organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-{4-[Bis(4-meth­­oxy­phen­yl)meth­yl]piperazin-1-yl}-3-(3,4-dieth­­oxy­phen­yl)prop-2-en-1-one ethanol disolvate

aSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China, bCentre of Laboratory Animals, Nanjing medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China, and cSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 24 December 2011; accepted 26 December 2011; online 7 January 2012)

The asymmetric unit of the title compound, C32H38N2O5·2C2H6O, contains one main mol­ecule and two solvent mol­ecules, which inter­act via inter­molecular O—H⋯O hydrogen bonds. The piperazine ring adopts a chair conformation. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds and voids of 31 Å3.

Related literature

For the crystal structures of related cinnamic acid derivatives, see: Teng et al. (2011[Teng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.]); Zhong & Wu (2011[Zhong, Y. & Wu, B. (2011). Acta Cryst. E67, o2791.]). For further synthetic details, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]).

[Scheme 1]

Experimental

Crystal data
  • C32H38N2O5·2C2H6O

  • Mr = 622.78

  • Triclinic, [P \overline 1]

  • a = 12.511 (3) Å

  • b = 12.564 (3) Å

  • c = 13.601 (3) Å

  • α = 88.13 (3)°

  • β = 70.62 (3)°

  • γ = 65.84 (3)°

  • V = 1826.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.992

  • 6687 measured reflections

  • 6687 independent reflections

  • 2904 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.166

  • S = 1.00

  • 6687 reflections

  • 412 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O3 0.82 1.97 2.699 (4) 147
O7—H7C⋯O6 0.82 1.91 2.730 (6) 178
C14—H14A⋯O7i 0.97 2.54 3.436 (7) 153
C32—H32A⋯O4ii 0.96 2.57 3.258 (6) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our study of cinnamic acid derivatives (Teng et al., 2011; Zhong et al., 2011), we present here the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Teng et al., 2011; Zhong et al., 2011). The molecule of (I) exists an E configulation with respect to the C11=C12 ethene bond [1.306 (4)]. The piperazine ring adopts a chair conformation. In the crystal structure, the molecules are linked by intermolecular C—H···O and O—H···O hydrogen bonds (Table 1).

Related literature top

For the crystal structures of related cinnamic acid derivatives, see: Teng et al. (2011); Zhong & Wu (2011). For further synthetic details, see: Wu et al. (2008).

Experimental top

The synthesis follows the method of Wu et al. (2008). The title compound was prepared by stirring a mixture of (E)-3-(3,4-diethoxyphenyl)acrylic acid (0.945 g; 4 mmol), thionyl chloride (2 ml) and dichloromethane (30 ml) for 6 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in acetone (15 ml) and reacted with 1-(bis(4-methoxyphenyl)methyl)iperazine (1.874 g; 6 mmol) in the presence of triethylamine (5 ml) for 12 h at room temperature. The resultant mixture was cooled. The solid, (E)-1-(4-(bis(4-methoxyphenyl)methyl)piperazin-1-yl) -3-(3,4-diethoxyphenyl)prop-2-en-1-one obtained was filtered and was recrystallized from ethanol. The pale-yellow single crystals of the title compound used in x-ray diffraction studies were grown in ethyl acetate: hexane (2:1) by a slow evaporation at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically (C—H 0.93 - 0.98 Å, O—H 0.82 Å) and refined as riding, with Uĩso~(H) = 1.2 or 1.5U~eq~ of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric part of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. H atoms not involved in hydrogen-bonding (dashed lines) omitted for clarity.
(E)-1-{4-[Bis(4-methoxyphenyl)methyl]piperazin-1-yl}-3-(3,4- diethoxyphenyl)prop-2-en-1-one ethanol disolvate top
Crystal data top
C32H38N2O5·2C2H6OZ = 2
Mr = 622.78F(000) = 672
Triclinic, P1Dx = 1.132 Mg m3
a = 12.511 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.564 (3) ÅCell parameters from 25 reflections
c = 13.601 (3) Åθ = 10–13°
α = 88.13 (3)°µ = 0.08 mm1
β = 70.62 (3)°T = 293 K
γ = 65.84 (3)°Block, pale-yellow
V = 1826.9 (6) Å30.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2904 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 1315
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.977, Tmax = 0.992l = 016
6687 measured reflections3 standard reflections every 200 reflections
6687 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.064P)2]
where P = (Fo2 + 2Fc2)/3
6687 reflections(Δ/σ)max < 0.001
412 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C32H38N2O5·2C2H6Oγ = 65.84 (3)°
Mr = 622.78V = 1826.9 (6) Å3
Triclinic, P1Z = 2
a = 12.511 (3) ÅMo Kα radiation
b = 12.564 (3) ŵ = 0.08 mm1
c = 13.601 (3) ÅT = 293 K
α = 88.13 (3)°0.30 × 0.10 × 0.10 mm
β = 70.62 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2904 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.977, Tmax = 0.9923 standard reflections every 200 reflections
6687 measured reflections intensity decay: 1%
6687 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0702 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
6687 reflectionsΔρmin = 0.16 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7645 (2)0.43579 (19)0.73201 (16)0.0748 (7)
N10.3880 (2)0.3238 (2)0.4502 (2)0.0679 (7)
C10.6388 (3)0.4767 (3)0.7589 (2)0.0600 (8)
O20.6341 (2)0.58409 (19)0.90097 (16)0.0763 (7)
N20.4710 (2)0.1072 (2)0.32428 (18)0.0589 (7)
C20.5791 (3)0.4492 (3)0.7042 (2)0.0604 (9)
H2A0.62640.39760.64260.073*
O30.2255 (2)0.4493 (2)0.58302 (18)0.0793 (7)
C30.4490 (3)0.4953 (3)0.7369 (2)0.0620 (9)
O41.0072 (2)0.2941 (2)0.0568 (2)0.0970 (8)
C40.3823 (3)0.5725 (3)0.8292 (2)0.0747 (10)
H4A0.29540.60510.85320.090*
O50.2255 (3)0.0921 (2)0.0774 (2)0.1021 (9)
C50.4408 (3)0.6019 (3)0.8857 (2)0.0757 (10)
H5A0.39330.65270.94770.091*
C60.5677 (3)0.5574 (3)0.8519 (2)0.0652 (9)
C70.5645 (3)0.6754 (3)0.9877 (2)0.0774 (11)
H7A0.51130.65151.04470.093*
H7B0.51190.74640.96630.093*
C80.6542 (3)0.6980 (3)1.0227 (3)0.0998 (13)
H8A0.60940.76381.07660.150*
H8B0.71090.71520.96430.150*
H8C0.70030.62981.05000.150*
C90.8405 (3)0.3706 (3)0.6294 (2)0.0761 (10)
H9A0.81410.41600.57600.091*
H9B0.83230.29750.62540.091*
C100.9728 (3)0.3462 (4)0.6129 (3)0.1238 (17)
H10A1.02590.30270.54500.186*
H10B0.99790.30110.66610.186*
H10C0.97980.41910.61690.186*
C110.3817 (3)0.4704 (3)0.6783 (2)0.0689 (9)
H11A0.29560.50000.71190.083*
C120.4248 (3)0.4126 (3)0.5852 (2)0.0629 (9)
H12A0.51020.38080.54740.076*
C130.3408 (4)0.3975 (3)0.5399 (3)0.0627 (9)
C140.5202 (3)0.2540 (3)0.3899 (3)0.0734 (10)
H14A0.57110.26410.42610.088*
H14B0.54150.28120.32160.088*
C150.5478 (3)0.1252 (3)0.3761 (2)0.0661 (9)
H15A0.63540.08040.33460.079*
H15B0.53180.09670.44420.079*
C160.3399 (3)0.1738 (3)0.3898 (2)0.0673 (9)
H16A0.32430.14510.45780.081*
H16B0.28680.16180.35720.081*
C170.3071 (3)0.3040 (3)0.4043 (3)0.0696 (9)
H17A0.31650.33430.33690.084*
H17B0.22060.34580.44980.084*
C180.5014 (3)0.0179 (3)0.3039 (2)0.0615 (9)
H18A0.48250.04820.37190.074*
C190.6393 (3)0.0892 (3)0.2416 (2)0.0572 (8)
C200.7021 (3)0.0505 (3)0.1564 (2)0.0639 (9)
H20A0.66190.02370.13840.077*
C210.8259 (3)0.1216 (3)0.0964 (3)0.0719 (10)
H21A0.86820.09420.03910.086*
C220.8859 (4)0.2317 (3)0.1212 (3)0.0714 (10)
C230.8234 (4)0.2700 (3)0.2074 (3)0.0784 (10)
H23A0.86380.34390.22580.094*
C240.7014 (4)0.1997 (3)0.2664 (3)0.0726 (10)
H24A0.65980.22700.32430.087*
C251.0723 (4)0.4088 (4)0.0787 (3)0.1177 (15)
H25A1.15500.44390.02710.177*
H25B1.02840.45550.07680.177*
H25C1.07780.40480.14710.177*
C260.4215 (3)0.0353 (3)0.2477 (2)0.0575 (8)
C270.3708 (3)0.1137 (3)0.2767 (3)0.0730 (10)
H27A0.38070.15370.33410.088*
C280.3052 (3)0.1346 (3)0.2223 (3)0.0828 (11)
H28A0.27180.18920.24260.099*
C290.2886 (3)0.0757 (3)0.1386 (3)0.0689 (9)
C300.3385 (3)0.0033 (3)0.1085 (3)0.0718 (10)
H30A0.32720.04360.05160.086*
C310.4052 (3)0.0238 (3)0.1617 (2)0.0660 (9)
H31A0.43970.07730.14030.079*
C320.1610 (4)0.1626 (4)0.1114 (3)0.1240 (16)
H32A0.12110.16600.06300.186*
H32B0.09900.12980.17980.186*
H32C0.21880.24050.11480.186*
O60.0879 (4)0.6828 (3)0.6384 (3)0.1925 (19)
H6A0.13560.61620.64290.289*
C330.0052 (9)0.6966 (9)0.8023 (7)0.307 (6)
H33A0.07690.72140.86570.461*
H33B0.03980.74350.79990.461*
H33C0.04830.61550.80070.461*
C340.0443 (9)0.7107 (8)0.7151 (8)0.283 (6)
H34C0.10440.79000.71560.340*
H34D0.07510.65400.70520.340*
O70.2275 (4)0.7986 (4)0.5355 (3)0.1730 (16)
H7C0.18360.76560.56660.259*
C360.1491 (9)0.9230 (10)0.5390 (7)0.310 (6)
H36A0.19650.96200.49430.372*
H36B0.07860.93420.51800.372*
C350.1096 (9)0.9642 (10)0.6458 (9)0.406 (9)
H35A0.12061.03470.65160.609*
H35B0.15830.90540.67940.609*
H35C0.02290.98060.67920.609*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0722 (16)0.0763 (16)0.0590 (14)0.0177 (13)0.0172 (12)0.0220 (12)
N10.0720 (19)0.0664 (18)0.0625 (17)0.0264 (16)0.0218 (15)0.0141 (14)
C10.072 (2)0.051 (2)0.0495 (19)0.0178 (18)0.0207 (18)0.0059 (15)
O20.0844 (16)0.0748 (16)0.0606 (14)0.0240 (13)0.0236 (12)0.0231 (12)
N20.0703 (18)0.0586 (17)0.0517 (15)0.0273 (14)0.0253 (14)0.0014 (13)
C20.072 (2)0.058 (2)0.0466 (18)0.0269 (18)0.0147 (17)0.0075 (15)
O30.0741 (17)0.0825 (17)0.0757 (16)0.0296 (14)0.0218 (13)0.0128 (13)
C30.071 (2)0.064 (2)0.049 (2)0.0329 (19)0.0129 (17)0.0043 (16)
O40.0734 (18)0.0837 (19)0.115 (2)0.0163 (15)0.0312 (16)0.0002 (16)
C40.077 (2)0.090 (3)0.053 (2)0.038 (2)0.0138 (18)0.0091 (18)
O50.119 (2)0.119 (2)0.107 (2)0.0741 (19)0.0543 (18)0.0085 (17)
C50.066 (3)0.093 (3)0.052 (2)0.029 (2)0.0045 (18)0.0272 (19)
C60.085 (3)0.061 (2)0.0486 (19)0.031 (2)0.0210 (19)0.0049 (16)
C70.092 (3)0.069 (2)0.064 (2)0.031 (2)0.0183 (19)0.0250 (18)
C80.109 (3)0.094 (3)0.094 (3)0.034 (2)0.040 (2)0.034 (2)
C90.073 (3)0.083 (3)0.061 (2)0.031 (2)0.0113 (18)0.0150 (18)
C100.072 (3)0.164 (4)0.107 (3)0.034 (3)0.013 (2)0.044 (3)
C110.076 (2)0.076 (2)0.056 (2)0.0347 (19)0.0203 (18)0.0037 (18)
C120.073 (2)0.061 (2)0.057 (2)0.0326 (18)0.0198 (18)0.0003 (16)
C130.075 (2)0.060 (2)0.056 (2)0.033 (2)0.0224 (19)0.0031 (17)
C140.071 (2)0.075 (2)0.070 (2)0.030 (2)0.0188 (19)0.0130 (19)
C150.077 (2)0.067 (2)0.054 (2)0.0280 (19)0.0236 (18)0.0077 (16)
C160.077 (2)0.069 (2)0.064 (2)0.034 (2)0.0300 (19)0.0003 (18)
C170.073 (2)0.068 (2)0.070 (2)0.0294 (19)0.0264 (19)0.0051 (18)
C180.090 (3)0.062 (2)0.0441 (18)0.0403 (19)0.0271 (18)0.0134 (15)
C190.073 (2)0.055 (2)0.0463 (19)0.0253 (18)0.0251 (17)0.0044 (16)
C200.087 (3)0.059 (2)0.058 (2)0.034 (2)0.035 (2)0.0094 (17)
C210.081 (3)0.076 (3)0.066 (2)0.038 (2)0.028 (2)0.011 (2)
C220.071 (3)0.065 (2)0.083 (3)0.024 (2)0.038 (2)0.000 (2)
C230.085 (3)0.065 (2)0.092 (3)0.027 (2)0.045 (2)0.013 (2)
C240.089 (3)0.064 (2)0.072 (2)0.032 (2)0.038 (2)0.0120 (19)
C250.093 (3)0.093 (3)0.138 (4)0.012 (3)0.039 (3)0.001 (3)
C260.071 (2)0.055 (2)0.0467 (18)0.0272 (17)0.0194 (16)0.0001 (15)
C270.094 (3)0.072 (2)0.066 (2)0.045 (2)0.032 (2)0.0218 (18)
C280.091 (3)0.080 (3)0.092 (3)0.053 (2)0.028 (2)0.013 (2)
C290.074 (2)0.067 (2)0.073 (2)0.034 (2)0.029 (2)0.0026 (19)
C300.093 (3)0.077 (2)0.061 (2)0.045 (2)0.036 (2)0.0139 (18)
C310.090 (3)0.069 (2)0.060 (2)0.050 (2)0.0307 (19)0.0155 (17)
C320.115 (4)0.148 (4)0.134 (4)0.086 (4)0.034 (3)0.004 (3)
O60.199 (4)0.113 (3)0.144 (3)0.018 (3)0.029 (3)0.019 (2)
C330.248 (11)0.302 (12)0.253 (12)0.032 (9)0.051 (9)0.022 (10)
C340.199 (9)0.263 (10)0.248 (11)0.059 (7)0.098 (8)0.100 (9)
O70.131 (3)0.178 (4)0.194 (4)0.052 (3)0.050 (3)0.017 (3)
C360.260 (12)0.305 (14)0.204 (10)0.022 (10)0.010 (8)0.022 (10)
C350.219 (10)0.438 (18)0.440 (19)0.089 (11)0.006 (12)0.233 (16)
Geometric parameters (Å, º) top
O1—C11.357 (3)C16—H16B0.9700
O1—C91.441 (3)C17—H17A0.9700
N1—C131.358 (4)C17—H17B0.9700
N1—C171.453 (4)C18—C191.520 (4)
N1—C141.461 (4)C18—C261.525 (4)
C1—C21.352 (4)C18—H18A0.9800
C1—C61.420 (4)C19—C201.366 (4)
O2—C61.363 (4)C19—C241.380 (4)
O2—C71.434 (3)C20—C211.393 (4)
N2—C151.452 (3)C20—H20A0.9300
N2—C161.462 (4)C21—C221.371 (4)
N2—C181.470 (4)C21—H21A0.9300
C2—C31.396 (4)C22—C231.371 (5)
C2—H2A0.9300C23—C241.373 (4)
O3—C131.243 (4)C23—H23A0.9300
C3—C41.391 (4)C24—H24A0.9300
C3—C111.455 (4)C25—H25A0.9600
O4—C221.369 (4)C25—H25B0.9600
O4—C251.415 (4)C25—H25C0.9600
C4—C51.370 (4)C26—C271.360 (4)
C4—H4A0.9300C26—C311.393 (4)
O5—C291.392 (4)C27—C281.372 (4)
O5—C321.401 (4)C27—H27A0.9300
C5—C61.360 (4)C28—C291.364 (5)
C5—H5A0.9300C28—H28A0.9300
C7—C81.480 (4)C29—C301.362 (4)
C7—H7A0.9700C30—C311.368 (4)
C7—H7B0.9700C30—H30A0.9300
C8—H8A0.9600C31—H31A0.9300
C8—H8B0.9600C32—H32A0.9600
C8—H8C0.9600C32—H32B0.9600
C9—C101.493 (4)C32—H32C0.9600
C9—H9A0.9700O6—C341.533 (10)
C9—H9B0.9700O6—H6A0.8200
C10—H10A0.9600C33—C341.405 (7)
C10—H10B0.9600C33—H33A0.9600
C10—H10C0.9600C33—H33B0.9600
C11—C121.306 (4)C33—H33C0.9600
C11—H11A0.9300C34—H34C0.9700
C12—C131.456 (4)C34—H34D0.9700
C12—H12A0.9300O7—C361.459 (10)
C14—C151.514 (4)O7—H7C0.8200
C14—H14A0.9700C36—C351.409 (8)
C14—H14B0.9700C36—H36A0.9700
C15—H15A0.9700C36—H36B0.9700
C15—H15B0.9700C35—H35A0.9600
C16—C171.518 (4)C35—H35B0.9600
C16—H16A0.9700C35—H35C0.9600
C1—O1—C9117.0 (2)C16—C17—H17B109.6
C13—N1—C17121.6 (3)H17A—C17—H17B108.1
C13—N1—C14126.5 (3)N2—C18—C19112.0 (3)
C17—N1—C14111.9 (2)N2—C18—C26111.4 (3)
C2—C1—O1125.7 (3)C19—C18—C26110.1 (2)
C2—C1—C6119.4 (3)N2—C18—H18A107.7
O1—C1—C6114.8 (3)C19—C18—H18A107.7
C6—O2—C7117.1 (3)C26—C18—H18A107.7
C15—N2—C16108.0 (2)C20—C19—C24118.5 (3)
C15—N2—C18112.1 (2)C20—C19—C18121.8 (3)
C16—N2—C18111.6 (2)C24—C19—C18119.6 (3)
C1—C2—C3122.4 (3)C19—C20—C21120.3 (3)
C1—C2—H2A118.8C19—C20—H20A119.8
C3—C2—H2A118.8C21—C20—H20A119.8
C4—C3—C2116.7 (3)C22—C21—C20120.5 (3)
C4—C3—C11119.5 (3)C22—C21—H21A119.7
C2—C3—C11123.8 (3)C20—C21—H21A119.7
C22—O4—C25117.5 (3)O4—C22—C21115.6 (4)
C5—C4—C3121.9 (3)O4—C22—C23125.3 (4)
C5—C4—H4A119.0C21—C22—C23119.1 (4)
C3—C4—H4A119.0C22—C23—C24120.2 (4)
C29—O5—C32117.8 (3)C22—C23—H23A119.9
C6—C5—C4120.6 (3)C24—C23—H23A119.9
C6—C5—H5A119.7C23—C24—C19121.3 (4)
C4—C5—H5A119.7C23—C24—H24A119.4
C5—C6—O2124.9 (3)C19—C24—H24A119.4
C5—C6—C1118.9 (3)O4—C25—H25A109.5
O2—C6—C1116.2 (3)O4—C25—H25B109.5
O2—C7—C8108.3 (3)H25A—C25—H25B109.5
O2—C7—H7A110.0O4—C25—H25C109.5
C8—C7—H7A110.0H25A—C25—H25C109.5
O2—C7—H7B110.0H25B—C25—H25C109.5
C8—C7—H7B110.0C27—C26—C31118.5 (3)
H7A—C7—H7B108.4C27—C26—C18120.8 (3)
C7—C8—H8A109.5C31—C26—C18120.6 (3)
C7—C8—H8B109.5C26—C27—C28120.9 (3)
H8A—C8—H8B109.5C26—C27—H27A119.6
C7—C8—H8C109.5C28—C27—H27A119.6
H8A—C8—H8C109.5C29—C28—C27120.3 (3)
H8B—C8—H8C109.5C29—C28—H28A119.9
O1—C9—C10107.5 (3)C27—C28—H28A119.9
O1—C9—H9A110.2C30—C29—C28119.7 (3)
C10—C9—H9A110.2C30—C29—O5115.6 (3)
O1—C9—H9B110.2C28—C29—O5124.7 (3)
C10—C9—H9B110.2C29—C30—C31120.3 (3)
H9A—C9—H9B108.5C29—C30—H30A119.8
C9—C10—H10A109.5C31—C30—H30A119.8
C9—C10—H10B109.5C30—C31—C26120.3 (3)
H10A—C10—H10B109.5C30—C31—H31A119.9
C9—C10—H10C109.5C26—C31—H31A119.9
H10A—C10—H10C109.5O5—C32—H32A109.5
H10B—C10—H10C109.5O5—C32—H32B109.5
C12—C11—C3129.4 (3)H32A—C32—H32B109.5
C12—C11—H11A115.3O5—C32—H32C109.5
C3—C11—H11A115.3H32A—C32—H32C109.5
C11—C12—C13120.8 (3)H32B—C32—H32C109.5
C11—C12—H12A119.6C34—O6—H6A109.5
C13—C12—H12A119.6C34—C33—H33A109.5
O3—C13—N1118.7 (3)C34—C33—H33B109.5
O3—C13—C12121.2 (3)H33A—C33—H33B109.5
N1—C13—C12120.0 (3)C34—C33—H33C109.5
N1—C14—C15110.5 (3)H33A—C33—H33C109.5
N1—C14—H14A109.5H33B—C33—H33C109.5
C15—C14—H14A109.5C33—C34—O692.2 (8)
N1—C14—H14B109.5C33—C34—H34C113.3
C15—C14—H14B109.5O6—C34—H34C113.3
H14A—C14—H14B108.1C33—C34—H34D113.3
N2—C15—C14111.0 (3)O6—C34—H34D113.3
N2—C15—H15A109.4H34C—C34—H34D110.6
C14—C15—H15A109.4C36—O7—H7C109.5
N2—C15—H15B109.4C35—C36—O7102.2 (9)
C14—C15—H15B109.4C35—C36—H36A111.3
H15A—C15—H15B108.0O7—C36—H36A111.3
N2—C16—C17111.2 (3)C35—C36—H36B111.3
N2—C16—H16A109.4O7—C36—H36B111.3
C17—C16—H16A109.4H36A—C36—H36B109.2
N2—C16—H16B109.4C36—C35—H35A109.5
C17—C16—H16B109.4C36—C35—H35B109.5
H16A—C16—H16B108.0H35A—C35—H35B109.5
N1—C17—C16110.3 (3)C36—C35—H35C109.5
N1—C17—H17A109.6H35A—C35—H35C109.5
C16—C17—H17A109.6H35B—C35—H35C109.5
N1—C17—H17B109.6
C9—O1—C1—C29.1 (5)N2—C16—C17—N157.4 (3)
C9—O1—C1—C6169.3 (3)C15—N2—C18—C1955.2 (3)
O1—C1—C2—C3179.8 (3)C16—N2—C18—C19176.5 (2)
C6—C1—C2—C31.5 (5)C15—N2—C18—C26179.0 (3)
C1—C2—C3—C40.4 (5)C16—N2—C18—C2659.7 (3)
C1—C2—C3—C11178.0 (3)N2—C18—C19—C2044.4 (4)
C2—C3—C4—C50.2 (5)C26—C18—C19—C2080.2 (4)
C11—C3—C4—C5177.9 (3)N2—C18—C19—C24140.3 (3)
C3—C4—C5—C61.1 (6)C26—C18—C19—C2495.1 (3)
C4—C5—C6—O2178.0 (3)C24—C19—C20—C210.0 (4)
C4—C5—C6—C12.2 (5)C18—C19—C20—C21175.3 (3)
C7—O2—C6—C57.3 (5)C19—C20—C21—C220.8 (5)
C7—O2—C6—C1172.9 (3)C25—O4—C22—C21179.2 (3)
C2—C1—C6—C52.4 (5)C25—O4—C22—C232.0 (5)
O1—C1—C6—C5179.2 (3)C20—C21—C22—O4179.7 (3)
C2—C1—C6—O2177.8 (3)C20—C21—C22—C231.4 (5)
O1—C1—C6—O20.6 (4)O4—C22—C23—C24179.9 (3)
C6—O2—C7—C8174.7 (3)C21—C22—C23—C241.3 (5)
C1—O1—C9—C10174.0 (3)C22—C23—C24—C190.6 (5)
C4—C3—C11—C12171.2 (3)C20—C19—C24—C230.1 (5)
C2—C3—C11—C126.3 (6)C18—C19—C24—C23175.3 (3)
C3—C11—C12—C13180.0 (3)N2—C18—C26—C27137.3 (3)
C17—N1—C13—O30.3 (5)C19—C18—C26—C2797.8 (4)
C14—N1—C13—O3178.8 (3)N2—C18—C26—C3146.5 (4)
C17—N1—C13—C12178.3 (3)C19—C18—C26—C3178.3 (4)
C14—N1—C13—C120.2 (5)C31—C26—C27—C280.2 (5)
C11—C12—C13—O37.8 (5)C18—C26—C27—C28176.1 (3)
C11—C12—C13—N1170.8 (3)C26—C27—C28—C290.7 (5)
C13—N1—C14—C15124.4 (3)C27—C28—C29—C300.6 (5)
C17—N1—C14—C1554.2 (4)C27—C28—C29—O5178.8 (3)
C16—N2—C15—C1460.2 (3)C32—O5—C29—C30173.3 (3)
C18—N2—C15—C14176.4 (3)C32—O5—C29—C288.4 (5)
N1—C14—C15—N257.9 (3)C28—C29—C30—C310.1 (5)
C15—N2—C16—C1760.1 (3)O5—C29—C30—C31178.3 (3)
C18—N2—C16—C17176.2 (2)C29—C30—C31—C260.6 (5)
C13—N1—C17—C16124.8 (3)C27—C26—C31—C300.5 (5)
C14—N1—C17—C1653.9 (4)C18—C26—C31—C30176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O30.821.972.699 (4)147
O7—H7C···O60.821.912.730 (6)178
C14—H14A···O7i0.972.543.436 (7)153
C32—H32A···O4ii0.962.573.258 (6)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC32H38N2O5·2C2H6O
Mr622.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.511 (3), 12.564 (3), 13.601 (3)
α, β, γ (°)88.13 (3), 70.62 (3), 65.84 (3)
V3)1826.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
6687, 6687, 2904
Rint0.000
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.166, 1.00
No. of reflections6687
No. of parameters412
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O30.821.972.699 (4)146.9
O7—H7C···O60.821.912.730 (6)177.5
C14—H14A···O7i0.972.543.436 (7)153
C32—H32A···O4ii0.962.573.258 (6)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of the Education Department of Jiangsu Province (grant No. 05KJB350084) and the Natural Science Foundation of Jiangsu Province (grant No. BK2010538).

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar
First citationZhong, Y. & Wu, B. (2011). Acta Cryst. E67, o2791.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds