Tmax = 0.818

  • 7640 measured reflections

  • 5124 independent reflections

  • 3098 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.090

  • S = 1.01

  • 5124 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯O5i 0.93 2.39 3.182 (7) 143
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Macrocyclic complexes containing butterfly [Fe2S2] clusters have aroused considerable attention due to their unique structures and interesting phyical and chemical properties (Gloaguen & Rauchfuss, 2009; Yin et al., 2011; Zhao et al., 2009). In recent years, Liu and co-workers reported a series of macrocyclic complexes (Liu, Xiao et al., 2011; Liu & Yin, 2011) with the structure of active site of [FeFe]-hydrogenases. Following the above consideration and ongoing our works in this field (Gao et al., 2011), we report here a dimer structure of the title compound (I) - a new structure model of Fe2S2 cluster.

The title molecule (Fig. 1) lies across a crystallographic inversion centre which is situated at the midpoint of the C8–C8A (1.552 (8) Å, symmetry code: (A) 1-x, 1-y, 1-z) bond. The independent Fe2S2 fragment [Fe—Fe 2.527 (1) Å] is in a butterfly conformation, and each Fe atom displays pseudo square-pyramidal coordination geometry. The phosphane group occupies an apical position [Fe—P 2.2670 (14) Å], while the (thiomethyl)ethane-1,2-diamine group on the bridging N atom is in an equatorial position and takes a zigzag form. Complex (I) contains two fused six-membered rings, in which one six-membered ring (N1C7S2Fe2S1C6) has a chair conformation and the other six-membered ring (N1C7S2Fe1S1C6) has a boat conformation. The substituent attached to the bridgehead N1 lies in an equatorial position and the unpaired electrons of nitrogen lie in an axial position which is consistent with corresponding diiron azadithiolate complexes (Gao et al., 2011). The sum of the C–N–C angles around nitrogen is 342.9 °, which means there is no ππ conjugation between the substituent group and the p-orbital of nitrogen.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the [110] direction (Fig. 2).

Related literature top

For background to macrocyclic complexes containing butterfly [Fe2S2] clusters, see: Gloaguen & Rauchfuss (2009); Yin et al. (2011); Zhao et al. (2009). For related structures containing butterfly [Fe2S2] clusters, see: Liu et al. (2011); Liu & Yin (2011); Song et al. (2011); Gao et al. (2011). For details of the synthesis, see: Gao et al. (2011).

Experimental top

A solution of [{Fe2(CO)5µ-(SCH2)2NCH2CH2Nµ-(SCH2)2Fe2(CO)5}(PPh3)2] (0.4 g, 0.5 mmol) and Me3NO.2H2O (0.111 g, 1 mmol) dissolved in MeCN (40 mL) was stirred for 5 to 10 min at room temperature. Then, a solution of PPh3 (0.524 g, 1 mmol), dissolved in CH2Cl2 (2 mL) was added. After 1 h, the solvent was evaporated, and the crude product was purified by chromatography on silica gel with CH2Cl2/hexane (1/2 v/v) as the eluent to give the crystals suitable for X-ray diffraction study. Elemental analysis (%) calcd for C52H42Fe4N2O10P2S4: C, 49.24; H, 3.34; N, 2.21. Found: C, 49.25; H, 3.39; N, 2.19.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level [symmetry code: (A) 1-x, 1-y, 1-z]. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the zigzag infinite chain linked via hydrogen bonds (dashed lines) in [110] direction. H atoms have been omitted for clarity, except for those involved in hydrogen-bonded interactions.
Decacarbonyl[µ4-(ethane-1,2-diyldinitrilo)tetrakis(methanethiolato)] bis(triphenylphosphane)tetrairon(2 FeFe) top
Crystal data top
[Fe4(C6H12N2S4)(C18H15P)2(CO)10]Z = 1
Mr = 1268.46F(000) = 646
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.854 (2) ÅCell parameters from 1603 reflections
b = 11.995 (2) Åθ = 2.4–22.1°
c = 12.202 (3) ŵ = 1.34 mm1
α = 63.257 (3)°T = 296 K
β = 71.881 (3)°Block, red
γ = 74.736 (3)°0.30 × 0.20 × 0.15 mm
V = 1334.0 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5124 independent reflections
Radiation source: fine-focus sealed tube3098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
phi and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.732, Tmax = 0.818k = 1413
7640 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.005P)2]
where P = (Fo2 + 2Fc2)/3
5124 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Fe4(C6H12N2S4)(C18H15P)2(CO)10]γ = 74.736 (3)°
Mr = 1268.46V = 1334.0 (5) Å3
Triclinic, P1Z = 1
a = 10.854 (2) ÅMo Kα radiation
b = 11.995 (2) ŵ = 1.34 mm1
c = 12.202 (3) ÅT = 296 K
α = 63.257 (3)°0.30 × 0.20 × 0.15 mm
β = 71.881 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5124 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3098 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.818Rint = 0.072
7640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.01Δρmax = 0.56 e Å3
5124 reflectionsΔρmin = 0.61 e Å3
334 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.15320 (7)0.23740 (6)0.47610 (6)0.0398 (2)
Fe20.30658 (7)0.34428 (7)0.26923 (6)0.0454 (2)
P10.08582 (12)0.15121 (11)0.68873 (11)0.0381 (3)
S20.37365 (12)0.20598 (11)0.44901 (11)0.0431 (3)
S10.17511 (12)0.44442 (11)0.39346 (11)0.0456 (3)
C260.1553 (4)0.2004 (5)0.7753 (4)0.0370 (12)
C250.0910 (4)0.1748 (4)0.7554 (4)0.0385 (12)
N10.4172 (4)0.4284 (4)0.4331 (3)0.0444 (11)
C240.0359 (5)0.1018 (5)0.8356 (4)0.0471 (13)
H24A0.04850.06870.86610.057*
C230.1836 (5)0.3697 (5)0.8167 (4)0.0488 (14)
H23A0.16480.45440.80360.059*
O40.0977 (4)0.3248 (4)0.4041 (3)0.0736 (12)
O20.5107 (4)0.5091 (4)0.1278 (3)0.0767 (13)
C220.2369 (5)0.1175 (5)0.8561 (4)0.0501 (14)
H22A0.25530.03260.87010.060*
C80.5101 (5)0.4944 (5)0.4367 (4)0.0556 (15)
H8A0.50500.57870.37060.067*
H8B0.59780.45100.41770.067*
C210.1301 (4)0.3260 (5)0.7571 (4)0.0445 (13)
H21A0.07570.38230.70350.053*
C70.4326 (5)0.2940 (5)0.5059 (4)0.0510 (14)
H7A0.38580.27750.59240.061*
H7B0.52470.26330.50580.061*
C50.1659 (5)0.0983 (5)0.4589 (4)0.0543 (15)
C200.1759 (5)0.1481 (4)0.7106 (4)0.0519 (14)
H20A0.14290.12330.64360.062*
O30.4167 (4)0.1517 (4)0.1686 (4)0.0926 (14)
C60.2828 (5)0.4894 (5)0.4487 (4)0.0541 (15)
H6A0.28230.57990.40460.065*
H6B0.24730.47140.53740.065*
C190.1426 (5)0.2119 (4)0.8561 (4)0.0475 (13)
H19A0.08700.22900.88940.057*
C180.1256 (5)0.0211 (4)0.7533 (4)0.0408 (12)
C30.3731 (5)0.2276 (5)0.2085 (5)0.0573 (15)
C170.3569 (5)0.1958 (5)0.8585 (5)0.0648 (16)
H17A0.44670.20360.89240.078*
C160.2516 (5)0.0765 (5)0.7143 (4)0.0537 (15)
H16A0.31530.02540.66040.064*
C20.4311 (5)0.4440 (5)0.1847 (4)0.0544 (15)
C40.0004 (6)0.2890 (5)0.4372 (5)0.0513 (14)
C150.2905 (5)0.1613 (5)0.9155 (4)0.0548 (15)
H15A0.34450.10540.96970.066*
C140.1934 (6)0.2823 (5)0.8335 (5)0.0593 (16)
H14A0.21590.36940.86060.071*
C130.0692 (6)0.2307 (5)0.8735 (5)0.0600 (16)
H13A0.00640.28300.92700.072*
C120.2649 (5)0.2874 (6)0.8954 (5)0.0560 (16)
H12A0.30250.31640.93480.067*
C110.2760 (5)0.2232 (5)0.9060 (5)0.0609 (16)
H11A0.31050.24940.97200.073*
C100.3078 (5)0.1569 (5)0.7613 (5)0.0584 (15)
H10A0.36340.13670.73040.070*
C10.1951 (5)0.4157 (6)0.1694 (5)0.0597 (16)
C90.2834 (5)0.2050 (5)0.7537 (5)0.0616 (16)
H9A0.36800.23940.72530.074*
O10.1203 (4)0.4602 (4)0.1054 (3)0.0830 (13)
O50.1750 (4)0.0079 (4)0.4432 (4)0.0970 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0444 (5)0.0435 (5)0.0331 (4)0.0135 (4)0.0038 (4)0.0161 (4)
Fe20.0527 (5)0.0477 (5)0.0316 (4)0.0118 (4)0.0030 (4)0.0141 (4)
P10.0382 (8)0.0400 (8)0.0348 (7)0.0102 (6)0.0030 (6)0.0147 (6)
S20.0446 (8)0.0442 (8)0.0371 (7)0.0105 (6)0.0037 (6)0.0147 (6)
S10.0502 (9)0.0410 (8)0.0427 (8)0.0092 (6)0.0071 (7)0.0149 (6)
C260.035 (3)0.043 (3)0.027 (3)0.016 (2)0.002 (2)0.010 (2)
C250.035 (3)0.038 (3)0.037 (3)0.009 (2)0.002 (2)0.012 (2)
N10.042 (3)0.045 (3)0.045 (3)0.020 (2)0.000 (2)0.017 (2)
C240.042 (3)0.045 (3)0.044 (3)0.013 (3)0.004 (3)0.014 (3)
C230.048 (3)0.058 (4)0.045 (3)0.017 (3)0.001 (3)0.026 (3)
O40.062 (3)0.091 (3)0.068 (3)0.011 (2)0.024 (2)0.027 (2)
O20.074 (3)0.077 (3)0.062 (3)0.037 (2)0.006 (2)0.013 (2)
C220.048 (3)0.047 (3)0.046 (3)0.012 (3)0.009 (3)0.008 (3)
C80.065 (4)0.071 (4)0.036 (3)0.041 (3)0.005 (3)0.020 (3)
C210.040 (3)0.053 (3)0.038 (3)0.014 (3)0.001 (2)0.017 (3)
C70.047 (3)0.062 (4)0.038 (3)0.016 (3)0.000 (3)0.016 (3)
C50.055 (4)0.068 (4)0.049 (3)0.022 (3)0.003 (3)0.030 (3)
C200.055 (4)0.058 (4)0.050 (3)0.022 (3)0.009 (3)0.022 (3)
O30.120 (4)0.095 (3)0.076 (3)0.006 (3)0.013 (3)0.056 (3)
C60.071 (4)0.044 (3)0.048 (3)0.021 (3)0.001 (3)0.021 (3)
C190.045 (3)0.055 (3)0.039 (3)0.012 (3)0.002 (3)0.018 (3)
C180.043 (3)0.045 (3)0.032 (3)0.013 (3)0.000 (2)0.016 (2)
C30.072 (4)0.060 (4)0.039 (3)0.015 (3)0.005 (3)0.021 (3)
C170.034 (3)0.068 (4)0.068 (4)0.012 (3)0.001 (3)0.013 (3)
C160.049 (4)0.044 (3)0.051 (3)0.014 (3)0.006 (3)0.012 (3)
C20.064 (4)0.054 (4)0.042 (3)0.005 (3)0.017 (3)0.015 (3)
C40.063 (4)0.053 (4)0.042 (3)0.023 (3)0.008 (3)0.018 (3)
C150.050 (4)0.065 (4)0.046 (3)0.016 (3)0.021 (3)0.008 (3)
C140.076 (5)0.036 (3)0.056 (4)0.014 (3)0.003 (3)0.015 (3)
C130.065 (4)0.049 (4)0.053 (4)0.029 (3)0.004 (3)0.009 (3)
C120.047 (4)0.086 (5)0.051 (3)0.032 (3)0.002 (3)0.035 (3)
C110.046 (4)0.070 (4)0.053 (4)0.007 (3)0.010 (3)0.027 (3)
C100.052 (4)0.067 (4)0.060 (4)0.023 (3)0.015 (3)0.020 (3)
C10.063 (4)0.078 (4)0.033 (3)0.019 (3)0.005 (3)0.017 (3)
C90.053 (4)0.053 (4)0.058 (4)0.003 (3)0.005 (3)0.018 (3)
O10.089 (3)0.098 (3)0.058 (3)0.009 (3)0.030 (2)0.022 (2)
O50.137 (4)0.082 (3)0.101 (3)0.030 (3)0.019 (3)0.059 (3)
Geometric parameters (Å, º) top
Fe1—C51.739 (6)C8—C8i1.552 (8)
Fe1—C41.745 (7)C8—H8A0.9700
Fe1—S22.2624 (14)C8—H8B0.9700
Fe1—P12.2670 (14)C21—H21A0.9300
Fe1—S12.2694 (13)C7—H7A0.9700
Fe2—C11.765 (6)C7—H7B0.9700
Fe2—C31.760 (6)C5—O51.152 (5)
Fe2—C21.788 (6)C20—C101.368 (8)
Fe2—S12.2723 (14)C20—H20A0.9300
Fe2—S22.2743 (14)O3—C31.142 (5)
P1—C261.823 (5)C6—H6A0.9700
P1—C181.835 (4)C6—H6B0.9700
P1—C251.839 (4)C19—C111.381 (6)
S2—C71.816 (6)C19—H19A0.9300
S1—C61.812 (4)C18—C161.393 (6)
C26—C211.385 (6)C17—C111.360 (7)
C26—C221.391 (6)C17—C101.373 (7)
C25—C201.370 (7)C17—H17A0.9300
C25—C191.398 (6)C16—C91.370 (6)
N1—C71.441 (5)C16—H16A0.9300
N1—C61.443 (5)C15—C121.385 (6)
N1—C81.461 (5)C15—H15A0.9300
C24—C131.377 (6)C14—C91.360 (6)
C24—C181.387 (5)C14—C131.368 (6)
C24—H24A0.9300C14—H14A0.9300
C23—C121.376 (6)C13—H13A0.9300
C23—C211.380 (6)C12—H12A0.9300
C23—H23A0.9300C11—H11A0.9300
O4—C41.156 (5)C10—H10A0.9300
O2—C21.154 (7)C1—O11.157 (6)
C22—C151.377 (6)C9—H9A0.9300
C22—H22A0.9300
C5—Fe1—C490.6 (2)C23—C21—C26121.6 (5)
C5—Fe1—S288.79 (16)C23—C21—H21A119.5
C4—Fe1—S2158.94 (18)C26—C21—H21A119.5
C5—Fe1—P194.85 (16)N1—C7—S2114.2 (3)
C4—Fe1—P199.09 (16)N1—C7—H7A108.8
S2—Fe1—P1102.17 (5)S2—C7—H7A108.8
C5—Fe1—S1150.83 (16)N1—C7—H7B108.8
C4—Fe1—S186.21 (15)S2—C7—H7B108.8
S2—Fe1—S184.04 (4)H7A—C7—H7B107.7
P1—Fe1—S1114.29 (5)O5—C5—Fe1177.9 (5)
C1—Fe2—C391.5 (2)C10—C20—C25121.5 (5)
C1—Fe2—C2100.9 (2)C10—C20—H20A119.3
C3—Fe2—C299.1 (2)C25—C20—H20A119.3
C1—Fe2—S188.47 (17)N1—C6—S1115.5 (3)
C3—Fe2—S1160.45 (16)N1—C6—H6A108.4
C2—Fe2—S1100.14 (16)S1—C6—H6A108.4
C1—Fe2—S2154.73 (16)N1—C6—H6B108.4
C3—Fe2—S288.13 (17)S1—C6—H6B108.4
C2—Fe2—S2104.11 (16)H6A—C6—H6B107.5
S1—Fe2—S283.70 (5)C11—C19—C25120.0 (4)
C26—P1—C18104.7 (2)C11—C19—H19A120.0
C26—P1—C25103.0 (2)C25—C19—H19A120.0
C18—P1—C25102.3 (2)C24—C18—C16117.2 (4)
C26—P1—Fe1116.21 (13)C24—C18—P1123.6 (4)
C18—P1—Fe1111.65 (14)C16—C18—P1119.2 (3)
C25—P1—Fe1117.26 (15)O3—C3—Fe2179.8 (6)
C7—S2—Fe1114.11 (16)C11—C17—C10120.5 (5)
C7—S2—Fe2108.06 (16)C11—C17—H17A119.8
Fe1—S2—Fe267.70 (4)C10—C17—H17A119.8
C6—S1—Fe1118.03 (16)C9—C16—C18121.1 (4)
C6—S1—Fe2106.23 (17)C9—C16—H16A119.4
Fe1—S1—Fe267.62 (4)C18—C16—H16A119.4
C21—C26—C22118.8 (4)O2—C2—Fe2178.3 (4)
C21—C26—P1118.9 (4)O4—C4—Fe1176.3 (4)
C22—C26—P1122.7 (4)C22—C15—C12120.7 (5)
C20—C25—C19118.3 (4)C22—C15—H15A119.6
C20—C25—P1119.3 (4)C12—C15—H15A119.6
C19—C25—P1122.8 (3)C9—C14—C13119.4 (5)
C7—N1—C6113.8 (4)C9—C14—H14A120.3
C7—N1—C8115.0 (4)C13—C14—H14A120.3
C6—N1—C8114.1 (4)C14—C13—C24120.5 (4)
C13—C24—C18121.0 (4)C14—C13—H13A119.8
C13—C24—H24A119.5C24—C13—H13A119.8
C18—C24—H24A119.5C23—C12—C15119.5 (4)
C12—C23—C21120.0 (5)C23—C12—H12A120.3
C12—C23—H23A120.0C15—C12—H12A120.3
C21—C23—H23A120.0C17—C11—C19119.9 (5)
C15—C22—C26120.0 (4)C17—C11—H11A119.7
C15—C22—H22A120.0C19—C11—H11A119.7
C26—C22—H22A120.0C17—C10—C20119.2 (5)
N1—C8—C8i115.5 (4)C17—C10—H10A120.4
N1—C8—H8A108.4C20—C10—H10A120.4
C8i—C8—H8A108.4O1—C1—Fe2178.3 (5)
N1—C8—H8B108.4C14—C9—C16120.7 (5)
C8i—C8—H8B108.4C14—C9—H9A119.6
H8A—C8—H8B107.5C16—C9—H9A119.6
C5—Fe1—P1—C26139.2 (2)C25—P1—C26—C22115.3 (4)
C4—Fe1—P1—C26129.4 (2)Fe1—P1—C26—C22115.0 (3)
S2—Fe1—P1—C2649.39 (18)C26—P1—C25—C20179.4 (4)
S1—Fe1—P1—C2639.52 (18)C18—P1—C25—C2072.2 (4)
C5—Fe1—P1—C1819.2 (2)Fe1—P1—C25—C2050.5 (4)
C4—Fe1—P1—C18110.6 (2)C26—P1—C25—C194.5 (4)
S2—Fe1—P1—C1870.61 (16)C18—P1—C25—C19104.0 (4)
S1—Fe1—P1—C18159.52 (15)Fe1—P1—C25—C19133.4 (3)
C5—Fe1—P1—C2598.6 (2)C21—C26—C22—C150.2 (6)
C4—Fe1—P1—C257.2 (2)P1—C26—C22—C15177.6 (3)
S2—Fe1—P1—C25171.60 (16)C7—N1—C8—C8i71.4 (6)
S1—Fe1—P1—C2582.94 (19)C6—N1—C8—C8i63.5 (7)
C5—Fe1—S2—C7160.8 (2)C12—C23—C21—C260.4 (7)
C4—Fe1—S2—C7110.8 (5)C22—C26—C21—C230.0 (6)
P1—Fe1—S2—C766.07 (17)P1—C26—C21—C23177.8 (3)
S1—Fe1—S2—C747.55 (17)C6—N1—C7—S271.8 (4)
C5—Fe1—S2—Fe298.66 (16)C8—N1—C7—S2153.9 (3)
C4—Fe1—S2—Fe210.2 (4)Fe1—S2—C7—N169.5 (3)
P1—Fe1—S2—Fe2166.64 (4)Fe2—S2—C7—N13.5 (4)
S1—Fe1—S2—Fe253.08 (5)C19—C25—C20—C100.1 (7)
C1—Fe2—S2—C7129.1 (4)P1—C25—C20—C10176.4 (4)
C3—Fe2—S2—C7141.5 (2)C7—N1—C6—S164.6 (4)
C2—Fe2—S2—C742.6 (2)C8—N1—C6—S1160.1 (3)
S1—Fe2—S2—C756.34 (16)Fe1—S1—C6—N157.8 (4)
C1—Fe2—S2—Fe119.8 (4)Fe2—S1—C6—N115.1 (4)
C3—Fe2—S2—Fe1109.24 (16)C20—C25—C19—C111.2 (7)
C2—Fe2—S2—Fe1151.89 (16)P1—C25—C19—C11177.4 (4)
S1—Fe2—S2—Fe152.97 (4)C13—C24—C18—C162.1 (7)
C5—Fe1—S1—C6120.6 (4)C13—C24—C18—P1175.2 (4)
C4—Fe1—S1—C6155.0 (2)C26—P1—C18—C24104.2 (4)
S2—Fe1—S1—C643.94 (19)C25—P1—C18—C242.7 (4)
P1—Fe1—S1—C656.75 (19)Fe1—P1—C18—C24129.2 (3)
C5—Fe1—S1—Fe223.5 (3)C26—P1—C18—C1678.5 (4)
C4—Fe1—S1—Fe2107.90 (15)C25—P1—C18—C16174.6 (4)
S2—Fe1—S1—Fe253.14 (4)Fe1—P1—C18—C1648.0 (4)
P1—Fe1—S1—Fe2153.83 (5)C24—C18—C16—C91.6 (7)
C1—Fe2—S1—C6142.7 (2)P1—C18—C16—C9175.8 (4)
C3—Fe2—S1—C6127.2 (5)C26—C22—C15—C120.2 (7)
C2—Fe2—S1—C641.9 (2)C9—C14—C13—C241.0 (8)
S2—Fe2—S1—C661.38 (16)C18—C24—C13—C141.9 (8)
C1—Fe2—S1—Fe1103.14 (16)C21—C23—C12—C150.8 (7)
C3—Fe2—S1—Fe113.1 (5)C22—C15—C12—C230.7 (7)
C2—Fe2—S1—Fe1156.05 (16)C10—C17—C11—C190.2 (8)
S2—Fe2—S1—Fe152.84 (5)C25—C19—C11—C171.1 (7)
C18—P1—C26—C21173.5 (3)C11—C17—C10—C201.3 (8)
C25—P1—C26—C2166.9 (4)C25—C20—C10—C171.2 (7)
Fe1—P1—C26—C2162.8 (4)C13—C14—C9—C160.4 (8)
C18—P1—C26—C228.7 (4)C18—C16—C9—C140.8 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O5ii0.932.393.182 (7)143
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe4(C6H12N2S4)(C18H15P)2(CO)10]
Mr1268.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.854 (2), 11.995 (2), 12.202 (3)
α, β, γ (°)63.257 (3), 71.881 (3), 74.736 (3)
V3)1334.0 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.732, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
7640, 5124, 3098
Rint0.072
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.090, 1.01
No. of reflections5124
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.61

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O5i0.932.393.182 (7)143
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported financially by the Shenzhen Government Program (grant No. JC201005260103A).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, W. M., Sun, J. L., Li, M. R., Åkermark, T., Romare, K., Sun, L. C. & Åkermark, B. (2011). Eur. J. Inorg. Chem. pp. 1100–1105.  Web of Science CSD CrossRef Google Scholar
First citationGloaguen, F. & Rauchfuss, T. B. (2009). Chem. Soc. Rev. 38, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. F., Xiao, X. W. & Shen, L. J. (2011). J. Coord. Chem. 64, 1023–1031.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X. F. & Yin, B. S. (2011). Z. Anorg. Allg. Chem. 637, 377–379.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L. C., Xie, Z. J., Liu, X. F., Ming, J. B., Ge, J. H., Zhang, X. G., Yan, T. Y. & Gao, P. (2011). Disc. Faraday Soc. 40, 837–846.  CAS Google Scholar
First citationYin, B. S., Li, T. B. & Yang, M. S. (2011). J. Coord. Chem. 64, 2066–2074.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, Z. B., Wang, M., Dong, W. B., Li, P., Yu, Z. & Sun, L. C. (2009). J. Organomet. Chem. 694, 2309–2314.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds