organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Fluoro-12H-benzimidazo[2,1-b][1,3]benzo­thia­zin-12-one

aSchool of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China, and bHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China
*Correspondence e-mail: wzmmol@hotmail.com

(Received 25 November 2011; accepted 21 December 2011; online 14 January 2012)

In the title compound, C14H7FN2OS, prepared by the reaction of 2-bromo-4-fluoro­benzoyl choride with 2-mercaptobenzimidazole, the four-membered fused-ring system is essentially planar [maximum deviation from the mean plane = 0.035 (2) Å]. The crystal packing is stabilized by weak inter­molecular ππ [minimum ring centroid–centroid separation = 3.509 (7) Å], weak C—F⋯π [F⋯centroid = 3.4464 (17) Å, C—F⋯centroid = 97.72 (11)°] and C—O⋯π [O⋯centroid = 3.5230 (16) and 3.7296 (17) Å, C—O⋯centroid = 86.40 (10) and 86.25 (10)°] inter­actions and weak inter­molecular C—H⋯N hydrogen bonds.

Related literature

For general background to spiranes, see: Dawood & Abdel-Wahab (2010[Dawood, K. M. & Abdel-Wahab, B. F. (2010). Chem. Heterocycl. Compd, 46, 255-278.]); Dolbier et al. (1994[Dolbier, W. R. Jr, Burkholder, C., Abboud, K. A. & Loehle, D. (1994). J. Org. Chem. 59, 7688-7695.]); Mavrova et al. (2010[Mavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856-5861.]); Sekar et al. (2011[Sekar, R., Srinivasan, M., Marcelis, A. T. M. & Sambandam, A. (2011). Tetrahedron Lett. 52, 3347-3352.]).

[Scheme 1]

Experimental

Crystal data
  • C14H7FN2OS

  • Mr = 270.28

  • Monoclinic, P 21 /c

  • a = 9.5027 (12) Å

  • b = 7.0759 (9) Å

  • c = 16.931 (2) Å

  • β = 94.375 (3)°

  • V = 1135.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.958

  • 5987 measured reflections

  • 1989 independent reflections

  • 1772 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.106

  • S = 1.00

  • 1989 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N1i 0.93 2.58 3.359 (2) 141
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of 2-mercaptoimidazole or 2-mercaptobenzimidazole has attracted much attention of many synthetic chemists owing to the occurrence of these ring systems in various biologically important compounds (Dawood & Abdel-Wahab, 2010; Mavrova et al., 2010). In the past decades, most of these investigations were carried out with imidazole derivatives (Dolbier et al., 1994; Sekar et al., 2011). We herein present the structure of the title compound C14H7FN2OS, prepared from the reaction of 2-bromo-4-fluorobenzoyl choride with 2-mercaptobenzimidazole.

In the crystal structure, the title compound adopts an essentially planar conformation (Fig. 1), with the maximum atom deviation from the least-squares plane to the four-membered fused-ring system = 0.035 (2) Å. The dihedral angles between the benzimidazole ring (N1–C7) and thiazine ring (S1–C10) = 0.74 (8)°, the benzene ring (C9–C14) and thiazine ring (S1–C10) = 1.00 (4)° and the benzimidazole ring (N1–C7) and benzene ring (C9–C14) = 0.03 (8)°.

The crystal packing is stabilized by weak interactions: (1) intermolecular ππ interactions: (a) imidazole ring N1–C7 (ring 1) and benzene ring C1–C6 (ring 2) of the benzimazole moiety [ring centroid separation = 3.673 (8) Å, symmetry code (i)-x+1,-y+2, -z]; (b) between thiazine ring S1–C10 (ring 3) and S1–C10i = 3.856 (5) Å; (c) between ring 3···and ring 2i = 3.509 (7) Å; (2) C—O···π interactions [C(13)—O(1)···Cg2, C(13)—O(1)···Cg3] and C—F···π interactions [C(2)—F(1)···Cg4]; (3) intermolecular C—H···N hydrogen bonds [C(6)—H(6)···N(2)].

Related literature top

For general background to spiranes, see: Dawood & Abdel-Wahab (2010); Dolbier et al. (1994); Mavrova et al. (2010); Sekar et al. (2011).

Experimental top

An oven-dried Schlenk tube was charged with a magnetic stirring bar, CuI (0.05 mmol), 1,10-phenanthroline (0.10 mmol), Cs2CO3 (0.50 mmol), and 2-mercaptobenzimidazole. The Schlenk tube was capped, and then evacuated and backfilled with N2 (3 times), then under a positive pressure of N2, a solution of 2-bromo-4-fluorobenzoyl choride (0.75 mmol) in touene (2 ml, freshly distilled from sodium) was added dropwise via syringe, and the mixture was pre-stirred for 1 h at room temperature. The reaction mixture was then stirred at 100 °C. After the reaction was completed, the mixture was cooled to room temperature, passed through Celite and rinsed with 30 ml of CH2Cl2. The combined filtrate was concentrated and purified by flash chromatography to give a white solid (93% yield). Single crystals of the title compound suitable for X-ray diffraction were obtained by evaporation of a petroleum ether–chloroform solution.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, with Uiso(H) = 1.2 Ueq(C)

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
3-Fluoro-12H-benzimidazo[2,1-b][1,3]benzothiazin-12-one top
Crystal data top
C14H7FN2OSF(000) = 552
Mr = 270.28Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3848 reflections
a = 9.5027 (12) Åθ = 2.4–29.8°
b = 7.0759 (9) ŵ = 0.29 mm1
c = 16.931 (2) ÅT = 293 K
β = 94.375 (3)°Block, colourless
V = 1135.1 (2) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1989 independent reflections
Radiation source: fine-focus sealed tube1772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 911
Tmin = 0.944, Tmax = 0.958k = 88
5987 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.4006P]
where P = (Fo2 + 2Fc2)/3
1989 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H7FN2OSV = 1135.1 (2) Å3
Mr = 270.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5027 (12) ŵ = 0.29 mm1
b = 7.0759 (9) ÅT = 293 K
c = 16.931 (2) Å0.20 × 0.18 × 0.15 mm
β = 94.375 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1989 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1772 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.958Rint = 0.031
5987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
1989 reflectionsΔρmin = 0.33 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14487 (5)0.16939 (8)0.36622 (3)0.0538 (2)
F10.43167 (13)0.1082 (2)0.59933 (8)0.0691 (4)
O10.19345 (15)0.3338 (2)0.54945 (8)0.0550 (4)
N10.08266 (18)0.2319 (2)0.28889 (9)0.0512 (4)
N20.12490 (15)0.2778 (2)0.42060 (8)0.0386 (3)
C10.4856 (2)0.4053 (3)0.36667 (13)0.0549 (5)
H10.57420.44780.38600.066*
C20.3838 (2)0.3749 (3)0.41907 (12)0.0478 (4)
H20.40240.39290.47330.057*
C30.2520 (2)0.3161 (2)0.38695 (11)0.0409 (4)
C40.2239 (2)0.2870 (3)0.30570 (11)0.0458 (4)
C50.3284 (2)0.3134 (3)0.25403 (12)0.0570 (5)
H50.31120.29140.20000.068*
C60.4596 (2)0.3741 (3)0.28586 (13)0.0600 (5)
H60.53140.39420.25250.072*
C70.0288 (2)0.2291 (2)0.35679 (10)0.0429 (4)
C80.0987 (2)0.2875 (2)0.50112 (10)0.0404 (4)
C90.04393 (18)0.2395 (2)0.52280 (10)0.0387 (4)
C100.1557 (2)0.1855 (2)0.46872 (11)0.0420 (4)
C110.2867 (2)0.1387 (3)0.49526 (12)0.0474 (5)
H110.36090.09990.45990.057*
C120.3033 (2)0.1512 (3)0.57463 (12)0.0496 (5)
C130.1972 (2)0.2037 (3)0.62965 (12)0.0517 (5)
H130.21210.20900.68330.062*
C140.0687 (2)0.2480 (3)0.60323 (11)0.0446 (4)
H140.00430.28480.63970.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0482 (3)0.0744 (4)0.0365 (3)0.0045 (2)0.0113 (2)0.0035 (2)
F10.0542 (7)0.0824 (9)0.0723 (8)0.0065 (6)0.0150 (6)0.0017 (7)
O10.0544 (8)0.0695 (9)0.0387 (7)0.0113 (7)0.0121 (6)0.0058 (6)
N10.0585 (10)0.0611 (10)0.0325 (8)0.0036 (8)0.0060 (7)0.0026 (7)
N20.0429 (8)0.0397 (8)0.0319 (7)0.0020 (6)0.0068 (6)0.0009 (6)
C10.0490 (11)0.0546 (11)0.0610 (12)0.0014 (9)0.0031 (9)0.0037 (9)
C20.0474 (10)0.0477 (10)0.0475 (10)0.0006 (8)0.0014 (8)0.0001 (8)
C30.0469 (10)0.0344 (8)0.0407 (9)0.0051 (7)0.0021 (8)0.0031 (7)
C40.0537 (11)0.0430 (9)0.0399 (10)0.0074 (8)0.0024 (8)0.0059 (8)
C50.0690 (14)0.0596 (12)0.0425 (11)0.0118 (10)0.0046 (10)0.0067 (9)
C60.0596 (13)0.0646 (13)0.0573 (13)0.0074 (10)0.0135 (10)0.0108 (10)
C70.0491 (10)0.0412 (9)0.0362 (9)0.0041 (8)0.0105 (7)0.0007 (7)
C80.0480 (10)0.0377 (9)0.0341 (9)0.0022 (7)0.0070 (7)0.0009 (7)
C90.0448 (10)0.0336 (8)0.0365 (9)0.0050 (7)0.0052 (7)0.0002 (7)
C100.0488 (10)0.0368 (9)0.0389 (9)0.0059 (7)0.0066 (8)0.0012 (7)
C110.0431 (10)0.0449 (10)0.0525 (11)0.0021 (8)0.0075 (8)0.0003 (8)
C120.0473 (11)0.0447 (10)0.0572 (12)0.0039 (8)0.0069 (9)0.0030 (8)
C130.0619 (12)0.0507 (11)0.0425 (10)0.0065 (9)0.0053 (9)0.0003 (8)
C140.0507 (10)0.0443 (9)0.0378 (9)0.0050 (8)0.0046 (8)0.0012 (7)
Geometric parameters (Å, º) top
S1—C71.723 (2)C4—C51.385 (3)
S1—C101.7501 (19)C5—C61.388 (3)
F1—C121.354 (2)C5—H50.9300
O1—C81.214 (2)C6—H60.9300
N1—C71.294 (2)C8—C91.471 (3)
N1—C41.406 (3)C9—C101.402 (2)
N2—C31.401 (2)C9—C141.401 (2)
N2—C71.403 (2)C10—C111.395 (3)
N2—C81.406 (2)C11—C121.368 (3)
C1—C21.378 (3)C11—H110.9300
C1—C61.389 (3)C12—C131.371 (3)
C1—H10.9300C13—C141.369 (3)
C2—C31.390 (3)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.397 (3)
C7—S1—C10101.85 (9)N1—C7—S1122.20 (14)
C7—N1—C4105.11 (16)N2—C7—S1124.09 (14)
C3—N2—C7105.38 (14)O1—C8—N2119.32 (17)
C3—N2—C8127.34 (15)O1—C8—C9122.96 (16)
C7—N2—C8127.28 (15)N2—C8—C9117.72 (15)
C2—C1—C6121.9 (2)C10—C9—C14118.16 (17)
C2—C1—H1119.1C10—C9—C8124.53 (16)
C6—C1—H1119.1C14—C9—C8117.31 (16)
C1—C2—C3116.76 (19)C11—C10—C9120.31 (17)
C1—C2—H2121.6C11—C10—S1115.18 (14)
C3—C2—H2121.6C9—C10—S1124.51 (15)
C2—C3—C4121.90 (18)C12—C11—C10118.25 (18)
C2—C3—N2132.68 (17)C12—C11—H11120.9
C4—C3—N2105.41 (16)C10—C11—H11120.9
C5—C4—C3120.66 (19)F1—C12—C13118.95 (18)
C5—C4—N1128.96 (19)F1—C12—C11117.57 (18)
C3—C4—N1110.38 (17)C13—C12—C11123.47 (19)
C4—C5—C6117.5 (2)C12—C13—C14117.93 (19)
C4—C5—H5121.2C12—C13—H13121.0
C6—C5—H5121.2C14—C13—H13121.0
C5—C6—C1121.2 (2)C13—C14—C9121.85 (18)
C5—C6—H6119.4C13—C14—H14119.1
C1—C6—H6119.4C9—C14—H14119.1
N1—C7—N2113.71 (17)
C6—C1—C2—C31.7 (3)C10—S1—C7—N20.75 (17)
C1—C2—C3—C40.7 (3)C3—N2—C8—O10.0 (3)
C1—C2—C3—N2177.85 (18)C7—N2—C8—O1179.37 (17)
C7—N2—C3—C2178.39 (19)C3—N2—C8—C9179.66 (15)
C8—N2—C3—C21.1 (3)C7—N2—C8—C90.9 (2)
C7—N2—C3—C40.31 (18)O1—C8—C9—C10180.00 (17)
C8—N2—C3—C4179.83 (15)N2—C8—C9—C100.3 (2)
C2—C3—C4—C51.0 (3)O1—C8—C9—C140.2 (3)
N2—C3—C4—C5179.83 (16)N2—C8—C9—C14179.46 (15)
C2—C3—C4—N1178.82 (16)C14—C9—C10—C111.1 (2)
N2—C3—C4—N10.06 (19)C8—C9—C10—C11178.63 (16)
C7—N1—C4—C5179.51 (19)C14—C9—C10—S1179.32 (13)
C7—N1—C4—C30.2 (2)C8—C9—C10—S10.9 (2)
C3—C4—C5—C61.6 (3)C7—S1—C10—C11178.27 (13)
N1—C4—C5—C6178.15 (19)C7—S1—C10—C91.29 (17)
C4—C5—C6—C10.6 (3)C9—C10—C11—C121.5 (3)
C2—C1—C6—C51.0 (3)S1—C10—C11—C12178.94 (14)
C4—N1—C7—N20.5 (2)C10—C11—C12—F1178.98 (16)
C4—N1—C7—S1179.82 (13)C10—C11—C12—C131.4 (3)
C3—N2—C7—N10.5 (2)F1—C12—C13—C14179.48 (17)
C8—N2—C7—N1179.97 (16)C11—C12—C13—C140.9 (3)
C3—N2—C7—S1179.78 (13)C12—C13—C14—C90.5 (3)
C8—N2—C7—S10.3 (2)C10—C9—C14—C130.6 (3)
C10—S1—C7—N1178.93 (15)C8—C9—C14—C13179.15 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.932.583.359 (2)141
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H7FN2OS
Mr270.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5027 (12), 7.0759 (9), 16.931 (2)
β (°) 94.375 (3)
V3)1135.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.944, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
5987, 1989, 1772
Rint0.031
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.00
No. of reflections1989
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.33

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.932.583.359 (2)141
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

First citationBruker (2000). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawood, K. M. & Abdel-Wahab, B. F. (2010). Chem. Heterocycl. Compd, 46, 255–278.  Web of Science CrossRef CAS Google Scholar
First citationDolbier, W. R. Jr, Burkholder, C., Abboud, K. A. & Loehle, D. (1994). J. Org. Chem. 59, 7688–7695.  CSD CrossRef CAS Web of Science Google Scholar
First citationMavrova, A. T., Vuchev, D., Anichina, K. & Vassilev, N. (2010). Eur. J. Med. Chem. 45, 5856–5861.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSekar, R., Srinivasan, M., Marcelis, A. T. M. & Sambandam, A. (2011). Tetrahedron Lett. 52, 3347–3352.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds