metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(5-carb­­oxy­pyridine-3-carboxyl­ato-κN)copper(I)]-μ-4,4′-bi­pyridine-κ2N:N′] monohydrate]

aCollege of Food Engineering, Jilin Teachers' Institute of Engineering and Technology, 130052 Changchun, Jilin, People's Republic of China
*Correspondence e-mail: lg2003915@163.com

(Received 23 December 2011; accepted 26 December 2011; online 7 January 2012)

In the title compound, {[Cu(C7H4NO4)(C10H8N2)(H2O)]·H2O}n, the CuI ion is coordinated by the N atom from a 5-carb­oxy­pyridine-3-carboxyl­ate anion, two N atoms from two 4,4′-bipyridine (4,4′-bipy) ligands and one water mol­ecule in a distorted tetra­hedral geometry. The 4,4′-bipy ligands bridge the CuI ions into polymeric chains propagating in [201]. The latticeand the coordinating water mol­ecules as well as the carboxy OH function are involved in the formation of inter­molecular O—H⋯O hydrogen bonds, which consolidate the crystal packing.

Related literature

For related structures of derivatives of pyridine-3,5-dicarb­oxy­lic acid in coordination chemistry, see: Qin et al. (2002[Qin, Z., Jennings, M. C., Puddephatt, R. J. & Muir, K. W. (2002). Inorg. Chem. 41, 5174-5186.]); Eubank et al. (2007[Eubank, J. F., Kravtsov, V. Ch. & Eddaoudi, M. (2007). J. Am. Chem. Soc. 129, 5820-5821.]); Mirtschin et al. (2008[Mirtschin, S., Krasniqi, E., Scopelliti, R. & Severin, K. (2008). Inorg. Chem. 47, 6375-6381.]); Banerjee et al. (2010[Banerjee, D., Kim, S. J., Borkowski, L. A., Xu, W. Q. & Parise, J. B. (2010). Cryst. Growth Des. 10, 709-715.], 2011[Banerjee, D., Finkelstein, J., Simirnov, A., Forster, P. M., Borkowski, L. A., Teat, S. J. & Parise, J. B. (2011). Cryst. Growth Des. 11, 2572-2579.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4NO4)(C10H8N2)(H2O)]·H2O

  • Mr = 421.87

  • Monoclinic, P 21 /c

  • a = 10.6511 (13) Å

  • b = 23.321 (3) Å

  • c = 7.0111 (8) Å

  • β = 105.044 (7)°

  • V = 1681.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.689, Tmax = 0.856

  • 13086 measured reflections

  • 2971 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.127

  • S = 1.03

  • 2971 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6i 0.82 1.69 2.502 (3) 168
O5—H5WB⋯O2ii 0.85 2.12 2.959 (3) 167
O6—H6WA⋯O3ii 0.85 1.91 2.694 (3) 152
O5—H5WA⋯O3iii 0.85 1.98 2.809 (3) 165
O6—H6WB⋯O4iv 0.85 1.84 2.682 (3) 171
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2; (iii) -x+3, -y+1, -z+2; (iv) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal complexes based on pyridine-3,5-dicarboxylic acid has attracted much attention (Qin et al., 2002; Eubank et al., 2007; Mirtschin et al., 2008; Banerjee et al., 2010, 2011). In our search for new metal complexes based on pyridine-3,5-dicarboxylic acid ligand, the title complex, (I), was synthesized and its crystal structure determined (Fig. 1).

In the crystal structure, the 4,4'-bipyridine ligands bridge the CuI ions into polymeric chains propagated in direction [201] (Fig. 2). Lattice water molecules are involved in formation of intermolecular O—H···O hydrogen bonds (Table 1), which consolidate the crystal packing.

Related literature top

For related structures of pyridine-3,5-dicarboxylic acid in coordination chemistry, see: Qin et al. (2002); Eubank et al. (2007); Mirtschin et al. (2008); Banerjee et al. (2010, 2011).

Experimental top

A mixture of Cu(NO3)2.3H2O (0.10 mmol), pyridine-3,5-dicarboxylic acid (0.20 mmol), 4,4'-bipyridine (0.10 mmol) and H2O (3 ml) was sealed in a 10 ml Tefon-lined stainless-steel reactor and then heated to 398 K for 96 h under autogenous pressure. The mixture was slowly cooled to room temperature. Yellow block crystals suitable for X-ray diffraction analysis were collected by filtration.

Refinement top

H atoms attached to C atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2 Ueq(C). The hydroxyl and water H atoms were located in a difference map, but placed in idealized positions (O—H 0.82 - 0.85 Å) and refined as riding, with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (A) 1 + x, 1/2 - y, 1/2 + z].
[Figure 2] Fig. 2. A portion of the polymeric chain in (I). H atoms have been omitted for clarity.
catena-Poly[[[aqua(5-carboxypyridine-3-carboxylato- κN)copper(I)]-µ-4,4'-bipyridine-κ2N:N'] monohydrate top
Crystal data top
[Cu(C7H4NO4)(C10H8N2)(H2O)]·H2OF(000) = 864
Mr = 421.87Dx = 1.666 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4034 reflections
a = 10.6511 (13) Åθ = 2.6–26.3°
b = 23.321 (3) ŵ = 1.34 mm1
c = 7.0111 (8) ÅT = 298 K
β = 105.044 (7)°Block, yellow
V = 1681.9 (3) Å30.30 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2971 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1211
Tmin = 0.689, Tmax = 0.856k = 2727
13086 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0881P)2 + 0.020P]
where P = (Fo2 + 2Fc2)/3
2971 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C7H4NO4)(C10H8N2)(H2O)]·H2OV = 1681.9 (3) Å3
Mr = 421.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6511 (13) ŵ = 1.34 mm1
b = 23.321 (3) ÅT = 298 K
c = 7.0111 (8) Å0.30 × 0.20 × 0.12 mm
β = 105.044 (7)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2971 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2330 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.856Rint = 0.038
13086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.50 e Å3
2971 reflectionsΔρmin = 0.50 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.25554 (4)0.334248 (14)0.91097 (6)0.03596 (18)
N21.0793 (3)0.30297 (10)0.7883 (4)0.0331 (6)
O10.8837 (2)0.42750 (9)1.2312 (4)0.0429 (6)
H1A0.81380.43561.25310.064*
O60.3423 (2)0.55931 (9)0.7333 (4)0.0423 (6)
H5WA1.33910.41780.67210.063*
H5WB1.21970.42240.65530.063*
N11.2308 (2)0.40329 (10)1.0943 (4)0.0329 (6)
O31.5049 (2)0.53445 (8)1.2189 (4)0.0404 (6)
O20.9233 (2)0.52059 (8)1.2933 (3)0.0372 (5)
O41.3867 (2)0.58268 (9)1.3819 (4)0.0455 (6)
C81.0490 (3)0.24710 (12)0.7920 (5)0.0347 (7)
H81.11590.22130.84250.042*
C100.8215 (3)0.26339 (11)0.6516 (4)0.0267 (6)
C60.9569 (3)0.47324 (12)1.2534 (4)0.0296 (7)
C160.5797 (3)0.27900 (12)0.5599 (4)0.0308 (7)
H160.59260.31830.57890.037*
O51.2742 (2)0.39559 (9)0.6563 (4)0.0489 (6)
H6WA0.37450.52670.77340.073*
H6WB0.35500.56310.61900.073*
C31.1825 (3)0.50477 (11)1.2678 (4)0.0284 (7)
H31.16580.53891.32530.034*
C21.0874 (3)0.46268 (11)1.2204 (4)0.0276 (6)
C41.3011 (3)0.49604 (11)1.2300 (4)0.0295 (7)
C110.8532 (3)0.32095 (12)0.6460 (5)0.0341 (7)
H110.78820.34770.59680.041*
C90.9247 (3)0.22588 (12)0.7254 (4)0.0314 (7)
H90.90950.18670.72950.038*
C130.6855 (3)0.24224 (11)0.5851 (4)0.0269 (6)
C71.4074 (3)0.54121 (11)1.2813 (5)0.0311 (7)
C140.6585 (3)0.18475 (12)0.5473 (5)0.0312 (7)
H140.72610.15860.55930.037*
C120.9796 (3)0.33862 (12)0.7125 (5)0.0366 (8)
H120.99750.37750.70490.044*
C51.3199 (3)0.44466 (12)1.1400 (5)0.0338 (7)
H51.39910.43891.11010.041*
C11.1176 (3)0.41237 (12)1.1376 (4)0.0306 (7)
H11.05560.38331.11060.037*
C170.4562 (3)0.25688 (12)0.5068 (5)0.0337 (7)
H170.38660.28200.49290.040*
N30.4300 (2)0.20061 (10)0.4737 (4)0.0304 (6)
C150.5326 (3)0.16626 (11)0.4921 (5)0.0334 (7)
H150.51750.12740.46590.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0197 (3)0.0308 (3)0.0561 (3)0.00068 (14)0.0077 (2)0.00424 (16)
N20.0244 (15)0.0280 (12)0.0466 (15)0.0045 (11)0.0086 (12)0.0057 (11)
O10.0288 (14)0.0324 (11)0.0746 (16)0.0040 (10)0.0262 (13)0.0099 (11)
O60.0284 (14)0.0416 (12)0.0603 (15)0.0022 (10)0.0178 (11)0.0056 (11)
N10.0236 (15)0.0269 (12)0.0500 (16)0.0006 (10)0.0130 (13)0.0076 (10)
O30.0279 (13)0.0320 (11)0.0676 (16)0.0059 (9)0.0235 (12)0.0052 (10)
O20.0320 (13)0.0281 (11)0.0554 (14)0.0056 (9)0.0184 (11)0.0027 (9)
O40.0433 (15)0.0270 (11)0.0730 (16)0.0090 (10)0.0275 (13)0.0154 (11)
C80.0261 (19)0.0266 (14)0.0503 (19)0.0014 (13)0.0081 (15)0.0025 (13)
C100.0253 (18)0.0255 (13)0.0311 (15)0.0036 (12)0.0103 (13)0.0030 (11)
C60.0250 (17)0.0289 (14)0.0357 (16)0.0007 (12)0.0090 (13)0.0027 (12)
C160.0269 (18)0.0219 (13)0.0443 (17)0.0018 (12)0.0109 (14)0.0043 (12)
O50.0370 (15)0.0440 (13)0.0656 (16)0.0032 (11)0.0133 (12)0.0091 (11)
C30.0277 (17)0.0222 (13)0.0359 (16)0.0019 (12)0.0092 (14)0.0021 (11)
C20.0255 (17)0.0247 (13)0.0344 (15)0.0016 (12)0.0109 (13)0.0021 (11)
C40.0255 (18)0.0237 (13)0.0414 (17)0.0009 (12)0.0125 (14)0.0017 (12)
C110.0249 (18)0.0242 (13)0.0525 (19)0.0017 (13)0.0087 (15)0.0008 (13)
C90.0273 (18)0.0225 (13)0.0453 (17)0.0029 (12)0.0113 (14)0.0013 (12)
C130.0234 (17)0.0285 (14)0.0287 (14)0.0037 (12)0.0065 (12)0.0001 (11)
C70.0274 (18)0.0204 (13)0.0451 (18)0.0005 (12)0.0086 (15)0.0046 (12)
C140.0209 (17)0.0245 (13)0.0472 (18)0.0003 (12)0.0070 (14)0.0010 (13)
C120.0254 (19)0.0245 (14)0.058 (2)0.0048 (12)0.0071 (16)0.0021 (13)
C50.0257 (18)0.0311 (15)0.0477 (19)0.0005 (13)0.0151 (15)0.0070 (13)
C10.0258 (17)0.0275 (14)0.0387 (16)0.0029 (13)0.0090 (14)0.0026 (12)
C170.0259 (18)0.0246 (13)0.0502 (19)0.0005 (13)0.0090 (15)0.0020 (13)
N30.0214 (14)0.0297 (12)0.0389 (14)0.0037 (11)0.0059 (11)0.0004 (10)
C150.0285 (19)0.0228 (14)0.0484 (19)0.0028 (12)0.0094 (15)0.0008 (12)
Geometric parameters (Å, º) top
Cu1—N3i1.971 (2)C16—H160.9300
Cu1—N21.989 (3)O5—H5WA0.8480
Cu1—N12.119 (2)O5—H5WB0.8518
Cu1—O52.336 (2)C3—C41.372 (4)
N2—C81.344 (4)C3—C21.387 (4)
N2—C121.345 (4)C3—H30.9300
O1—C61.307 (3)C2—C11.383 (4)
O1—H1A0.8200C4—C51.393 (4)
O6—H6WA0.8511C4—C71.520 (4)
O6—H6WB0.8511C11—C121.369 (5)
N1—C51.333 (4)C11—H110.9300
N1—C11.334 (4)C9—H90.9300
O3—C71.237 (4)C13—C141.383 (4)
O2—C61.216 (3)C14—C151.365 (4)
O4—C71.250 (4)C14—H140.9300
C8—C91.377 (4)C12—H120.9300
C8—H80.9300C5—H50.9300
C10—C111.387 (4)C1—H10.9300
C10—C91.395 (4)C17—N31.349 (4)
C10—C131.486 (4)C17—H170.9300
C6—C21.488 (4)N3—C151.334 (4)
C16—C171.372 (4)N3—Cu1ii1.971 (2)
C16—C131.390 (4)C15—H150.9300
N3i—Cu1—N2132.42 (10)C3—C4—C7121.2 (2)
N3i—Cu1—N1115.90 (10)C5—C4—C7121.1 (3)
N2—Cu1—N1106.79 (10)C12—C11—C10120.5 (3)
N3i—Cu1—O599.25 (9)C12—C11—H11119.8
N2—Cu1—O598.75 (10)C10—C11—H11119.8
N1—Cu1—O592.69 (9)C8—C9—C10119.7 (3)
C8—N2—C12116.0 (3)C8—C9—H9120.1
C8—N2—Cu1123.5 (2)C10—C9—H9120.1
C12—N2—Cu1120.25 (19)C14—C13—C16116.9 (3)
C6—O1—H1A109.5C14—C13—C10121.3 (3)
H6WA—O6—H6WB104.8C16—C13—C10121.8 (2)
C5—N1—C1117.4 (2)O3—C7—O4125.9 (3)
C5—N1—Cu1120.2 (2)O3—C7—C4118.1 (3)
C1—N1—Cu1121.37 (19)O4—C7—C4116.1 (3)
N2—C8—C9123.8 (3)C15—C14—C13120.0 (3)
N2—C8—H8118.1C15—C14—H14120.0
C9—C8—H8118.1C13—C14—H14120.0
C11—C10—C9116.3 (3)N2—C12—C11123.7 (3)
C11—C10—C13122.5 (3)N2—C12—H12118.2
C9—C10—C13121.2 (2)C11—C12—H12118.2
O2—C6—O1124.5 (3)N1—C5—C4123.6 (3)
O2—C6—C2122.0 (3)N1—C5—H5118.2
O1—C6—C2113.6 (2)C4—C5—H5118.2
C17—C16—C13119.4 (3)N1—C1—C2123.5 (3)
C17—C16—H16120.3N1—C1—H1118.3
C13—C16—H16120.3C2—C1—H1118.3
Cu1—O5—H5WA120.2N3—C17—C16123.6 (3)
Cu1—O5—H5WB105.2N3—C17—H17118.2
H5WA—O5—H5WB94.7C16—C17—H17118.2
C4—C3—C2120.0 (3)C15—N3—C17116.1 (3)
C4—C3—H3120.0C15—N3—Cu1ii118.36 (19)
C2—C3—H3120.0C17—N3—Cu1ii125.5 (2)
C1—C2—C3117.8 (3)N3—C15—C14123.9 (3)
C1—C2—C6122.2 (3)N3—C15—H15118.1
C3—C2—C6119.9 (2)C14—C15—H15118.1
C3—C4—C5117.6 (3)
N3i—Cu1—N2—C824.8 (3)C17—C16—C13—C10177.1 (3)
N1—Cu1—N2—C8128.5 (3)C11—C10—C13—C14164.4 (3)
O5—Cu1—N2—C8136.0 (3)C9—C10—C13—C1416.3 (4)
N3i—Cu1—N2—C12161.7 (2)C11—C10—C13—C1616.3 (5)
N1—Cu1—N2—C1244.9 (3)C9—C10—C13—C16163.1 (3)
O5—Cu1—N2—C1250.6 (3)C3—C4—C7—O3170.0 (3)
N3i—Cu1—N1—C545.4 (3)C5—C4—C7—O39.0 (4)
N2—Cu1—N1—C5156.2 (2)C3—C4—C7—O49.0 (4)
O5—Cu1—N1—C556.3 (2)C5—C4—C7—O4172.0 (3)
N3i—Cu1—N1—C1146.8 (2)C16—C13—C14—C151.4 (4)
N2—Cu1—N1—C111.6 (3)C10—C13—C14—C15178.0 (3)
O5—Cu1—N1—C1111.6 (2)C8—N2—C12—C111.5 (5)
C12—N2—C8—C90.5 (5)Cu1—N2—C12—C11172.4 (3)
Cu1—N2—C8—C9173.2 (2)C10—C11—C12—N20.9 (5)
C4—C3—C2—C10.8 (4)C1—N1—C5—C40.2 (4)
C4—C3—C2—C6177.3 (3)Cu1—N1—C5—C4168.5 (2)
O2—C6—C2—C1166.9 (3)C3—C4—C5—N11.9 (5)
O1—C6—C2—C111.8 (4)C7—C4—C5—N1179.0 (3)
O2—C6—C2—C311.2 (4)C5—N1—C1—C22.2 (4)
O1—C6—C2—C3170.2 (3)Cu1—N1—C1—C2166.0 (2)
C2—C3—C4—C51.3 (4)C3—C2—C1—N12.7 (4)
C2—C3—C4—C7179.7 (3)C6—C2—C1—N1175.4 (3)
C9—C10—C11—C120.7 (5)C13—C16—C17—N31.1 (5)
C13—C10—C11—C12178.7 (3)C16—C17—N3—C151.1 (5)
N2—C8—C9—C101.1 (5)C16—C17—N3—Cu1ii176.6 (2)
C11—C10—C9—C81.6 (4)C17—N3—C15—C142.1 (5)
C13—C10—C9—C8177.8 (3)Cu1ii—N3—C15—C14175.7 (3)
C17—C16—C13—C142.3 (4)C13—C14—C15—N30.9 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6iii0.821.692.502 (3)168
O5—H5WB···O2iv0.852.122.959 (3)167
O6—H6WA···O3iv0.851.912.694 (3)152
O5—H5WA···O3v0.851.982.809 (3)165
O6—H6WB···O4vi0.851.842.682 (3)171
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+2; (v) x+3, y+1, z+2; (vi) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(C7H4NO4)(C10H8N2)(H2O)]·H2O
Mr421.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.6511 (13), 23.321 (3), 7.0111 (8)
β (°) 105.044 (7)
V3)1681.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.30 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.689, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
13086, 2971, 2330
Rint0.038
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.127, 1.03
No. of reflections2971
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.50

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6i0.821.692.502 (3)168.1
O5—H5WB···O2ii0.852.122.959 (3)167.4
O6—H6WA···O3ii0.851.912.694 (3)152.4
O5—H5WA···O3iii0.851.982.809 (3)165.4
O6—H6WB···O4iv0.851.842.682 (3)171.4
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x+3, y+1, z+2; (iv) x1, y, z1.
 

References

First citationBanerjee, D., Finkelstein, J., Simirnov, A., Forster, P. M., Borkowski, L. A., Teat, S. J. & Parise, J. B. (2011). Cryst. Growth Des. 11, 2572–2579.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanerjee, D., Kim, S. J., Borkowski, L. A., Xu, W. Q. & Parise, J. B. (2010). Cryst. Growth Des. 10, 709–715.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEubank, J. F., Kravtsov, V. Ch. & Eddaoudi, M. (2007). J. Am. Chem. Soc. 129, 5820–5821.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMirtschin, S., Krasniqi, E., Scopelliti, R. & Severin, K. (2008). Inorg. Chem. 47, 6375–6381.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQin, Z., Jennings, M. C., Puddephatt, R. J. & Muir, K. W. (2002). Inorg. Chem. 41, 5174–5186.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds