metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Oxalato-κ4O1,O2:O1′,O2′-bis­­[di­aqua­(2,2′-bi­pyridyl-κ2N,N′)zinc] bis­­[2-(1H-benzotriazol-1-yl)acetate] hexa­hydrate

aCollege of Chemistry and Chemical Engineering of Bohai University, Jinzhou, Liaoning 121000, People's Republic of China
*Correspondence e-mail: zengling1976@163.com

(Received 8 January 2012; accepted 14 January 2012; online 21 January 2012)

The asymmetric unit of the title compound, [Zn2(C2O4)(C10H8N2)2(H2O)4](C8H6N3O2)2·6H2O, contains one half of the centrosymmetric binuclear cation, one anion and three water mol­ecules. In the cation, the oxalate ligand bridges two ZnII ions in a bis-bidentate fashion, so each ZnII ion is coordinated by two O atoms from the oxalate ligand, two N atoms from two 2,2′-bipyridine ligands and two water mol­ecules in a distorted octa­hedral arrangement. The mean planes of the oxalate and 2,2′-bipyridine ligands form a dihedral angle of 80.0 (1)°. An extensive three-dimensional hydrogen-bonding network formed by classical O—H⋯O and O—H⋯N inter­actions consolidates the crystal packing.

Related literature

For applications of oxalate complexes, see: Decurtins et al. (1994[Decurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. & Guetlich, P. (1994). J. Am. Chem. Soc. 116, 9521-9528.]); Liu et al. (2009[Liu, G. X., Zhu, K., Chen, H., Huang, R. Y. & Ren, X. M. (2009). Z. Anorg. Allg. Chem. 635, 156-164.]). For related structures, see: Sun et al. (2009[Sun, W., Jiang, M., Li, Y. T., Wu, Z. Y. & Peng, W. B. (2009). J. Coord. Chem. 62, 2520-2531.]); Zheng et al. (2010[Zheng, Z. B., Wu, R. T., Li, J. K., Han, Y. F. & Lu, J. R. (2010). J. Coord. Chem. 63, 1118-1129.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C2O4)(C10H8N2)2(H2O)4](C8H6N3O2)2·6H2O

  • Mr = 1063.60

  • Monoclinic, P 21 /c

  • a = 16.791 (2) Å

  • b = 18.218 (2) Å

  • c = 7.7461 (9) Å

  • β = 92.233 (2)°

  • V = 2367.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 295 K

  • 0.22 × 0.19 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.795, Tmax = 0.836

  • 12364 measured reflections

  • 4193 independent reflections

  • 2281 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.111

  • S = 1.00

  • 4193 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H24⋯N5i 0.85 2.11 2.924 (6) 160
O6—H22⋯O7ii 0.85 2.11 2.859 (5) 146
O1—H2⋯O2iii 0.85 1.96 2.755 (4) 155
O7—H23⋯O9iv 0.85 1.92 2.748 (5) 166
O3—H3⋯O9iv 0.85 1.87 2.718 (4) 177
O1—H1⋯O8iv 0.85 1.85 2.692 (4) 171
O6—H21⋯O7 0.85 2.05 2.860 (5) 160
O5—H19⋯O6 0.85 1.88 2.728 (5) 178
O5—H20⋯O8 0.85 2.08 2.928 (5) 174
O3—H4⋯O5 0.85 1.83 2.678 (4) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+2; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The metal oxalate compounds are studied as molecular-based magnets, thermally stable dielectrics and open framework structures (Decurtins et al., 1994; Liu et al., 2009). The flexible ligand 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid containing a carboxylate group can be used to construct MOFs (Zheng et al., 2010). We report here the synthesis and crystal structure of the title complex (I).

The asymmetric unit of (I), [Zn2(C2O4)(C10H8N2)2(H2O)4]2+. 2(C8H6N3O2)-.6(H2O), contains one half of the centrosymmetric binuclear cation, one anion and three lattice water molecules (Fig.1). In the cation, the oxalato ligand bridges two ZnII ions in a bis-bidentate fashion, so each Zn center is coordinated by two O atoms from the oxalato ligand, two N atoms from two 2,2'-bipyridine ligands and two water molecules in a distorted octahedral arrangement, in which the basal plane is formed by O1, O2, O4 and N2 with a mean deviation of 0.1880 (1) Å from the least-squares plane. The axial positions are occupied by N1 and O3 with an N1—Zn1—O3 angle of 170.72 (14) °. The Zn—O and Zn—N bond distances fall in the range 2.050 (3) - 2.171 (3) Å. The deprotonated bis(bidentate) oxalate group is coordinated to two zinc with the distance between Zn1 and Zn1A being 5.568 (3) Å, which compares well with similar binuclear oxalate-bridged complexes (Sun et al., 2009). The mean planes of the oxalato and 2,2'-bipyridine ligands form a dihedral angle of 80.0 (1)°. An extensive three-dimensional hydrogen-bonding network formed by classical O—H···O and O—H···N interactions (Table 1) consolidate the crystal packing.

Related literature top

For applications of oxalate complexes, see: Decurtins et al. (1994); Liu et al. (2009). For related structures, see: Sun et al. (2009); Zheng et al. (2010).

Experimental top

A mixture of Zn(Ac)2 (0.5 mmol), 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid (0.5 mmol), 2,2'-bipyridine(0.5 mmol) and oxalic acid (0.25 mmol) was dissolved in water (30 ml) and methanol (10 ml). and the pH of the solution was adjusted to 6–7 with 0.2 M aqueous NaOH and the solution was stirred for 3 h at room temperature. The solution was flitered and the flitrate was allowed to stand at room temperature. After slow evaporation over 3 weeks, colourless block single crystals were obtained.

Refinement top

All H atoms were placed in idealized positions (O—H = 0.85 Å and C—H = 0.93–0.97 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing the atomic labeling and 30% probability displacement ellopsoids. Unlabelled atoms, and those with letter A in labels, are related to the labelled ones by symmetry [ (A) -x, -y + 1, -z + 2]. Dashed lines denote hydrogen bonds, H atoms omitted for clarity.
µ-Oxalato-κ4O1,O2:O1',O2'- bis[diaqua(2,2'-bipyridyl-κ2N,N')zinc] bis[2-(1H-benzotriazol-1-yl)acetate] hexahydrate top
Crystal data top
[Zn2(C2O4)(C10H8N2)2(H2O)4](C8H6N3O2)2·6H2OF(000) = 1100
Mr = 1063.60Dx = 1.492 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 721 reflections
a = 16.791 (2) Åθ = 2.4–16.9°
b = 18.218 (2) ŵ = 1.10 mm1
c = 7.7461 (9) ÅT = 295 K
β = 92.233 (2)°Block, colourless
V = 2367.7 (5) Å30.22 × 0.19 × 0.17 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4193 independent reflections
Radiation source: fine-focus sealed tube2281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 25.1°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.795, Tmax = 0.836k = 1421
12364 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.0437P]
where P = (Fo2 + 2Fc2)/3
4193 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn2(C2O4)(C10H8N2)2(H2O)4](C8H6N3O2)2·6H2OV = 2367.7 (5) Å3
Mr = 1063.60Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.791 (2) ŵ = 1.10 mm1
b = 18.218 (2) ÅT = 295 K
c = 7.7461 (9) Å0.22 × 0.19 × 0.17 mm
β = 92.233 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2281 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.836Rint = 0.092
12364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.36 e Å3
4193 reflectionsΔρmin = 0.34 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.08736 (3)0.56912 (3)0.76609 (7)0.03784 (19)
O10.10766 (17)0.54817 (17)1.0267 (4)0.0483 (9)
H10.15360.54241.07480.072*
H20.07450.55051.10680.072*
O20.00201 (17)0.48940 (17)0.7246 (4)0.0383 (8)
O30.18133 (18)0.49957 (18)0.7310 (4)0.0555 (10)
H30.21130.47600.80250.083*
H40.18850.48090.63220.083*
O40.07157 (17)0.56750 (17)0.4867 (4)0.0390 (8)
O50.1949 (2)0.4297 (2)0.4293 (4)0.0653 (11)
H200.21120.45860.35200.098*
H190.22950.39570.43550.098*
O60.3061 (2)0.3209 (2)0.4586 (5)0.0900 (14)
H210.31540.32930.56540.135*
H220.31180.27450.45410.135*
O70.3566 (2)0.31526 (19)0.8153 (4)0.0694 (11)
H230.33470.34690.87860.104*
H240.40630.32410.82400.104*
O80.25638 (19)0.5197 (2)0.1510 (4)0.0537 (10)
O90.27760 (19)0.4289 (2)0.0328 (4)0.0565 (10)
N10.0028 (2)0.6530 (2)0.8248 (5)0.0403 (10)
N20.1533 (2)0.6665 (2)0.7435 (5)0.0389 (10)
N30.4175 (2)0.5278 (2)0.2341 (5)0.0464 (11)
N40.4561 (3)0.5771 (3)0.1360 (5)0.0610 (13)
N50.4813 (3)0.6316 (3)0.2316 (6)0.0641 (14)
C10.0722 (3)0.6424 (3)0.8689 (7)0.0564 (15)
H1A0.09070.59440.87520.068*
C20.1237 (3)0.6982 (3)0.9056 (8)0.0672 (18)
H2A0.17560.68870.93710.081*
C30.0953 (3)0.7691 (3)0.8937 (7)0.0691 (18)
H3A0.12840.80880.91540.083*
C40.0182 (3)0.7806 (3)0.8497 (7)0.0583 (16)
H4A0.00160.82810.84230.070*
C50.0301 (3)0.7216 (3)0.8165 (6)0.0396 (13)
C60.1144 (3)0.7296 (3)0.7702 (5)0.0371 (12)
C70.1519 (3)0.7963 (3)0.7562 (6)0.0530 (15)
H70.12420.83920.77820.064*
C80.2308 (3)0.8002 (3)0.7098 (7)0.0622 (16)
H80.25640.84520.69950.075*
C90.2693 (3)0.7360 (3)0.6799 (7)0.0671 (17)
H90.32210.73630.64790.080*
C100.2292 (3)0.6708 (3)0.6975 (7)0.0551 (15)
H100.25630.62740.67630.066*
C110.0221 (3)0.5225 (3)0.4331 (6)0.0340 (12)
C120.2985 (3)0.4722 (3)0.0863 (6)0.0417 (13)
C130.3843 (3)0.4627 (3)0.1566 (7)0.0503 (14)
H13A0.38570.42370.24190.060*
H13B0.41730.44770.06280.060*
C140.4181 (3)0.5520 (3)0.4017 (6)0.0436 (14)
C150.3893 (3)0.5221 (3)0.5522 (7)0.0544 (15)
H150.36150.47800.55260.065*
C160.4046 (3)0.5618 (4)0.6991 (7)0.0648 (17)
H160.38670.54410.80330.078*
C170.4460 (3)0.6276 (4)0.6982 (8)0.0690 (19)
H170.45560.65220.80220.083*
C180.4729 (3)0.6575 (3)0.5508 (8)0.0623 (17)
H180.49920.70240.55120.075*
C190.4590 (3)0.6175 (3)0.3982 (7)0.0494 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0404 (3)0.0329 (3)0.0401 (3)0.0014 (3)0.0005 (2)0.0017 (3)
O10.0378 (19)0.069 (3)0.0375 (19)0.0022 (18)0.0002 (16)0.0059 (18)
O20.0428 (19)0.042 (2)0.0297 (19)0.0046 (17)0.0003 (15)0.0015 (16)
O30.067 (2)0.058 (3)0.041 (2)0.027 (2)0.0024 (18)0.0063 (18)
O40.0385 (18)0.0355 (19)0.043 (2)0.0073 (18)0.0026 (15)0.0050 (17)
O50.077 (3)0.071 (3)0.049 (2)0.011 (2)0.0104 (19)0.001 (2)
O60.108 (3)0.070 (3)0.091 (3)0.029 (3)0.004 (3)0.006 (2)
O70.070 (3)0.059 (3)0.080 (3)0.004 (2)0.014 (2)0.008 (2)
O80.045 (2)0.059 (3)0.057 (2)0.012 (2)0.0001 (18)0.011 (2)
O90.056 (2)0.054 (2)0.058 (2)0.010 (2)0.0149 (18)0.014 (2)
N10.037 (2)0.040 (3)0.044 (3)0.003 (2)0.001 (2)0.002 (2)
N20.044 (3)0.034 (3)0.039 (2)0.002 (2)0.005 (2)0.002 (2)
N30.041 (2)0.060 (3)0.038 (3)0.001 (3)0.000 (2)0.002 (3)
N40.059 (3)0.084 (4)0.041 (3)0.016 (3)0.005 (2)0.007 (3)
N50.066 (3)0.076 (4)0.051 (3)0.012 (3)0.007 (3)0.003 (3)
C10.046 (3)0.051 (4)0.073 (4)0.001 (3)0.003 (3)0.011 (3)
C20.041 (3)0.061 (4)0.101 (5)0.004 (3)0.013 (3)0.016 (4)
C30.051 (4)0.061 (4)0.096 (5)0.015 (3)0.010 (3)0.021 (4)
C40.050 (3)0.038 (3)0.086 (4)0.002 (3)0.002 (3)0.018 (3)
C50.043 (3)0.035 (3)0.040 (3)0.002 (3)0.000 (2)0.009 (3)
C60.047 (3)0.033 (3)0.031 (3)0.001 (3)0.003 (2)0.001 (2)
C70.059 (4)0.040 (3)0.059 (4)0.004 (3)0.001 (3)0.004 (3)
C80.057 (4)0.043 (4)0.087 (5)0.017 (3)0.009 (3)0.011 (3)
C90.048 (4)0.059 (4)0.095 (5)0.004 (3)0.017 (3)0.010 (4)
C100.051 (4)0.043 (4)0.072 (4)0.005 (3)0.015 (3)0.001 (3)
C110.035 (3)0.025 (3)0.042 (3)0.004 (2)0.001 (2)0.007 (2)
C120.041 (3)0.047 (4)0.036 (3)0.001 (3)0.004 (3)0.009 (3)
C130.048 (3)0.055 (4)0.048 (3)0.008 (3)0.002 (3)0.009 (3)
C140.030 (3)0.066 (4)0.034 (3)0.005 (3)0.001 (2)0.001 (3)
C150.043 (3)0.071 (4)0.049 (4)0.004 (3)0.007 (3)0.007 (3)
C160.052 (4)0.095 (5)0.048 (4)0.007 (4)0.011 (3)0.000 (4)
C170.049 (4)0.108 (6)0.049 (4)0.020 (4)0.010 (3)0.020 (4)
C180.053 (4)0.069 (4)0.065 (4)0.001 (3)0.007 (3)0.009 (4)
C190.039 (3)0.062 (4)0.047 (4)0.002 (3)0.001 (3)0.009 (3)
Geometric parameters (Å, º) top
Zn1—O32.050 (3)C2—C31.381 (7)
Zn1—O12.070 (3)C2—H2A0.9300
Zn1—N22.102 (4)C3—C41.368 (7)
Zn1—O22.104 (3)C3—H3A0.9300
Zn1—N12.147 (4)C4—C51.376 (6)
Zn1—O42.171 (3)C4—H4A0.9300
O1—H10.8501C5—C61.481 (6)
O1—H20.8500C6—C71.374 (6)
O2—C11i1.273 (5)C7—C81.387 (7)
O3—H30.8500C7—H70.9300
O3—H40.8500C8—C91.361 (7)
O4—C111.229 (5)C8—H80.9300
O5—H200.8500C9—C101.374 (7)
O5—H190.8501C9—H90.9300
O6—H210.8501C10—H100.9300
O6—H220.8499C11—O2i1.273 (5)
O7—H230.8499C11—C11i1.534 (9)
O7—H240.8500C12—C131.530 (6)
O8—C121.236 (6)C13—H13A0.9700
O9—C121.253 (5)C13—H13B0.9700
N1—C11.332 (6)C14—C191.377 (7)
N1—C51.333 (6)C14—C151.390 (6)
N2—C101.339 (6)C15—C161.364 (7)
N2—C61.343 (6)C15—H150.9300
N3—N41.357 (5)C16—C171.386 (8)
N3—C141.371 (6)C16—H160.9300
N3—C131.433 (6)C17—C181.358 (7)
N4—N51.300 (6)C17—H170.9300
N5—C191.381 (6)C18—C191.401 (7)
C1—C21.371 (7)C18—H180.9300
C1—H1A0.9300
O3—Zn1—O185.24 (12)N1—C5—C4121.1 (5)
O3—Zn1—N295.73 (15)N1—C5—C6116.0 (4)
O1—Zn1—N299.77 (13)C4—C5—C6122.9 (5)
O3—Zn1—O295.81 (13)N2—C6—C7121.1 (5)
O1—Zn1—O296.37 (12)N2—C6—C5115.4 (4)
N2—Zn1—O2160.85 (13)C7—C6—C5123.5 (5)
O3—Zn1—N1170.72 (14)C6—C7—C8120.8 (5)
O1—Zn1—N190.57 (13)C6—C7—H7119.6
N2—Zn1—N176.80 (16)C8—C7—H7119.6
O2—Zn1—N192.88 (14)C9—C8—C7117.6 (5)
O3—Zn1—O485.65 (11)C9—C8—H8121.2
O1—Zn1—O4168.31 (12)C7—C8—H8121.2
N2—Zn1—O488.43 (13)C8—C9—C10119.3 (5)
O2—Zn1—O477.28 (11)C8—C9—H9120.4
N1—Zn1—O499.48 (13)C10—C9—H9120.4
Zn1—O1—H1124.2N2—C10—C9123.4 (5)
Zn1—O1—H2128.0N2—C10—H10118.3
H1—O1—H2107.2C9—C10—H10118.3
C11i—O2—Zn1115.1 (3)O4—C11—O2i126.0 (4)
Zn1—O3—H3131.7O4—C11—C11i117.8 (6)
Zn1—O3—H4120.2O2i—C11—C11i116.2 (6)
H3—O3—H4106.5O8—C12—O9126.2 (5)
C11—O4—Zn1113.6 (3)O8—C12—C13118.7 (5)
H20—O5—H19104.5O9—C12—C13115.1 (5)
H21—O6—H22101.7N3—C13—C12113.6 (4)
H23—O7—H24105.8N3—C13—H13A108.8
C1—N1—C5118.6 (5)C12—C13—H13A108.8
C1—N1—Zn1126.2 (4)N3—C13—H13B108.8
C5—N1—Zn1115.2 (3)C12—C13—H13B108.8
C10—N2—C6117.7 (4)H13A—C13—H13B107.7
C10—N2—Zn1125.6 (4)N3—C14—C19104.2 (4)
C6—N2—Zn1116.7 (3)N3—C14—C15132.7 (5)
N4—N3—C14109.4 (4)C19—C14—C15123.1 (5)
N4—N3—C13120.0 (4)C16—C15—C14115.6 (6)
C14—N3—C13130.7 (5)C16—C15—H15122.2
N5—N4—N3109.8 (4)C14—C15—H15122.2
N4—N5—C19107.2 (5)C15—C16—C17122.2 (6)
N1—C1—C2123.7 (5)C15—C16—H16118.9
N1—C1—H1A118.1C17—C16—H16118.9
C2—C1—H1A118.1C18—C17—C16122.3 (6)
C1—C2—C3117.2 (5)C18—C17—H17118.9
C1—C2—H2A121.4C16—C17—H17118.9
C3—C2—H2A121.4C17—C18—C19116.8 (6)
C4—C3—C2119.4 (5)C17—C18—H18121.6
C4—C3—H3A120.3C19—C18—H18121.6
C2—C3—H3A120.3C14—C19—N5109.5 (5)
C3—C4—C5119.9 (5)C14—C19—C18120.0 (5)
C3—C4—H4A120.1N5—C19—C18130.5 (6)
C5—C4—H4A120.1
O3—Zn1—O2—C11i83.7 (3)C3—C4—C5—N10.7 (8)
O1—Zn1—O2—C11i169.5 (3)C3—C4—C5—C6179.3 (5)
N2—Zn1—O2—C11i43.1 (6)C10—N2—C6—C72.1 (7)
N1—Zn1—O2—C11i99.6 (3)Zn1—N2—C6—C7179.2 (3)
O4—Zn1—O2—C11i0.5 (3)C10—N2—C6—C5178.6 (4)
O3—Zn1—O4—C1195.5 (3)Zn1—N2—C6—C51.5 (5)
O1—Zn1—O4—C1156.6 (7)N1—C5—C6—N20.6 (6)
N2—Zn1—O4—C11168.7 (3)C4—C5—C6—N2179.4 (4)
O2—Zn1—O4—C111.5 (3)N1—C5—C6—C7179.9 (4)
N1—Zn1—O4—C1192.3 (3)C4—C5—C6—C70.1 (8)
O1—Zn1—N1—C178.5 (4)N2—C6—C7—C81.6 (7)
N2—Zn1—N1—C1178.4 (4)C5—C6—C7—C8179.0 (5)
O2—Zn1—N1—C118.0 (4)C6—C7—C8—C90.4 (8)
O4—Zn1—N1—C195.5 (4)C7—C8—C9—C100.3 (9)
O1—Zn1—N1—C5100.9 (3)C6—N2—C10—C91.4 (8)
N2—Zn1—N1—C51.0 (3)Zn1—N2—C10—C9178.2 (4)
O2—Zn1—N1—C5162.7 (3)C8—C9—C10—N20.2 (9)
O4—Zn1—N1—C585.1 (3)Zn1—O4—C11—O2i179.8 (4)
O3—Zn1—N2—C107.4 (4)Zn1—O4—C11—C11i2.1 (6)
O1—Zn1—N2—C1093.5 (4)N4—N3—C13—C1289.2 (5)
O2—Zn1—N2—C10119.4 (5)C14—N3—C13—C1291.0 (6)
N1—Zn1—N2—C10178.2 (4)O8—C12—C13—N325.8 (7)
O4—Zn1—N2—C1078.1 (4)O9—C12—C13—N3155.1 (4)
O3—Zn1—N2—C6175.8 (3)N4—N3—C14—C190.2 (5)
O1—Zn1—N2—C689.6 (3)C13—N3—C14—C19179.6 (5)
O2—Zn1—N2—C657.4 (6)N4—N3—C14—C15178.1 (5)
N1—Zn1—N2—C61.3 (3)C13—N3—C14—C151.6 (9)
O4—Zn1—N2—C698.8 (3)N3—C14—C15—C16177.1 (5)
C14—N3—N4—N50.1 (6)C19—C14—C15—C160.5 (7)
C13—N3—N4—N5179.9 (4)C14—C15—C16—C170.2 (8)
N3—N4—N5—C190.4 (6)C15—C16—C17—C181.0 (9)
C5—N1—C1—C20.5 (8)C16—C17—C18—C191.8 (8)
Zn1—N1—C1—C2179.8 (4)N3—C14—C19—N50.4 (5)
N1—C1—C2—C30.7 (9)C15—C14—C19—N5178.6 (5)
C1—C2—C3—C41.1 (9)N3—C14—C19—C18178.5 (4)
C2—C3—C4—C50.5 (9)C15—C14—C19—C180.3 (8)
C1—N1—C5—C41.1 (7)N4—N5—C19—C140.5 (6)
Zn1—N1—C5—C4179.4 (4)N4—N5—C19—C18178.3 (5)
C1—N1—C5—C6178.8 (4)C17—C18—C19—C141.4 (8)
Zn1—N1—C5—C60.6 (5)C17—C18—C19—N5177.2 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H24···N5ii0.852.112.924 (6)160
O6—H22···O7iii0.852.112.859 (5)146
O1—H2···O2iv0.851.962.755 (4)155
O7—H23···O9v0.851.922.748 (5)166
O3—H3···O9v0.851.872.718 (4)177
O1—H1···O8v0.851.852.692 (4)171
O6—H21···O70.852.052.860 (5)160
O5—H19···O60.851.882.728 (5)178
O5—H20···O80.852.082.928 (5)174
O3—H4···O50.851.832.678 (4)172
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1, z+2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C2O4)(C10H8N2)2(H2O)4](C8H6N3O2)2·6H2O
Mr1063.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)16.791 (2), 18.218 (2), 7.7461 (9)
β (°) 92.233 (2)
V3)2367.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.22 × 0.19 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.795, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
12364, 4193, 2281
Rint0.092
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.111, 1.00
No. of reflections4193
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H24···N5i0.852.112.924 (6)159.8
O6—H22···O7ii0.852.112.859 (5)146.3
O1—H2···O2iii0.851.962.755 (4)155.3
O7—H23···O9iv0.851.922.748 (5)165.8
O3—H3···O9iv0.851.872.718 (4)176.8
O1—H1···O8iv0.851.852.692 (4)171.0
O6—H21···O70.852.052.860 (5)160.2
O5—H19···O60.851.882.728 (5)177.8
O5—H20···O80.852.082.928 (5)174.1
O3—H4···O50.851.832.678 (4)171.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1, z+2; (iv) x, y, z+1.
 

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDecurtins, S., Schmalle, H. W., Schneuwly, P., Ensling, J. & Guetlich, P. (1994). J. Am. Chem. Soc. 116, 9521–9528.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, G. X., Zhu, K., Chen, H., Huang, R. Y. & Ren, X. M. (2009). Z. Anorg. Allg. Chem. 635, 156–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W., Jiang, M., Li, Y. T., Wu, Z. Y. & Peng, W. B. (2009). J. Coord. Chem. 62, 2520–2531.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Z. B., Wu, R. T., Li, J. K., Han, Y. F. & Lu, J. R. (2010). J. Coord. Chem. 63, 1118–1129.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds