metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium(II) bis­­{5-[3-(1H-tetra­zol-5-yl)phen­yl]tetra­zolide} tetra­hydrate

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailing Resources, Shangluo University, Shangluo 726000, Shaanxi, People's Republic of China
*Correspondence e-mail: slchunshengzhou@126.com

(Received 2 January 2012; accepted 11 January 2012; online 18 January 2012)

The asymmetric unit of the title compound, [Mg(H2O)6](C8H5N8)2·4H2O, contains one half of the centrosymmetric dication, one anion and two water mol­ecules. The MgII ion is coordinated by six water mol­ecules in a slightly distorted octa­hedral geometry. In the anion, the two five-membered heterocycles are twisted from the central benzene ring by 4.34 (11) and 3.20 (10)°. In the crystal, O—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds generate a three-dimensional network.

Related literature

For background to tetra­zole-containing compounds, see: Zhao et al. (2008[Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.]). For related structures, see: Lü (2008[Lü, Y. (2008). Acta Cryst. E64, m1255.]); Kostakis et al. (2009a[Kostakis, G. E., Abbas, G., Anson, C. E. & Powell, A. K. (2009a). CrystEngComm, 11, 82-86.],b[Kostakis, G. E., Mavrandonakis, A., Abbas, G., Klopper, W., Schooss, D., Lebedkin, S., Lan, Y. H. & Powell, A. K. (2009b). CrystEngComm, 11, 2480-2487.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C8H5N8)2·4H2O

  • Mr = 630.87

  • Monoclinic, P 21 /n

  • a = 7.3776 (12) Å

  • b = 16.038 (3) Å

  • c = 12.1787 (19) Å

  • β = 102.199 (2)°

  • V = 1408.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.31 × 0.24 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.987

  • 6895 measured reflections

  • 2496 independent reflections

  • 2033 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.126

  • S = 1.06

  • 2496 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯N5i 0.86 2.02 2.876 (2) 172
O5—H5A⋯N7ii 0.84 2.11 2.921 (2) 164
O4—H4B⋯N6i 0.87 2.32 3.067 (2) 144
O4—H4A⋯N3iii 0.86 1.89 2.739 (2) 174
O3—H3A⋯N1iv 0.85 2.16 2.786 (2) 130
O2—H2B⋯O5v 0.87 1.93 2.787 (2) 172
O2—H2A⋯O5iii 0.85 1.90 2.737 (2) 173
O1—H1B⋯N2iv 0.85 1.99 2.821 (2) 164
O1—H1A⋯N4iii 0.85 2.09 2.880 (2) 156
N8—H8⋯O4ii 0.86 1.92 2.743 (2) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrazole compounds have attracted a great deal of attention in the recent years because of their potential as functional materials (Zhao et al., 2008; Kostakis et al., 2009a,b). For an important tetrazole derivative, 5,5'-(1,3-phenylene)bis(1H-tetrazole), some interesting and multifunctional transition metal and rare earths metal complexes with it were reported (Lü, 2008; Kostakis et al., 2009a,b). However, reports on alkaline earth metal compounds with it are very scarce. We report here the synthesis and crystal structure of the title compound (I).

The asymmetric unit of (I) consists of one half of an [Mg(H2O)6]2+ cation, one mono-deprotonated 5,5'-(1,3-phenylene)bis(1H-tetrazole) anion and two solvent water molecules (Fig.1). The Mg—O bond lengths range from 2.0425 (15) to 2.0793 (15) Å [mean value = 2.0654 (15) Å]. In the crystal structure, intermolecular O—H···N, O—H···O and N—H···O hydrogen bonds (Table 1) link cations, anions and water molecules into a three-dimensinal network. The crystal packing exhibits also intermolecular π-π stacking interactions between five-membered rings with centroid-centroid distances 3.6877 (6) and 3.7959 (6) Å, respectively.

Related literature top

For background to tetrazole-containing compounds, see: Zhao et al. (2008). For related structures, see: Lü (2008); Kostakis et al. (2009a,b).

Experimental top

A mixture of MgCl2.6H2O (0.0812 g, 0.4 mmol), NaOH (0.0160 g, 0.4 mmol), 5,5'-(1,3-phenylene)bis(1H-tetrazole) (0.0860 g, 0.4 mmol) and distilled H2O (8 ml) was sealed in a 15 ml Teflon-lined stainless steel vessel, which was heated at 413 K for 3 days. After the sample was cooled to room temperature at a rate of 5 oC/h, the colourless block crystals of (I) suitable for X-ray analysis were obtained.

Refinement top

All the H atoms attached to C and N atoms were placed geometrically (C—H = 0.93 and N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N). The water H atoms were located in difference Fourier maps and refined initially with restraints O—H = 0.85 (2) Å, however, in the last cycles of refinement, there were refined as riding, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric part of (I) showing the atomic numbering and 30% probabilty displacement ellipsoids [symmetry code: (A) -x + 1, -y, -z + 1].
Hexaaquamagnesium(II) bis{5-[3-(1H-tetrazol-5-yl)phenyl]tetrazolide} tetrahydrate top
Crystal data top
[Mg(H2O)6](C8H5N8)2·4H2OF(000) = 660
Mr = 630.87Dx = 1.488 Mg m3
Dm = 1.488 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2462 reflections
a = 7.3776 (12) Åθ = 3.0–26.7°
b = 16.038 (3) ŵ = 0.14 mm1
c = 12.1787 (19) ÅT = 296 K
β = 102.199 (2)°Block, colourless
V = 1408.5 (4) Å30.31 × 0.24 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2496 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 68
Tmin = 0.960, Tmax = 0.987k = 1917
6895 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.5848P]
where P = (Fo2 + 2Fc2)/3
2496 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mg(H2O)6](C8H5N8)2·4H2OV = 1408.5 (4) Å3
Mr = 630.87Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.3776 (12) ŵ = 0.14 mm1
b = 16.038 (3) ÅT = 296 K
c = 12.1787 (19) Å0.31 × 0.24 × 0.09 mm
β = 102.199 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2496 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2033 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.987Rint = 0.023
6895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
2496 reflectionsΔρmin = 0.46 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50000.00000.50000.0304 (3)
C10.7904 (3)0.15136 (12)0.09794 (16)0.0298 (4)
C20.8281 (3)0.10454 (12)0.00838 (16)0.0297 (4)
C30.9335 (3)0.14064 (13)0.10478 (18)0.0403 (5)
H30.97530.19520.10230.048*
C40.9768 (4)0.09637 (14)0.20399 (19)0.0481 (6)
H41.04760.12110.26790.058*
C50.7649 (3)0.02305 (12)0.01326 (16)0.0307 (4)
H50.69330.00160.05050.037*
C60.9152 (3)0.01543 (14)0.20876 (18)0.0429 (5)
H60.94510.01430.27570.051*
C70.8087 (3)0.02159 (12)0.11354 (16)0.0306 (4)
C80.7505 (3)0.10822 (12)0.12182 (16)0.0316 (4)
N10.6957 (3)0.12118 (10)0.19549 (14)0.0382 (4)
N20.7003 (3)0.18189 (11)0.27055 (14)0.0413 (5)
N30.7922 (3)0.24562 (10)0.21978 (14)0.0390 (4)
N40.8508 (2)0.22850 (10)0.11037 (14)0.0366 (4)
N50.7909 (3)0.15548 (10)0.21375 (15)0.0386 (4)
N60.7168 (3)0.23122 (11)0.18397 (16)0.0433 (5)
N70.6331 (3)0.23186 (11)0.07931 (16)0.0426 (5)
N80.6528 (2)0.15522 (10)0.03918 (14)0.0350 (4)
H80.60970.13890.02860.042*
O10.5231 (2)0.12872 (9)0.51251 (12)0.0429 (4)
H1A0.50650.17460.47690.064*
H1B0.55920.14000.58190.064*
O20.2173 (2)0.00747 (9)0.46229 (14)0.0488 (4)
H2A0.16680.04660.49140.073*
H2B0.14930.03670.46050.073*
O30.5006 (3)0.00392 (9)0.67073 (12)0.0502 (5)
H3A0.54860.00920.73820.075*
H3B0.40350.03230.67130.075*
O40.5005 (2)0.14487 (9)0.18614 (12)0.0431 (4)
H4A0.42860.17700.21330.065*
H4B0.60970.16760.20420.065*
O50.5296 (2)0.37416 (9)0.05607 (13)0.0458 (4)
H5A0.50360.32910.02160.069*
H5B0.57690.36130.12490.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0341 (5)0.0253 (5)0.0291 (5)0.0006 (4)0.0003 (4)0.0021 (4)
C10.0325 (10)0.0248 (10)0.0301 (10)0.0002 (8)0.0018 (8)0.0012 (8)
C20.0327 (10)0.0260 (10)0.0294 (10)0.0000 (8)0.0039 (8)0.0004 (8)
C30.0515 (13)0.0301 (11)0.0355 (11)0.0112 (9)0.0009 (10)0.0005 (9)
C40.0660 (15)0.0393 (13)0.0313 (11)0.0155 (11)0.0075 (11)0.0019 (10)
C50.0333 (10)0.0275 (10)0.0288 (10)0.0016 (8)0.0011 (8)0.0033 (8)
C60.0571 (14)0.0362 (12)0.0303 (11)0.0057 (10)0.0023 (10)0.0068 (9)
C70.0337 (10)0.0251 (10)0.0324 (10)0.0011 (8)0.0057 (8)0.0011 (8)
C80.0355 (10)0.0265 (10)0.0317 (10)0.0010 (8)0.0047 (8)0.0002 (8)
N10.0507 (11)0.0283 (9)0.0306 (9)0.0049 (8)0.0027 (8)0.0021 (7)
N20.0546 (12)0.0317 (10)0.0320 (9)0.0031 (8)0.0036 (8)0.0018 (8)
N30.0504 (11)0.0303 (9)0.0318 (9)0.0041 (8)0.0016 (8)0.0032 (7)
N40.0479 (10)0.0279 (9)0.0305 (9)0.0054 (8)0.0001 (8)0.0024 (7)
N50.0485 (11)0.0286 (9)0.0355 (9)0.0012 (8)0.0018 (8)0.0040 (7)
N60.0545 (11)0.0287 (10)0.0432 (11)0.0044 (8)0.0023 (9)0.0043 (8)
N70.0517 (11)0.0288 (10)0.0445 (11)0.0041 (8)0.0039 (9)0.0003 (8)
N80.0444 (10)0.0267 (9)0.0317 (9)0.0027 (7)0.0027 (8)0.0012 (7)
O10.0627 (10)0.0246 (8)0.0331 (8)0.0012 (7)0.0083 (7)0.0011 (6)
O20.0354 (8)0.0437 (10)0.0649 (11)0.0002 (7)0.0050 (8)0.0130 (8)
O30.0754 (12)0.0427 (9)0.0300 (8)0.0199 (8)0.0052 (8)0.0035 (7)
O40.0500 (9)0.0369 (9)0.0406 (8)0.0009 (7)0.0055 (7)0.0070 (7)
O50.0583 (10)0.0314 (8)0.0428 (9)0.0052 (7)0.0000 (8)0.0009 (7)
Geometric parameters (Å, º) top
Mg1—O22.0425 (15)C7—C81.464 (3)
Mg1—O2i2.0425 (15)C8—N51.332 (3)
Mg1—O12.0744 (14)C8—N81.340 (3)
Mg1—O1i2.0744 (14)N1—N21.341 (2)
Mg1—O32.0793 (15)N2—N31.308 (2)
Mg1—O3i2.0793 (15)N3—N41.340 (2)
Mg1—H3B2.3995N5—N61.350 (2)
C1—N41.334 (2)N6—N71.294 (3)
C1—N11.335 (3)N7—N81.342 (2)
C1—C21.472 (3)N8—H80.8600
C2—C31.390 (3)O1—H1A0.8500
C2—C51.393 (3)O1—H1B0.8501
C3—C41.379 (3)O2—H2A0.8454
C3—H30.9300O2—H2B0.8653
C4—C61.381 (3)O3—H3A0.8500
C4—H40.9300O3—H3B0.8500
C5—C71.393 (3)O4—H4A0.8555
C5—H50.9300O4—H4B0.8695
C6—C71.389 (3)O5—H5A0.8375
C6—H60.9300O5—H5B0.8620
O2—Mg1—O2i180.0C2—C5—C7120.11 (18)
O2—Mg1—O191.28 (6)C2—C5—H5119.9
O2i—Mg1—O188.72 (6)C7—C5—H5119.9
O2—Mg1—O1i88.72 (6)C4—C6—C7119.99 (19)
O2i—Mg1—O1i91.28 (6)C4—C6—H6120.0
O1—Mg1—O1i180.0C7—C6—H6120.0
O2—Mg1—O390.74 (7)C6—C7—C5119.84 (19)
O2i—Mg1—O389.26 (7)C6—C7—C8118.06 (18)
O1—Mg1—O388.51 (6)C5—C7—C8122.08 (18)
O1i—Mg1—O391.49 (6)N5—C8—N8107.48 (17)
O2—Mg1—O3i89.26 (7)N5—C8—C7125.53 (18)
O2i—Mg1—O3i90.74 (7)N8—C8—C7126.96 (18)
O1—Mg1—O3i91.49 (6)C1—N1—N2105.03 (16)
O1i—Mg1—O3i88.51 (6)N3—N2—N1109.31 (16)
O3—Mg1—O3i180.0N2—N3—N4109.65 (16)
O2—Mg1—H3B74.4C1—N4—N3104.93 (16)
O2i—Mg1—H3B105.6C8—N5—N6106.28 (17)
O1—Mg1—H3B100.7N7—N6—N5110.72 (16)
O1i—Mg1—H3B79.3N6—N7—N8106.59 (16)
O3—Mg1—H3B20.3C8—N8—N7108.93 (16)
O3i—Mg1—H3B159.7C8—N8—H8125.5
N4—C1—N1111.08 (17)N7—N8—H8125.5
N4—C1—C2124.57 (17)Mg1—O1—H1A145.5
N1—C1—C2124.32 (18)Mg1—O1—H1B106.7
C3—C2—C5119.16 (18)H1A—O1—H1B107.7
C3—C2—C1119.90 (18)Mg1—O2—H2A117.9
C5—C2—C1120.90 (17)Mg1—O2—H2B121.1
C4—C3—C2120.65 (19)H2A—O2—H2B108.4
C4—C3—H3119.7Mg1—O3—H3A150.7
C2—C3—H3119.7Mg1—O3—H3B101.6
C3—C4—C6120.2 (2)H3A—O3—H3B107.7
C3—C4—H4119.9H4A—O4—H4B105.4
C6—C4—H4119.9H5A—O5—H5B106.4
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N5ii0.862.022.876 (2)172
O5—H5A···N7iii0.842.112.921 (2)164
O4—H4B···N6ii0.872.323.067 (2)144
O4—H4A···N3iv0.861.892.739 (2)174
O3—H3A···N1v0.852.162.786 (2)130
O2—H2B···O5vi0.871.932.787 (2)172
O2—H2A···O5iv0.851.902.737 (2)173
O1—H1B···N2v0.851.992.821 (2)164
O1—H1A···N4iv0.852.092.880 (2)156
N8—H8···O4iii0.861.922.743 (2)159
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x1/2, y+1/2, z+1/2; (v) x, y, z+1; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C8H5N8)2·4H2O
Mr630.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.3776 (12), 16.038 (3), 12.1787 (19)
β (°) 102.199 (2)
V3)1408.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.31 × 0.24 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.960, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
6895, 2496, 2033
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.06
No. of reflections2496
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.46

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N5i0.862.022.876 (2)172.4
O5—H5A···N7ii0.842.112.921 (2)164.2
O4—H4B···N6i0.872.323.067 (2)144.0
O4—H4A···N3iii0.861.892.739 (2)174.0
O3—H3A···N1iv0.852.162.786 (2)129.8
O2—H2B···O5v0.871.932.787 (2)171.9
O2—H2A···O5iii0.851.902.737 (2)173.2
O1—H1B···N2iv0.851.992.821 (2)164.1
O1—H1A···N4iii0.852.092.880 (2)155.5
N8—H8···O4ii0.861.922.743 (2)159.4
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z+1; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation of China (grant No. 21173168) and the Natural Science Foundation of Shaanxi Province (grant No. FF10091).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKostakis, G. E., Abbas, G., Anson, C. E. & Powell, A. K. (2009a). CrystEngComm, 11, 82–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostakis, G. E., Mavrandonakis, A., Abbas, G., Klopper, W., Schooss, D., Lebedkin, S., Lan, Y. H. & Powell, A. K. (2009b). CrystEngComm, 11, 2480–2487.  Web of Science CrossRef CAS Google Scholar
First citationLü, Y. (2008). Acta Cryst. E64, m1255.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds