organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­methyl-N1,N4-bis­­(1-phenyl­eth­yl)-1,4-di­hydro-1,2,4,5-tetra­zine-1,4-dicarboxamide

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
*Correspondence e-mail: rgw@zjut.edu.cn

(Received 3 January 2012; accepted 11 January 2012; online 18 January 2012)

In the title mol­ecule, C22H26N6O2, the central tetra­zine ring exhibits a boat conformation, and the two phenyl rings form a dihedral angle of 88.39 (6)°. In the crystal, weak N—H⋯O and C—H⋯O hydrogen bonds link mol­ecules into layers parallel to the ab plane.

Related literature

For structure–activity relationships in 1,2,4,5-tetra­zine derivatives, see: Hu et al. (2002[Hu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877-1881.], 2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao & Hu (2005[Rao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174-3176.], 2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]). For standard bond lengths in organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of the synthesis, see: Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Skorianetz & Kovats (1970[Skorianetz, W. & Kováts, E. Sz. (1970). Helv. Chim. Acta, 53, 251-262.], 1971[Skorianetz, W. & Kováts, E. Sz. (1971). Helv. Chim. Acta, 54, 1922-1939.]); Sun et al. (2003[Sun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769-2775.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N6O2

  • Mr = 406.49

  • Monoclinic, P 21

  • a = 10.4653 (15) Å

  • b = 8.0606 (12) Å

  • c = 13.711 (2) Å

  • β = 108.702 (1)°

  • V = 1095.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.37 × 0.31 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.979

  • 8343 measured reflections

  • 4014 independent reflections

  • 3809 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.06

  • 4014 reflections

  • 276 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O1i 0.86 2.44 3.2497 (15) 158
N3—H3⋯O2ii 0.86 2.54 3.2706 (16) 144
C13—H13⋯O2ii 0.93 2.57 3.4701 (17) 163
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In a continuation of our studies of structure-activity relationships in 1,2,4,5-tetrazine derivatives (Hu et al., 2002, 2004; Rao & Hu, 2005, 2006), we have obtained the title compound (I) as colourless crystalline solid. However, IR, NMR, and MS studies failed to prove whether the substituted groups of the nitrogen are located at the 1,4 or 1,2 positions. The structure was confirmed by single-crystal X-ray diffraction.

In (I) (Fig. 1), the N2C3 [1.2753 (17) Å] and N5C6 [1.2752 (18) Å] bonds correspond to typical double bonds, and the C3—N4 [1.4013 (16) Å], N4—N5 [1.4194 (15) Å], C6—N1 [1.3959 (18) Å] and N1—N2 [1.4247 (15) Å] bond lengths are typical for single bonds (Allen et al., 1987). Therefore, the tetrazine ring is the 1,4-dihydro structure with the N-substituted groups at the 1,4-positions and not the 1,2-positions, the compound being 3,6-dimethyl-N1,N4-bis(1-phenylethyl)-1,2,4,5-tetrazine-1,4-dicarboxamide. Atoms N2, C3, N5 and C6 are coplanar, with the largest deviation from the plane being -0.0237 (7) Å for atom N2 and 0.0237 (7) Å for atom C6. Atoms N1 and N4 deviate from this plane by 0.3601 (21) and 0.3674 (20) Å, respectively. The dihedral angle between the N2/C3/N5/C6 plane and the N1/N2/C6 plane is 29.04 (15)°, and between the N2/C3/N5/C6 plane and the N4/N5/C3 plane is 29.72 (12)°. Therefore, the central six-member ring of the compound, the tetrazine ring, has an obvious boat conformation. The dihedral angles between the N2/C3/N5/C6 plane and the two phenyl rings are 33.24 (7) and 58.46 (6)°, respectively. The dihedral angle between the two phenyl rings is 88.39 (6)°.

In the crystal structure, weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link molecules into layers parallel to ab plane (Fig. 2).

Related literature top

For structure–activity relationships in 1,2,4,5-tetrazine derivatives, see: Hu et al. (2002, 2004); Rao & Hu (2005, 2006). For standard bond lengths in organic compounds, see: Allen et al. (1987). For details of the synthesis, see: Hu et al. (2004); Skorianetz & Kovats (1970, 1971); Sun et al. (2003).

Experimental top

The title compound was prepared according to the known procedure (Hu et al., 2004; Sun et al., 2003; Skorianetz et al., 1970, 1971). A solution of the compound in ethanol was concentrated gradually at room temperature to afford colourless blocks (m.p. 414–416 K).

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms, and C—H distances were set to 0.96Å for methyl H atoms, 0.93 Å for phenyl H atoms, and 0.98Å for the remainder H atoms, while N—H distances were set to 0.86 Å. In the absence of any significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1803 sets of Friedel equivalents led to an inconclusive value of 0.2 (9). Therefore, the Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted for clarity.
3,6-Dimethyl-N1,N4-bis(1-phenylethyl)-1,4-dihydro- 1,2,4,5-tetrazine-1,4-dicarboxamide top
Crystal data top
C22H26N6O2F(000) = 432
Mr = 406.49Dx = 1.232 Mg m3
Monoclinic, P21Melting point = 414–416 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.4653 (15) ÅCell parameters from 5504 reflections
b = 8.0606 (12) Åθ = 3.0–28.2°
c = 13.711 (2) ŵ = 0.08 mm1
β = 108.702 (1)°T = 298 K
V = 1095.5 (3) Å3Block, colourless
Z = 20.37 × 0.31 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4014 independent reflections
Radiation source: fine-focus sealed tube3809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
phi and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.970, Tmax = 0.979k = 99
8343 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.1082P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4014 reflectionsΔρmax = 0.12 e Å3
276 parametersΔρmin = 0.09 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.079 (3)
Crystal data top
C22H26N6O2V = 1095.5 (3) Å3
Mr = 406.49Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.4653 (15) ŵ = 0.08 mm1
b = 8.0606 (12) ÅT = 298 K
c = 13.711 (2) Å0.37 × 0.31 × 0.26 mm
β = 108.702 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4014 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3809 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.979Rint = 0.016
8343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.072H-atom parameters constrained
S = 1.06Δρmax = 0.12 e Å3
4014 reflectionsΔρmin = 0.09 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.61215 (13)0.43115 (19)0.45138 (10)0.0457 (3)
C20.46716 (15)0.3828 (3)0.42427 (14)0.0711 (5)
H2A0.45900.28920.46520.107*
H2B0.43300.35400.35260.107*
H2C0.41630.47420.43760.107*
C30.87224 (13)0.45508 (17)0.46277 (10)0.0426 (3)
C41.00874 (16)0.4220 (3)0.45547 (13)0.0663 (5)
H4A1.07460.48530.50690.099*
H4B1.01070.45330.38840.099*
H4C1.02900.30590.46640.099*
C50.57571 (13)0.67504 (18)0.33409 (9)0.0415 (3)
C10.57492 (15)0.9210 (2)0.23003 (11)0.0541 (4)
H10.47980.91980.22630.065*
C70.6404 (2)1.0771 (3)0.28855 (15)0.0829 (6)
H7A0.73521.07660.29740.124*
H7B0.62741.07900.35480.124*
H7C0.59951.17370.25010.124*
C80.58090 (13)0.92220 (18)0.12079 (10)0.0443 (3)
C90.46735 (16)0.9574 (3)0.03815 (13)0.0680 (5)
H90.38530.97600.04920.082*
C100.47455 (17)0.9652 (3)0.06069 (14)0.0762 (6)
H100.39740.98930.11550.091*
C110.59346 (17)0.9381 (3)0.07856 (12)0.0671 (5)
H110.59770.94320.14520.080*
C120.70692 (17)0.9031 (3)0.00266 (13)0.0667 (5)
H120.78850.88390.00890.080*
C130.70020 (14)0.8965 (2)0.10129 (11)0.0565 (4)
H130.77810.87410.15580.068*
C140.91963 (12)0.34611 (17)0.64199 (9)0.0372 (3)
C150.92829 (13)0.22812 (17)0.80845 (9)0.0400 (3)
H151.01550.28530.83140.048*
C160.85082 (18)0.2769 (2)0.88085 (12)0.0582 (4)
H16A0.76330.22590.85840.087*
H16B0.84080.39530.88050.087*
H16C0.89940.24030.94940.087*
C170.95569 (12)0.04323 (17)0.81019 (9)0.0381 (3)
C181.08568 (15)0.0187 (2)0.84585 (12)0.0520 (4)
H181.15790.05420.87000.062*
C191.11002 (18)0.1875 (2)0.84623 (14)0.0625 (4)
H191.19800.22730.87050.075*
C201.00479 (19)0.2956 (2)0.81091 (13)0.0660 (4)
H201.02080.40910.81110.079*
C210.87547 (19)0.2360 (2)0.77518 (16)0.0734 (5)
H210.80380.30950.75060.088*
C220.85099 (15)0.0688 (2)0.77539 (13)0.0582 (4)
H220.76260.03030.75180.070*
N10.65789 (11)0.55475 (16)0.39939 (8)0.0449 (3)
N20.78681 (11)0.52904 (15)0.38757 (8)0.0461 (3)
N40.83276 (10)0.39916 (16)0.54557 (8)0.0433 (3)
N50.69652 (11)0.34775 (17)0.52228 (9)0.0489 (3)
N30.64017 (12)0.77317 (17)0.28704 (9)0.0520 (3)
H30.72150.74950.29010.062*
N60.85493 (10)0.28577 (15)0.70385 (8)0.0426 (3)
H60.76830.28050.68190.051*
O10.45662 (10)0.68726 (15)0.32671 (8)0.0580 (3)
O21.04136 (9)0.36545 (14)0.66573 (7)0.0497 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0430 (7)0.0569 (8)0.0349 (6)0.0023 (6)0.0093 (5)0.0085 (6)
C20.0442 (8)0.0935 (14)0.0659 (10)0.0094 (9)0.0040 (7)0.0340 (10)
C30.0460 (7)0.0469 (8)0.0368 (6)0.0050 (6)0.0157 (6)0.0089 (6)
C40.0557 (9)0.0945 (13)0.0574 (9)0.0236 (9)0.0304 (7)0.0280 (9)
C50.0440 (7)0.0486 (8)0.0320 (6)0.0077 (6)0.0122 (5)0.0025 (6)
C10.0555 (8)0.0560 (9)0.0537 (8)0.0184 (7)0.0216 (7)0.0170 (7)
C70.1244 (17)0.0603 (11)0.0657 (12)0.0200 (12)0.0330 (12)0.0012 (9)
C80.0419 (7)0.0415 (7)0.0478 (7)0.0038 (6)0.0119 (6)0.0127 (6)
C90.0425 (8)0.0951 (14)0.0638 (10)0.0123 (8)0.0133 (7)0.0306 (10)
C100.0515 (9)0.1116 (17)0.0542 (10)0.0021 (10)0.0010 (7)0.0309 (10)
C110.0693 (10)0.0853 (13)0.0443 (8)0.0056 (10)0.0148 (7)0.0120 (9)
C120.0543 (9)0.0927 (13)0.0554 (9)0.0067 (9)0.0209 (7)0.0111 (9)
C130.0400 (7)0.0769 (11)0.0476 (8)0.0076 (7)0.0071 (6)0.0097 (8)
C140.0391 (7)0.0386 (6)0.0332 (6)0.0035 (5)0.0104 (5)0.0027 (5)
C150.0402 (7)0.0460 (8)0.0304 (6)0.0022 (5)0.0068 (5)0.0044 (5)
C160.0776 (11)0.0564 (9)0.0449 (8)0.0074 (8)0.0254 (7)0.0005 (7)
C170.0414 (7)0.0457 (7)0.0261 (6)0.0016 (6)0.0093 (5)0.0034 (5)
C180.0437 (8)0.0514 (8)0.0556 (9)0.0002 (6)0.0087 (6)0.0029 (7)
C190.0574 (9)0.0585 (10)0.0672 (10)0.0145 (8)0.0139 (8)0.0049 (8)
C200.0843 (12)0.0439 (9)0.0656 (11)0.0055 (8)0.0182 (9)0.0025 (8)
C210.0668 (11)0.0516 (10)0.0899 (14)0.0146 (9)0.0084 (9)0.0079 (9)
C220.0436 (8)0.0546 (10)0.0683 (9)0.0037 (7)0.0064 (7)0.0005 (8)
N10.0406 (6)0.0557 (7)0.0404 (6)0.0081 (5)0.0156 (5)0.0130 (5)
N20.0447 (6)0.0567 (7)0.0412 (6)0.0093 (5)0.0198 (5)0.0124 (5)
N40.0366 (5)0.0573 (7)0.0352 (5)0.0019 (5)0.0103 (4)0.0103 (5)
N50.0384 (6)0.0635 (7)0.0407 (6)0.0066 (5)0.0069 (5)0.0153 (6)
N30.0487 (7)0.0588 (8)0.0535 (7)0.0166 (6)0.0232 (6)0.0212 (6)
N60.0352 (6)0.0533 (7)0.0366 (6)0.0004 (5)0.0078 (4)0.0116 (5)
O10.0446 (6)0.0702 (7)0.0606 (7)0.0120 (5)0.0189 (5)0.0167 (6)
O20.0371 (5)0.0695 (7)0.0409 (5)0.0005 (5)0.0104 (4)0.0072 (5)
Geometric parameters (Å, º) top
C6—N51.2752 (18)C11—H110.9300
C6—N11.3959 (18)C12—C131.377 (2)
C6—C21.4935 (19)C12—H120.9300
C2—H2A0.9600C13—H130.9300
C2—H2B0.9600C14—O21.2195 (15)
C2—H2C0.9600C14—N61.3351 (17)
C3—N21.2753 (17)C14—N41.4094 (16)
C3—N41.4013 (16)C15—N61.4684 (16)
C3—C41.4879 (19)C15—C171.516 (2)
C4—H4A0.9600C15—C161.5210 (19)
C4—H4B0.9600C15—H150.9800
C4—H4C0.9600C16—H16A0.9600
C5—O11.2217 (16)C16—H16B0.9600
C5—N31.3326 (18)C16—H16C0.9600
C5—N11.4098 (17)C17—C221.382 (2)
C1—N31.4678 (19)C17—C181.383 (2)
C1—C81.519 (2)C18—C191.384 (2)
C1—C71.531 (3)C18—H180.9300
C1—H10.9800C19—C201.366 (3)
C7—H7A0.9600C19—H190.9300
C7—H7B0.9600C20—C211.370 (3)
C7—H7C0.9600C20—H200.9300
C8—C131.3738 (19)C21—C221.372 (3)
C8—C91.383 (2)C21—H210.9300
C9—C101.383 (2)C22—H220.9300
C9—H90.9300N1—N21.4247 (15)
C10—C111.361 (2)N4—N51.4194 (15)
C10—H100.9300N3—H30.8600
C11—C121.372 (2)N6—H60.8600
N5—C6—N1119.91 (12)C8—C13—H13119.3
N5—C6—C2116.88 (13)C12—C13—H13119.3
N1—C6—C2123.12 (12)O2—C14—N6125.18 (11)
C6—C2—H2A109.5O2—C14—N4121.06 (11)
C6—C2—H2B109.5N6—C14—N4113.60 (11)
H2A—C2—H2B109.5N6—C15—C17111.31 (11)
C6—C2—H2C109.5N6—C15—C16109.54 (12)
H2A—C2—H2C109.5C17—C15—C16112.43 (12)
H2B—C2—H2C109.5N6—C15—H15107.8
N2—C3—N4119.54 (12)C17—C15—H15107.8
N2—C3—C4117.96 (12)C16—C15—H15107.8
N4—C3—C4122.39 (12)C15—C16—H16A109.5
C3—C4—H4A109.5C15—C16—H16B109.5
C3—C4—H4B109.5H16A—C16—H16B109.5
H4A—C4—H4B109.5C15—C16—H16C109.5
C3—C4—H4C109.5H16A—C16—H16C109.5
H4A—C4—H4C109.5H16B—C16—H16C109.5
H4B—C4—H4C109.5C22—C17—C18117.87 (14)
O1—C5—N3124.99 (12)C22—C17—C15120.80 (12)
O1—C5—N1120.43 (12)C18—C17—C15121.32 (12)
N3—C5—N1114.53 (11)C17—C18—C19121.00 (15)
N3—C1—C8111.78 (12)C17—C18—H18119.5
N3—C1—C7109.55 (13)C19—C18—H18119.5
C8—C1—C7111.00 (14)C20—C19—C18119.98 (16)
N3—C1—H1108.1C20—C19—H19120.0
C8—C1—H1108.1C18—C19—H19120.0
C7—C1—H1108.1C19—C20—C21119.65 (16)
C1—C7—H7A109.5C19—C20—H20120.2
C1—C7—H7B109.5C21—C20—H20120.2
H7A—C7—H7B109.5C20—C21—C22120.49 (16)
C1—C7—H7C109.5C20—C21—H21119.8
H7A—C7—H7C109.5C22—C21—H21119.8
H7B—C7—H7C109.5C21—C22—C17121.00 (15)
C13—C8—C9117.85 (14)C21—C22—H22119.5
C13—C8—C1121.22 (12)C17—C22—H22119.5
C9—C8—C1120.85 (13)C6—N1—C5125.16 (11)
C10—C9—C8120.65 (15)C6—N1—N2116.52 (11)
C10—C9—H9119.7C5—N1—N2115.78 (10)
C8—C9—H9119.7C3—N2—N1114.83 (10)
C11—C10—C9120.62 (15)C3—N4—C14126.05 (11)
C11—C10—H10119.7C3—N4—N5116.58 (10)
C9—C10—H10119.7C14—N4—N5114.94 (10)
C10—C11—C12119.37 (16)C6—N5—N4114.68 (11)
C10—C11—H11120.3C5—N3—C1121.22 (12)
C12—C11—H11120.3C5—N3—H3119.4
C11—C12—C13120.10 (15)C1—N3—H3119.4
C11—C12—H12119.9C14—N6—C15121.52 (11)
C13—C12—H12119.9C14—N6—H6119.2
C8—C13—C12121.39 (14)C15—N6—H6119.2
N3—C1—C8—C1350.2 (2)O1—C5—N1—C67.0 (2)
C7—C1—C8—C1372.40 (19)N3—C5—N1—C6175.44 (14)
N3—C1—C8—C9132.96 (16)O1—C5—N1—N2168.28 (13)
C7—C1—C8—C9104.41 (19)N3—C5—N1—N214.20 (18)
C13—C8—C9—C100.4 (3)N4—C3—N2—N13.17 (19)
C1—C8—C9—C10177.27 (18)C4—C3—N2—N1179.28 (15)
C8—C9—C10—C110.2 (3)C6—N1—N2—C334.68 (18)
C9—C10—C11—C120.2 (3)C5—N1—N2—C3162.40 (13)
C10—C11—C12—C130.3 (3)N2—C3—N4—C14166.55 (13)
C9—C8—C13—C120.8 (3)C4—C3—N4—C1417.5 (2)
C1—C8—C13—C12177.74 (17)N2—C3—N4—N532.1 (2)
C11—C12—C13—C80.8 (3)C4—C3—N4—N5143.84 (16)
N6—C15—C17—C2257.93 (17)O2—C14—N4—C39.7 (2)
C16—C15—C17—C2265.39 (16)N6—C14—N4—C3174.56 (14)
N6—C15—C17—C18121.65 (14)O2—C14—N4—N5171.31 (13)
C16—C15—C17—C18115.02 (15)N6—C14—N4—N512.93 (17)
C22—C17—C18—C190.3 (2)N1—C6—N5—N43.8 (2)
C15—C17—C18—C19179.33 (15)C2—C6—N5—N4179.63 (15)
C17—C18—C19—C200.1 (3)C3—N4—N5—C635.42 (19)
C18—C19—C20—C210.0 (3)C14—N4—N5—C6161.14 (13)
C19—C20—C21—C220.5 (3)O1—C5—N3—C17.4 (2)
C20—C21—C22—C170.9 (3)N1—C5—N3—C1169.98 (13)
C18—C17—C22—C210.7 (2)C8—C1—N3—C5126.84 (15)
C15—C17—C22—C21178.87 (16)C7—C1—N3—C5109.70 (17)
N5—C6—N1—C5167.49 (14)O2—C14—N6—C152.9 (2)
C2—C6—N1—C516.2 (2)N4—C14—N6—C15178.49 (12)
N5—C6—N1—N231.4 (2)C17—C15—N6—C1493.33 (15)
C2—C6—N1—N2144.94 (16)C16—C15—N6—C14141.71 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.862.443.2497 (15)158
N3—H3···O2ii0.862.543.2706 (16)144
C13—H13···O2ii0.932.573.4701 (17)163
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H26N6O2
Mr406.49
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.4653 (15), 8.0606 (12), 13.711 (2)
β (°) 108.702 (1)
V3)1095.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.31 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.970, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8343, 4014, 3809
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.06
No. of reflections4014
No. of parameters276
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.09

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.862.443.2497 (15)158
N3—H3···O2ii0.862.543.2706 (16)144
C13—H13···O2ii0.932.573.4701 (17)163
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

The authors are very grateful to the Natural Science Foundation of Zhejiang Province (grant No. Y2090985) and the National Natural Science Foundation of China (grant No. 20802069) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, W. X., Sun, Y. Q., Yuan, Q. & Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877–1881.  CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2005). Bioorg. Med. Chem. Lett. 15, 3174–3176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkorianetz, W. & Kováts, E. Sz. (1970). Helv. Chim. Acta, 53, 251–262.  CrossRef CAS Web of Science Google Scholar
First citationSkorianetz, W. & Kováts, E. Sz. (1971). Helv. Chim. Acta, 54, 1922–1939.  CrossRef CAS Web of Science Google Scholar
First citationSun, Y. Q., Hu, W. X. & Yuan, Q. (2003). Synth. Commun. 33, 2769–2775.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds