organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Adamantan-1-yl­amino)­meth­yl]phenol

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangyc33@yahoo.com.cn

(Received 27 December 2011; accepted 29 December 2011; online 7 January 2012)

The asymmetric unit of the title compound, C17H23NO, contains two independent mol­ecules. In both mol­ecules, the hy­droxy group is involved in the formation of an intra­molecular O—H⋯N hydrogen bond. In the crystal, there are two crystallographically independent chains of the mol­ecules propagating along the c axis and formed by weak inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011a). Angew. Chem. Int. Ed. 50, 11947-11951.],b[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011b). Adv. Mater. 23, 5658-5662.]). For a related structure, see: Zhang et al. (2007[Zhang, Y.-Q., Xiao, X., Zhu, Q.-J., Xue, S.-F. & Tao, Z. (2007). Acta Cryst. E63, o256-o258.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23NO

  • Mr = 257.36

  • Monoclinic, P 21 /c

  • a = 23.451 (5) Å

  • b = 11.837 (2) Å

  • c = 10.684 (2) Å

  • β = 101.17 (3)°

  • V = 2909.6 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 27928 measured reflections

  • 6616 independent reflections

  • 3011 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.178

  • S = 1.02

  • 6616 reflections

  • 344 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N2 0.82 1.95 2.690 (3) 151
O1—H1B⋯N1 0.82 1.92 2.670 (3) 152
N2—H2A⋯O2i 0.89 2.64 3.496 (3) 161
N1—H1A⋯O1i 0.89 2.50 3.344 (3) 158
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containig amino cations have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Fu et al., 2011a,b, and references therein). Herewith we present the crystal structure of the title compound (I), which can be used as cation in organic salts.

The asymmetric part of (I) contains two independent molecules (Fig. 1). All bond lengths and angles are normal and comparable with those reported for the cation in N-(2-pyridylmethyl)adamantane-1-ammonium chloride monohydrate (Zhang et al., 2007). The hydroxyl O (O1 and O2) atoms are involved in hydrogen bonds (Table 1) with the amino N atoms (N1 and N2) with the O—H···N distance of 2.670 (3) and 2.694 (3) Å, respectively. These H-bond interactions build a R21(6) ring which play an important role in stabilizing the structural conformation (Table 1).

In the crystal structure, there are two crystallographically independent chains of the molecules propagated along c axis and formed by the weak intermolecular N—H···O hydrogen bonds (Table 1).

Related literature top

For the ferroelectric properties of related amino derivatives, see: Fu et al. (2011a,b). For a related structure, see: Zhang et al. (2007).

Experimental top

Salicylaldehyde (2.44 g, 20 mmol) and KOH (1.12 g, 20 mmol) were added into a solution of amantadine hydrochloride (3.76 g, 20 mmol) in ethanol. Then a little of anhydrous magnesium sulfate was added into it, after 6 h return the yellow precipitate came out. The yellow solid of amantadine shrink Yang Schiff was obtained by filtration, collection and drying. NaBH4 (3.78 g, 10 mmol) was added into a solution of amantadine shrink Yang Schiff (6.38 g, 25 mmol) in anhydrous methanol (120 ml). After 5 h reaction, then the white solid, N-(2-Hydroxybenzyl)adamantan-1-amine was obtained by reduced pressure distillation, extraction and drying. The N-(2-Hydroxybenzyl)adamantan-1-amine (3 mmol) was dissolved in water/EtOH (1:1 v/v) solution. The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement top

C-bound H atoms were fixed geometrically [C—H 0.93–0.98 Å], and treated as riding, with Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were located in difference Fourier maps and restrained to H—N = 0.89 (2) Å and H—O = 0.82 (2) Å. In the last stage of the refinement, they were treated as riding, with Uiso(H) = 1.2Ueq(N, O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A content of the asymmetric unit of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines denote intramolecular hydrogen bonds.
2-[(Adamantan-1-ylamino)methyl]phenol top
Crystal data top
C17H23NOF(000) = 1120
Mr = 257.36Dx = 1.175 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6616 reflections
a = 23.451 (5) Åθ = 3.2–27.5°
b = 11.837 (2) ŵ = 0.07 mm1
c = 10.684 (2) ÅT = 298 K
β = 101.17 (3)°Block, colourless
V = 2909.6 (10) Å30.10 × 0.05 × 0.05 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
6616 independent reflections
Radiation source: fine-focus sealed tube3011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = 3030
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1514
Tmin = 0.910, Tmax = 1.000l = 1313
27928 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.4843P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6616 reflectionsΔρmax = 0.35 e Å3
344 parametersΔρmin = 0.17 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (6)
Crystal data top
C17H23NOV = 2909.6 (10) Å3
Mr = 257.36Z = 8
Monoclinic, P21/cMo Kα radiation
a = 23.451 (5) ŵ = 0.07 mm1
b = 11.837 (2) ÅT = 298 K
c = 10.684 (2) Å0.10 × 0.05 × 0.05 mm
β = 101.17 (3)°
Data collection top
Rigaku Mercury2
diffractometer
6616 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3011 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.105
27928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0746 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
6616 reflectionsΔρmin = 0.17 e Å3
344 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.52444 (9)0.72475 (18)0.0364 (2)0.0865 (7)
H2B0.50430.71960.09090.104*
N20.48436 (9)0.64480 (17)0.2387 (2)0.0697 (7)
H2A0.50050.68720.30500.084*
C220.63107 (13)0.5440 (3)0.2346 (3)0.0679 (9)
H22A0.63370.49040.29910.081*
C210.68075 (13)0.5737 (3)0.1911 (4)0.0796 (10)
H21A0.71610.53960.22510.095*
C200.67765 (16)0.6536 (3)0.0976 (4)0.0829 (10)
H20A0.71110.67430.06880.100*
C190.62562 (15)0.7033 (3)0.0459 (3)0.0726 (9)
H19A0.62370.75680.01850.087*
C180.57589 (13)0.6735 (3)0.0903 (3)0.0630 (8)
C230.57746 (12)0.5917 (2)0.1850 (3)0.0578 (8)
C240.52176 (13)0.5513 (2)0.2236 (3)0.0772 (10)
H24A0.50140.50030.15890.093*
H24B0.53130.50990.30330.093*
C260.42163 (13)0.5279 (3)0.3580 (3)0.0682 (9)
H26A0.43690.45710.33260.082*
H26B0.44550.55110.43840.082*
C250.42430 (9)0.6185 (2)0.2558 (2)0.0529 (7)
C300.35931 (14)0.5110 (3)0.3751 (3)0.0701 (9)
H30A0.35830.45350.44060.084*
C310.33580 (14)0.6222 (3)0.4164 (3)0.0763 (9)
H31A0.35920.64640.49690.092*
H31B0.29620.61170.42840.092*
C290.32235 (14)0.4721 (3)0.2490 (3)0.0803 (10)
H29A0.28260.45950.25940.096*
H29B0.33750.40150.22260.096*
C320.33722 (12)0.7125 (3)0.3147 (3)0.0636 (8)
H32A0.32220.78400.34150.076*
C330.30014 (12)0.6745 (3)0.1893 (3)0.0738 (9)
H33A0.30070.73180.12470.089*
H33B0.26030.66440.19960.089*
C340.32371 (12)0.5633 (3)0.1473 (3)0.0710 (9)
H34A0.29970.53910.06630.085*
C270.38680 (12)0.5796 (3)0.1301 (3)0.0628 (8)
H27A0.40180.50910.10340.075*
H27B0.38810.63560.06440.075*
C280.39965 (12)0.7287 (2)0.2963 (3)0.0608 (8)
H28A0.40060.78590.23170.073*
H28B0.42350.75480.37550.073*
O10.94801 (7)0.73205 (15)0.46936 (17)0.0605 (5)
H1B0.96950.72230.53880.073*
N10.98628 (8)0.66076 (17)0.70798 (19)0.0477 (6)
H1A0.97190.70450.76220.057*
C81.04523 (10)0.6247 (2)0.7736 (2)0.0394 (6)
C111.07657 (11)0.7317 (2)0.8317 (3)0.0519 (7)
H11A1.07810.78620.76470.062*
H11B1.05510.76520.89120.062*
C101.04375 (11)0.5392 (2)0.8817 (2)0.0502 (7)
H10A1.02200.57080.94200.060*
H10B1.02430.47070.84650.060*
C151.10557 (12)0.5113 (2)0.9503 (2)0.0563 (7)
H15A1.10400.45691.01870.068*
C141.13544 (13)0.6183 (3)1.0073 (3)0.0716 (9)
H14A1.17450.60071.05200.086*
H14B1.11420.65031.06810.086*
C91.07946 (11)0.5733 (2)0.6797 (2)0.0493 (7)
H9A1.08100.62660.61140.059*
H9B1.06010.50540.64240.059*
C171.14125 (12)0.5444 (2)0.7484 (3)0.0572 (8)
H17A1.16290.51170.68740.069*
C161.13907 (13)0.4596 (2)0.8554 (3)0.0648 (8)
H16A1.12010.39070.82000.078*
H16B1.17820.44070.89850.078*
C131.13800 (12)0.7038 (2)0.9008 (3)0.0644 (8)
H13A1.15750.77280.93740.077*
C121.17164 (12)0.6521 (3)0.8053 (3)0.0710 (9)
H12A1.17360.70590.73780.085*
H12B1.21100.63460.84810.085*
C70.94311 (11)0.5709 (2)0.6667 (3)0.0555 (7)
H7A0.93240.53600.74100.067*
H7B0.96010.51320.62080.067*
C60.88973 (10)0.6180 (2)0.5821 (2)0.0444 (6)
C10.89467 (11)0.6952 (2)0.4859 (2)0.0460 (6)
C20.84582 (12)0.7356 (2)0.4048 (3)0.0548 (7)
H2C0.84970.78700.34110.066*
C30.79137 (12)0.7001 (3)0.4181 (3)0.0644 (8)
H3A0.75850.72770.36370.077*
C40.78559 (12)0.6236 (3)0.5118 (3)0.0680 (9)
H4A0.74890.59890.52040.082*
C50.83443 (12)0.5836 (2)0.5929 (3)0.0590 (8)
H5A0.83010.53240.65640.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0738 (15)0.0910 (17)0.0903 (17)0.0089 (13)0.0055 (12)0.0293 (13)
N20.0572 (15)0.0592 (16)0.093 (2)0.0038 (13)0.0145 (13)0.0019 (14)
C220.063 (2)0.071 (2)0.067 (2)0.0103 (17)0.0067 (16)0.0087 (16)
C210.049 (2)0.087 (3)0.100 (3)0.0019 (19)0.0056 (18)0.029 (2)
C200.071 (3)0.073 (2)0.110 (3)0.022 (2)0.029 (2)0.024 (2)
C190.077 (2)0.059 (2)0.084 (2)0.0111 (19)0.0202 (19)0.0016 (17)
C180.0575 (19)0.062 (2)0.067 (2)0.0019 (17)0.0049 (16)0.0052 (16)
C230.0530 (18)0.0577 (19)0.062 (2)0.0031 (15)0.0087 (14)0.0030 (15)
C240.076 (2)0.070 (2)0.092 (2)0.0194 (19)0.0320 (18)0.0160 (18)
C260.080 (2)0.062 (2)0.063 (2)0.0060 (17)0.0135 (16)0.0113 (15)
C250.0434 (16)0.0581 (19)0.0554 (18)0.0024 (14)0.0051 (13)0.0051 (14)
C300.087 (2)0.064 (2)0.066 (2)0.0076 (18)0.0287 (18)0.0088 (17)
C310.090 (2)0.085 (2)0.059 (2)0.008 (2)0.0253 (17)0.0076 (18)
C290.082 (2)0.076 (2)0.092 (3)0.0284 (19)0.039 (2)0.026 (2)
C320.065 (2)0.063 (2)0.063 (2)0.0021 (16)0.0123 (15)0.0124 (16)
C330.0521 (18)0.099 (3)0.071 (2)0.0024 (18)0.0116 (16)0.0004 (19)
C340.0564 (19)0.103 (3)0.0528 (19)0.0197 (18)0.0077 (14)0.0229 (18)
C270.0643 (19)0.072 (2)0.0562 (19)0.0018 (16)0.0203 (14)0.0035 (15)
C280.0628 (19)0.0510 (18)0.0630 (19)0.0011 (15)0.0021 (14)0.0030 (14)
O10.0493 (11)0.0734 (14)0.0611 (12)0.0100 (10)0.0166 (9)0.0133 (10)
N10.0467 (13)0.0445 (13)0.0521 (14)0.0005 (11)0.0101 (10)0.0030 (10)
C80.0375 (14)0.0432 (15)0.0391 (15)0.0019 (12)0.0114 (11)0.0031 (11)
C110.0559 (17)0.0402 (16)0.0623 (18)0.0004 (14)0.0181 (14)0.0035 (13)
C100.0551 (17)0.0546 (17)0.0454 (16)0.0022 (14)0.0208 (13)0.0047 (13)
C150.0672 (19)0.0598 (19)0.0434 (17)0.0112 (16)0.0145 (14)0.0122 (14)
C140.070 (2)0.085 (2)0.055 (2)0.0081 (18)0.0008 (15)0.0055 (17)
C90.0637 (18)0.0503 (17)0.0370 (15)0.0046 (14)0.0175 (13)0.0009 (12)
C170.0535 (17)0.065 (2)0.0597 (19)0.0126 (15)0.0276 (14)0.0036 (15)
C160.070 (2)0.0611 (19)0.065 (2)0.0194 (16)0.0172 (15)0.0106 (15)
C130.0584 (19)0.0519 (19)0.079 (2)0.0080 (15)0.0037 (16)0.0125 (16)
C120.0430 (16)0.084 (2)0.087 (2)0.0001 (17)0.0150 (16)0.0176 (19)
C70.0597 (18)0.0498 (17)0.0577 (18)0.0136 (15)0.0132 (14)0.0037 (14)
C60.0381 (14)0.0512 (17)0.0456 (16)0.0066 (13)0.0128 (12)0.0078 (13)
C10.0412 (15)0.0479 (16)0.0505 (17)0.0055 (13)0.0133 (12)0.0060 (13)
C20.0595 (19)0.0509 (17)0.0520 (18)0.0026 (15)0.0062 (14)0.0047 (13)
C30.0495 (19)0.070 (2)0.070 (2)0.0025 (16)0.0018 (15)0.0165 (17)
C40.0418 (17)0.084 (2)0.080 (2)0.0109 (17)0.0167 (16)0.0117 (19)
C50.0534 (18)0.070 (2)0.0577 (19)0.0108 (16)0.0208 (14)0.0018 (15)
Geometric parameters (Å, º) top
O2—C181.373 (3)O1—C11.368 (3)
O2—H2B0.8200O1—H1B0.8200
N2—C241.441 (2)N1—C71.475 (3)
N2—C251.488 (2)N1—C81.486 (3)
N2—H2A0.8900N1—H1A0.8901
C22—C211.381 (4)C8—C91.527 (3)
C22—C231.387 (4)C8—C111.534 (3)
C22—H22A0.9300C8—C101.541 (3)
C21—C201.366 (5)C11—C131.522 (4)
C21—H21A0.9300C11—H11A0.9700
C20—C191.371 (4)C11—H11B0.9700
C20—H20A0.9300C10—C151.529 (3)
C19—C181.387 (4)C10—H10A0.9700
C19—H19A0.9300C10—H10B0.9700
C18—C231.396 (4)C15—C141.516 (4)
C23—C241.521 (4)C15—C161.526 (4)
C24—H24A0.9700C15—H15A0.9800
C24—H24B0.9700C14—C131.533 (4)
C26—C301.521 (4)C14—H14A0.9700
C26—C251.541 (4)C14—H14B0.9700
C26—H26A0.9700C9—C171.531 (3)
C26—H26B0.9700C9—H9A0.9700
C25—C281.524 (4)C9—H9B0.9700
C25—C271.527 (4)C17—C121.528 (4)
C30—C291.524 (4)C17—C161.530 (4)
C30—C311.525 (4)C17—H17A0.9800
C30—H30A0.9800C16—H16A0.9700
C31—C321.529 (4)C16—H16B0.9700
C31—H31A0.9700C13—C121.533 (4)
C31—H31B0.9700C13—H13A0.9800
C29—C341.536 (4)C12—H12A0.9700
C29—H29A0.9700C12—H12B0.9700
C29—H29B0.9700C7—C61.502 (3)
C32—C331.517 (4)C7—H7A0.9700
C32—C281.527 (4)C7—H7B0.9700
C32—H32A0.9800C6—C51.385 (3)
C33—C341.529 (4)C6—C11.396 (3)
C33—H33A0.9700C1—C21.382 (3)
C33—H33B0.9700C2—C31.378 (4)
C34—C271.538 (4)C2—H2C0.9300
C34—H34A0.9800C3—C41.376 (4)
C27—H27A0.9700C3—H3A0.9300
C27—H27B0.9700C4—C51.379 (4)
C28—H28A0.9700C4—H4A0.9300
C28—H28B0.9700C5—H5A0.9300
C18—O2—H2B104.5C1—O1—H1B104.8
C24—N2—C25117.7 (2)C7—N1—C8117.1 (2)
C24—N2—H2A110.4C7—N1—H1A106.8
C25—N2—H2A106.7C8—N1—H1A107.2
C21—C22—C23121.9 (3)N1—C8—C9111.34 (19)
C21—C22—H22A119.0N1—C8—C11106.42 (19)
C23—C22—H22A119.0C9—C8—C11108.84 (19)
C20—C21—C22119.6 (3)N1—C8—C10112.84 (19)
C20—C21—H21A120.2C9—C8—C10108.8 (2)
C22—C21—H21A120.2C11—C8—C10108.5 (2)
C21—C20—C19120.6 (3)C13—C11—C8110.6 (2)
C21—C20—H20A119.7C13—C11—H11A109.5
C19—C20—H20A119.7C8—C11—H11A109.5
C20—C19—C18119.7 (3)C13—C11—H11B109.5
C20—C19—H19A120.2C8—C11—H11B109.5
C18—C19—H19A120.2H11A—C11—H11B108.1
O2—C18—C19118.3 (3)C15—C10—C8110.2 (2)
O2—C18—C23120.5 (3)C15—C10—H10A109.6
C19—C18—C23121.2 (3)C8—C10—H10A109.6
C22—C23—C18117.0 (3)C15—C10—H10B109.6
C22—C23—C24122.0 (3)C8—C10—H10B109.6
C18—C23—C24120.8 (3)H10A—C10—H10B108.1
N2—C24—C23111.2 (2)C14—C15—C16110.1 (2)
N2—C24—H24A109.4C14—C15—C10109.5 (2)
C23—C24—H24A109.4C16—C15—C10109.3 (2)
N2—C24—H24B109.4C14—C15—H15A109.3
C23—C24—H24B109.4C16—C15—H15A109.3
H24A—C24—H24B108.0C10—C15—H15A109.3
C30—C26—C25110.4 (2)C15—C14—C13109.6 (2)
C30—C26—H26A109.6C15—C14—H14A109.8
C25—C26—H26A109.6C13—C14—H14A109.8
C30—C26—H26B109.6C15—C14—H14B109.8
C25—C26—H26B109.6C13—C14—H14B109.8
H26A—C26—H26B108.1H14A—C14—H14B108.2
N2—C25—C28106.01 (19)C8—C9—C17110.1 (2)
N2—C25—C27110.7 (2)C8—C9—H9A109.6
C28—C25—C27108.8 (2)C17—C9—H9A109.6
N2—C25—C26113.7 (2)C8—C9—H9B109.6
C28—C25—C26109.0 (2)C17—C9—H9B109.6
C27—C25—C26108.6 (2)H9A—C9—H9B108.2
C26—C30—C29109.2 (2)C12—C17—C16109.3 (2)
C26—C30—C31109.3 (3)C12—C17—C9109.3 (2)
C29—C30—C31109.9 (3)C16—C17—C9109.8 (2)
C26—C30—H30A109.5C12—C17—H17A109.5
C29—C30—H30A109.5C16—C17—H17A109.5
C31—C30—H30A109.5C9—C17—H17A109.5
C30—C31—C32109.8 (2)C15—C16—C17109.2 (2)
C30—C31—H31A109.7C15—C16—H16A109.8
C32—C31—H31A109.7C17—C16—H16A109.8
C30—C31—H31B109.7C15—C16—H16B109.8
C32—C31—H31B109.7C17—C16—H16B109.8
H31A—C31—H31B108.2H16A—C16—H16B108.3
C30—C29—C34109.0 (2)C11—C13—C12108.9 (2)
C30—C29—H29A109.9C11—C13—C14109.5 (2)
C34—C29—H29A109.9C12—C13—C14109.3 (2)
C30—C29—H29B109.9C11—C13—H13A109.7
C34—C29—H29B109.9C12—C13—H13A109.7
H29A—C29—H29B108.3C14—C13—H13A109.7
C33—C32—C28108.9 (2)C17—C12—C13109.7 (2)
C33—C32—C31109.4 (3)C17—C12—H12A109.7
C28—C32—C31109.4 (2)C13—C12—H12A109.7
C33—C32—H32A109.7C17—C12—H12B109.7
C28—C32—H32A109.7C13—C12—H12B109.7
C31—C32—H32A109.7H12A—C12—H12B108.2
C32—C33—C34109.7 (2)N1—C7—C6110.9 (2)
C32—C33—H33A109.7N1—C7—H7A109.5
C34—C33—H33A109.7C6—C7—H7A109.5
C32—C33—H33B109.7N1—C7—H7B109.5
C34—C33—H33B109.7C6—C7—H7B109.5
H33A—C33—H33B108.2H7A—C7—H7B108.1
C33—C34—C29109.8 (2)C5—C6—C1117.8 (2)
C33—C34—C27109.7 (2)C5—C6—C7121.7 (2)
C29—C34—C27109.0 (3)C1—C6—C7120.5 (2)
C33—C34—H34A109.4O1—C1—C2118.4 (2)
C29—C34—H34A109.4O1—C1—C6120.8 (2)
C27—C34—H34A109.4C2—C1—C6120.8 (2)
C25—C27—C34109.6 (2)C3—C2—C1120.1 (3)
C25—C27—H27A109.7C3—C2—H2C119.9
C34—C27—H27A109.7C1—C2—H2C119.9
C25—C27—H27B109.7C4—C3—C2120.0 (3)
C34—C27—H27B109.7C4—C3—H3A120.0
H27A—C27—H27B108.2C2—C3—H3A120.0
C25—C28—C32110.8 (2)C3—C4—C5119.7 (3)
C25—C28—H28A109.5C3—C4—H4A120.1
C32—C28—H28A109.5C5—C4—H4A120.1
C25—C28—H28B109.5C4—C5—C6121.6 (3)
C32—C28—H28B109.5C4—C5—H5A119.2
H28A—C28—H28B108.1C6—C5—H5A119.2
C23—C22—C21—C201.0 (5)C7—N1—C8—C973.8 (3)
C22—C21—C20—C190.7 (5)C7—N1—C8—C11167.8 (2)
C21—C20—C19—C180.9 (5)C7—N1—C8—C1048.9 (3)
C20—C19—C18—O2179.9 (3)N1—C8—C11—C13179.6 (2)
C20—C19—C18—C231.4 (5)C9—C8—C11—C1359.5 (3)
C21—C22—C23—C181.3 (4)C10—C8—C11—C1358.7 (3)
C21—C22—C23—C24174.0 (3)N1—C8—C10—C15176.5 (2)
O2—C18—C23—C22180.0 (2)C9—C8—C10—C1559.4 (3)
C19—C18—C23—C221.5 (4)C11—C8—C10—C1558.9 (3)
O2—C18—C23—C244.6 (4)C8—C10—C15—C1460.3 (3)
C19—C18—C23—C24173.9 (3)C8—C10—C15—C1660.4 (3)
C25—N2—C24—C23170.4 (2)C16—C15—C14—C1360.0 (3)
C22—C23—C24—N2139.9 (3)C10—C15—C14—C1360.2 (3)
C18—C23—C24—N244.9 (4)N1—C8—C9—C17176.2 (2)
C24—N2—C25—C28168.6 (2)C11—C8—C9—C1759.2 (3)
C24—N2—C25—C2773.6 (3)C10—C8—C9—C1758.9 (3)
C24—N2—C25—C2648.9 (3)C8—C9—C17—C1260.1 (3)
C30—C26—C25—N2176.7 (2)C8—C9—C17—C1659.9 (3)
C30—C26—C25—C2858.7 (3)C14—C15—C16—C1760.1 (3)
C30—C26—C25—C2759.7 (3)C10—C15—C16—C1760.2 (3)
C25—C26—C30—C2960.5 (3)C12—C17—C16—C1559.9 (3)
C25—C26—C30—C3159.8 (3)C9—C17—C16—C1560.0 (3)
C26—C30—C31—C3260.1 (3)C8—C11—C13—C1259.8 (3)
C29—C30—C31—C3259.8 (3)C8—C11—C13—C1459.6 (3)
C26—C30—C29—C3460.7 (3)C15—C14—C13—C1159.9 (3)
C31—C30—C29—C3459.2 (3)C15—C14—C13—C1259.3 (3)
C30—C31—C32—C3359.8 (3)C16—C17—C12—C1360.1 (3)
C30—C31—C32—C2859.5 (3)C9—C17—C12—C1360.1 (3)
C28—C32—C33—C3459.8 (3)C11—C13—C12—C1759.9 (3)
C31—C32—C33—C3459.8 (3)C14—C13—C12—C1759.6 (3)
C32—C33—C34—C2959.9 (3)C8—N1—C7—C6169.79 (19)
C32—C33—C34—C2759.8 (3)N1—C7—C6—C5138.9 (2)
C30—C29—C34—C3359.3 (3)N1—C7—C6—C143.7 (3)
C30—C29—C34—C2761.0 (3)C5—C6—C1—O1179.5 (2)
N2—C25—C27—C34175.0 (2)C7—C6—C1—O12.1 (4)
C28—C25—C27—C3458.9 (3)C5—C6—C1—C20.1 (4)
C26—C25—C27—C3459.6 (3)C7—C6—C1—C2177.6 (2)
C33—C34—C27—C2559.4 (3)O1—C1—C2—C3179.7 (2)
C29—C34—C27—C2560.9 (3)C6—C1—C2—C30.0 (4)
N2—C25—C28—C32179.0 (2)C1—C2—C3—C40.4 (4)
C27—C25—C28—C3260.0 (3)C2—C3—C4—C50.6 (4)
C26—C25—C28—C3258.2 (3)C3—C4—C5—C60.5 (4)
C33—C32—C28—C2560.5 (3)C1—C6—C5—C40.1 (4)
C31—C32—C28—C2559.1 (3)C7—C6—C5—C4177.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N20.821.952.690 (3)151
O1—H1B···N10.821.922.670 (3)152
N2—H2A···O2i0.892.643.496 (3)161
N1—H1A···O1i0.892.503.344 (3)158
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H23NO
Mr257.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)23.451 (5), 11.837 (2), 10.684 (2)
β (°) 101.17 (3)
V3)2909.6 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27928, 6616, 3011
Rint0.105
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.178, 1.02
No. of reflections6616
No. of parameters344
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.17

Computer programs: CrystalClear (Rigaku, 2005), CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N20.821.952.690 (3)150.7
O1—H1B···N10.821.922.670 (3)152.1
N2—H2A···O2i0.892.643.496 (3)161.3
N1—H1A···O1i0.892.503.344 (3)158.1
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Doctoral Foundation of Southeast University, China.

References

First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011b). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011a). Angew. Chem. Int. Ed. 50, 11947–11951.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-Q., Xiao, X., Zhu, Q.-J., Xue, S.-F. & Tao, Z. (2007). Acta Cryst. E63, o256–o258.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds